
Automatic Reverse-Mode Differentiation

TAs: Karandeep Johar, Bhuwan Dhingra

Out 11/3/2016
Due 11/17/2016 via Autolab

Prerequisite: Please ensure you have first read Prof Cohen’s notes on
Automatic Reverse Mode Differentiation1. You can also refer to the sample
code here2.

Guidelines for Answers: Please answer to the point. Please state any
additional assumptions you make while answering the questions. You need to
submit a tar file containing source files and a pdf version of report separately
to autolab. Please make sure you write the report legibly for grading.

Rules for Student Collaboration: The purpose of student collabo-
ration in solving assignments is to facilitate learning, not to circumvent it.
Studying the material in groups is strongly encouraged. It is allowed to seek
help from other students in understanding the material needed to solve a
homework problem, provided no written notes are taken or shared during
group discussions. The actual solutions must be written and implemented
by each student alone, and the student should be ready to reproduce their
solution upon request. You may ask clarifying questions on Piazza. However,
under no circumstances should you reveal any part of the answer publicly on
Piazza or any other public website. Any incidents of plagiarism or collabo-
ration without full disclosure will be handled severely.

Rules for External Help: Some of the homework assignments used in
this class may have been used in prior versions of this class, or in classes at
other institutions. Avoiding the use of heavily tested assignments detracts
from the main purpose of these assignments, which is to reinforce the material
and stimulate thinking. Because some of these assignments may have been
used before, solutions to them may be available online or from other people.

1http://www.cs.cmu.edu/~wcohen/10-605/notes/autodiff.pdf
2http://www.cs.cmu.edu/~wcohen/10-605/code/sample-use-of-xman.py

1

http://www.cs.cmu.edu/~wcohen/10-605/notes/autodiff.pdf
http://www.cs.cmu.edu/~wcohen/10-605/code/sample-use-of-xman.py

It is explicitly forbidden to use any such sources or to consult people who have
solved these problems before. You must solve the homework assignments
completely on your own. We will mostly rely on your wisdom and honor
to follow this rule. However, if a violation is detected, it will be dealt with
harshly.

• Did you receive any help whatsoever from anyone in solving this as-
signment? Yes/No

• If you answered yes, give full details:
(e.g. ”Jane explained to me what is asked in Question 3.4”)

• Did you give any help whatsoever to anyone in solving this assignment?
Yes/No

• If you answered yes, give full details:
(e.g. ”I pointed Joe to section 2.3 to help him with Question 2”)

1 Overview

In this assignment we will use an automatic differentiation system to imple-
ment two neural network architectures for character level entity classification,
using python and numpy. The architectures we will implement are:

• A feedforward network or Multilayer Perceptron (MLP)

• A Long Short Term Memory (LSTM) network followed by a feedfor-
ward layer

Character level entity classification refers to determining the type of an
entity given the characters which appear in its name as features. For example,
given the name “Antonio Veciana” you might guess that it is a Person, and
given the name “Anomis esocampta” you might guess that it is a Species.
We will be classifying the following 5 DBPedia categories - Person, Place,
Organisation, Work, Species.

2

2 Neural Architectures

2.1 Mutlilayer Perceptron

MLP is a simple neural network architecture consisting of multiple layers,
each of which apply a linear transformation followed by non-linear mapping
to their inputs:

oi = f(xTwi + bi)

Here x ∈ Rdin is the layer input and oi ∈ R is the i-th output of the layer.
wi, bi are layer parameters which will be optimized during learning. The
number of outputs at each layer is called the dimension of that layer and
we denote it by dout. We would like to use vector/matrix multiplications
wherever possible to utilize their fast implementation in numpy, and combine
the above for all i as:

o = f(xTW + b)

W = [w1, w2, . . . , wdout] ∈ Rdin×dout stacks all the weight vectors horizontally,
and b ∈ Rdout holds all the biases. The non-linearity f is applied elementwise.

To further speed-up the computation we can process a minibatch of inputs
together. Let X ∈ RN×din be a matrix holding N examples row-wise. We
can compute the layer outputs for all of these together:

O = f(XW +B) (1)

B = 1 ⊗ bT ∈ RN×dout is a “broadcasted” version of the bias of appropriate
dimensions. For this assigment we will use numpy for all matrix operations,
which takes care of broadcasting automatically (see here3 for details), hence
we can use the vector b directly. The nonlinearity we will use is the Rectified
Linear Unit (ReLU):

f(x) =

{
x x > 0

0 x ≤ 0

For vectors the nonlinearity is applied element-wise, and we can again use
numpy broadcasting for this. In multi-layer networks, output of layer k is
passed as input to layer k + 1:

O(k+1) = f(O(k)W (k) + b(k)) (2)

3https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html

3

https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html

We can set output size of the last layer of the MLP to produce a vector
the same size as the number of labels C in our dataset. The operations
described thus far map inputs to positive reals, but for classification tasks
we are interested in obtaining a distribution over class labels. This is usually
done by passing the output of the last layer through a softmax operation:

pj =
eoj∑C
j′=1 e

oj′

Note that p defines a valid distribution, and elements of o which have a high
relative value will have a high probability in p. In case ojs are very large or
very negative there might be numerical issues in computing the above. A
more numerically stable version of softmax uses the following:

pj =
eoj−a∑C
j′=1 e

oj′−a
(3)

This is true for any a, we will use a = maxj oj. Lastly, we need to define a
loss function which measures how far the output distribution pi for input i
is from its target distribution ti. We will use the cross-entropy loss for this:

li = −
C∑
j=1

t
(j)
i log p

(j)
i (4)

For single-label classification, ti is an C-dimensional one-hot vector encoding
the correct label for this example. The above equations compute p and l
for a single o, but in your code you should use numpy operations to compute
a minibatch of distributions P and losses L from a minibatches of O. The
objective function we will optimize is the average of losses across a minibatch:

loss =
1

N

N∑
i=1

li (5)

Now we can take gradients of loss wrt to the parameters of the network and
perform Stochastic Gradient Descent (SGD).

To summarize, the first architecture you will implement for this assign-
ment consists of an MLP with one hidden layer, followed by a softmax layer

4

(??) and cross-entropy loss (??). Given an input minibatch X and their
associated targets T , the output P and loss are computed as:

O(1) = relu(XW (1) + b(1))

O(2) = relu(O(1)W (2) + b(2))

P = softmax(O(2))

loss = mean(cross-entropy(T, P))

2.2 Long Short Term Memory

The MLP is a powerful model – with enough hidden units it can approximate
any function, but it is not the most appropriate model when the input is a
sequence. For sequences, the input size of the MLP and consequently size
of W (1), will increase linearly with the size of the length of the sequence
and might get prohibitively large. Instead, we would like to have a model
which can loop over the input sequence, and starting from an initial state
iteratively updates its output based on the input at that time step. LSTMs
are one example of such a model 4.

Lets say we have a sequence of inputs x1, x2, . . . , xM ∈ Rdin , an initial
cell state c0 = 0 ∈ Rdout and an initial output h0 = 0 ∈ Rdout . At time t the
LSTM does the following updates:

it = σ(xTt Wi + hTt−1Ui + bi)

ft = σ(xTt Wf + hTt−1Uf + bf)

ot = σ(xTt Wo + hTt−1Uo + bo)

c̃t = tanh(xTt Wc + hTt−1Uc + bc)

ct = ft � ct−1 + it � c̃t
ht = ot � tanh(ct)

Here W∗ ∈ Rdin×dout , U∗ ∈ Rdout×dout , b∗ ∈ Rdout are parameters, � is an
element-wise product and σ is the sigmoid function (applied element-wise):

σ(x)i =
1

1 + e−xi
(6)

4An introduction to LSTMs can be found at http://colah.github.io/posts/

2015-08-Understanding-LSTMs/

5

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Note: The above equations are shown for single inputs x for clarity. In your
implementation you must use minibatches X of N examples at a time, the
same way as we did for the MLP. This amounts to replacing xTt with matrices
Xt of size N × din, and hTt , cTt with matrices Ht, Ct of size N × dout.

Now we are ready to implement the second architecture for this assign-
ment. We will replace the first layer of MLP in the previous section with an
LSTM layer. Let LSTM(X1, X2, . . . , XM) be a function which loops over the
sequence X1, . . . , XM , performs the updates described above, and returns the
final output HM . Then, given inputs X1, . . . , XM , the output P and loss are
computed as follows:

HM = LSTM(X1, X2, . . . , XM)

O(2) = relu(HMW
(2) + b(2))

P = softmax(O(2))

loss = mean(cross-entropy(T, P))

2.3 Learning

Parameters of the above networks can be trained using minibatch SGD. Once
the loss function is defined we can take its derivative wrt to any parameter
wij and update it as follows:

w
(k)
ij ← w

(k−1)
ij − λdloss

dwij
(7)

λ is the learning rate.

3 Autodiff Implementation

In the starter code the following files are given -

• xman.py – classes for expression manager, registers and operations

• utils.py – classes for data preprocessing and forming minibatches
(more on this below)

• functions.py – function definitions and their gradients are declared
here

6

• mlp.py – you need to implement the mlp here

• lstm.py – you need to implement the lstm here

• autograd.py – class for forward and backward propagation over a
Wengert list

Here we briefly outline the steps needed to implement a model using the
package provided with the handout.

3.1 Declare operations, their functions and gradients

First we must declare all the primitive operations our function uses in the
XManFunctions class. For example, to declare relu, add the following lines
to f class in functions.py:

class f(XManFunctions):

@staticmethod

def relu(a):

return XManFunctions.registerDefinedByOperator(’relu’,a)

add, mul and subtract are decalred by default in XManFunctions.
Next we need to define functions for both the forward and backward pass

for each of the operators in our definition. The following example shows the
definitions for add:

import numpy as np

forward pass

EVAL_FUNS = {

’add’: lambda x1,x2: x1+x2,

}

def _derivAdd(delta,x1):

if delta.shape!=x1.shape:

broadcast, sum along axis=0

return delta.sum(axis=0)

else: return delta

backward pass

BP_FUNS = {

7

’add’: [lambda delta,out,x1,x2: _derivAdd(delta,x1),

lambda delta,out,x1,x2: _derivAdd(delta,x2)],

}

Lets take a closer look at what is happening here. EVAL FUNS is a dictio-
nary whose keys are the names of the operators as declared in the previous
section and values are the actual functions themselves (usually defined using
lambda calculus). BP FUNS is another dictionary with the same set of keys
as EVAL FUNS, but whose value for a key is a list of functions each computing
its gradient wrt one of its inputs.

In the above example BP FUNS[‘add’][0] computes the derivative wrt
x1, and BP FUNS[‘add’][1] computes the derivative wrt x2. As input each
of these functions receives:

• delta - partial derivative of the output of this operation

• out - output of this operation in the forward pass. This can be some-
times useful for computing the derivative. For example, for the sigmoid
nonlinearity σ′(x) = σ(x)(1− σ(x)).

• x1,x2,... - all inputs to the operation

Some things to be careful about:

1. Remember that our functions need to run in minibatch mode, where
they receive matrices as input and produce matrices as output.

2. Ensure that the shape of a gradient matches the shape of the input wrt
it is computed. As an example consider matrix multiplicationM = A·B
where A is n ×m B is m × k, then both M and the backpropagated
derivative of the loss w.r.t. M (dloss

dM
) will be n× k. To get the partial

derivates of the loss w.r.t. A and B:

dloss

dA
=
dloss

dM
·BT

dloss

dB
= AT · dloss

dM

In our code dloss
dM

will be stored in delta[M].

8

3. Be careful about numpy broadcasting. An example of this is shown in
derivAdd. In numpy if we add a N ×d matrix and a size d vector, the

vector is broadcasted to the size of the matrix. In this case the gradient
coming back will be size N×d, and needs to be summed along the first
dimension for the vector (but not for the matrix!). This happens for
example when we write XW + b.

4. autograd.py (described below) has an optimization which combines
the backward pass for crossEnt and softMax operations. The gra-
dients of this combined operation are easier to compute than the in-
dividual ones. So you need to implement BP FUNS only for the com-
bined operation crossEnt-softMax, but implement them separately in
EVAL FUNS.

3.2 Describe the Model

Once the primitive operations are defined, we can go ahead and define the
model. First we need to declare registers to hold inputs and parameters,
suppose there is one input x, a target y and two parameters W and b:

x = f.input(name=’x’, default=np.random.rand(1,10))

y = f.input(name=’y’, default=np.random.rand(1,10))

W = f.param(name=’W’, default=a*np.random.uniform(10,10))

b = f.param(name=’b’, default=0.1*np.random.uniform(10,))

You must specify the name and default fields for each register, including
input registers! The name is used during the forward and backward passes to
bind values to the correct register (more on this later). The default value is
used as initialization for parameters and also for performing gradient checks.
We will use the inputDict method described in the next section to collect
values for all registers and perform gradient checking using that. For this
purpose, you can assign any random default value to the input registers, as
long as it is the right shape.

Note on initialization of parameters: As discussed in class, it is impor-
tant to initialize parameters such that intermediate values in the network do
not lie in the saturated regions of the non-linearity. One good heuristic is
to sample the weights for W of size din × dout from a uniform distribution

9

U [−a, a] whose scale a is given by:

a =

√
6

din + dout
(8)

This is called Glorot initialization5. Bias terms can be initialized at a scale
of 0.1.

Now write the model in terms of primitive operations:

xm = XMan()

xm.o1 = f.relu(f.mul(x,W) + b)

...

xm.loss = ...

my_xman = xm.setup()

We can construct the Wengert list for any register in my xman by calling
operationSequence().

wengert list for the ‘loss’ register

wengert_list = my_xman.operationSequence(my_xman.loss)

3.3 Forward / Backward Pass

Another useful method in the XMan class is inputDict(), which returns a
dictionary containing default values associated with its registers:

valueDict = my_xman.inputDict()

valueDict contains register names as keys

and defaults as values

At the beginning of training we will call inputDict to collect initial values
of all parameters (valueDict also contains default values for the data, but
we will overwrite this). Then we will iterate through minibatches of the data
(more on this below), write the inputs to valueDict and perform updates.

One update consists of propagating data and parameters through the
Wengert list to get the outputs, and backpropagating gradients to get the
updates for all parameters. The Autograd class in autograd.py provides
helper functions to do this.

5http://jmlr.org/proceedings/papers/v9/glorot10a/glorot10a.pdf

10

http://jmlr.org/proceedings/papers/v9/glorot10a/glorot10a.pdf

valueDict contains current value of params

xc and yc are inputs for current minibatch

valueDict[‘x’] = xc

valueDict[‘y’] = yc

ad = Autograd(my_xman)

valueDict = ad.eval(wengert_list, valueDict) # forward pass

gradients = ad.bprop(wengert_list, valueDict,

loss=np.float_(1.)) # backward pass

The last argument specifies gradient of the loss which will be backpropa-
gated. gradients is a dictionary whose keys are register names and values
are gradients. These can be used to apply updates to the parameters as
follows:

for rname in grads:

if my_xman.isParam(rname):

valueDict[rname] = # do this yourself

3.4 Gradient Checking

How do we check if our implementation is correct? One way to do that is
gradient checking. Recall from calculus that for any function J(θ):

dJ(θ)

dθ
= lim

ε→0

J(θ + ε)− J(θ − ε)
2ε

(9)

Thus for any specific value of a parameter θ we can numerically approximate
the right hand side above by evaluating loss of the network at θ+ ε and θ− ε.
For small ε the numerical gradient should match the one computed using
autodiff. You can use ε = 10−4 and check if gradients match up to 3 decimal
places.

4 Data

For this assignment you need to predict the category label of a DBPedia entity
based on its title. The data format is different than the earlier assignments.
The data contains two columns separated by tab, with the title in the first
column and label in second.

11

Lloyd_Stinson Person

Lobogenesis_centrota Species

Loch_of_Craiglush Place

We will encode entities for input to the networks by converting characters
to a one-hot representation. Suppose we have a dictionary mapping each
character in the data to an index chardict = {‘a’:1,‘b’:2...} and the
total number of characters in the dataset is V , then we will represent ‘a’

as a V -dimensional vector [1, 0, 0, . . . , 0], and ‘b’ as another V -dimensional
vector [0, 1, 0, . . . , 0]. A string of characters will be encoded to a matrix whose
each row is a V -dimensional vector.

For both MLP and LSTM we will fix the maximum length of an entity to
M , longer entities will be truncated to this length, and shorter ones will be
padded with white-space. We have provided you with code that preprocesses
the data and divides it into minibatches in utils.py. You can,

from utils import *

load data and preprocess

dp = DataPreprocessor()

data = dp.preprocess(<training_file>, <validation_file>,

<testing_file>)

minibatches

mb_train = MinibatchLoader(data.training, batch_size, max_len,

len(data.chardict), len(data.labeldict))

mb_valid = MinibatchLoader(data.validation, len(data.validation),

max_len, len(data.chardict), len(data.labeldict),

shuffle=False)

mb_test = MinibatchLoader(data.test, len(data.test), max_len,

len(data.chardict), len(data.labeldict), shuffle=False)

max len is the maximum length M which we set. shuffle=True/False tells
the batch loader whether to shuffle the data after every epoch. For validation
and test sets we set the batch size same as the size of the dataset. You can
then iterate over the data using,

for (idxs,e,l) in mb_train:

idxs - ids of examples in minibatch

e - entities in one-hot format

l - corresponding output labels also in one-hot format

12

After every epoch (full sweep through mb train) the data is shuffled for the
next epoch in mb train. idxs has shape N , e has shape N ×M × V and l
has shape N ×C where N is the batch size. Make sure that this makes sense
to you.

For input to the MLP we will concatenate all the one-hot encodings into
one row vector, so you will need to flatten e to a N ×MV size matrix whose
each row consists of the encoding of all characters in the entity one after the
other. You can use numpy.reshape for this.

For input to the LSTM, we will create a sequence of inputs X1, . . . , XM

from e. Each of these would be a N×V matrix holding the batch inputs from
time-step 1 through M . Since we are picking the final state of the LSTM for
classification, we feed inputs to the network in reverse order so that
the useful characters appear at end.

You are given two datasets for this assignment - tiny for debugging, and
smaller for reporting results. The Data and MiniBatchLoader classes create
dictionaries for all characters and labels in the dataset and use that to encode
the inputs and labels into a one-hot vector format.

A validation file (*.valid files) is provided to prevent overfitting. You
should evaluate the loss function on the validation dataset after every epoch
and store the parameters of the best model in a separate dictionary. Then
after training is completed, use these best parameters to make predictions on
the test set. Rememeber you should not do backpropagation on the validation
dataset. For reporting the results you use test (*.test) files.

You can get the data from

https://drive.google.com/open?id=0B58rr945j04BcGctanY1UHVFZVE

For the evaluation on Autolab we will run your code on a separate train,
validation and testing dataset autolab with a specific set of params as com-
mand line arguments. This is smaller than the smaller dataset provided to
you, so you should be careful about overfitting.

5 Deliverables

You need to write code for building, training and evaluating an MLP and
LSTM in mlp.py and lstm.py respectively.

You need to write your function definitions and their derivatives in func-
tions.py. Make sure that you call the final predicted labels as outputs and

13

the loss function as loss in the XMan object. You should also remember to
initialize the default parameters and inputs. Otherwise you’d get zero score
on our gradient checking code.
You should run your code using the following defaults:

python mlp.py --max_len 10 --num_hid 50

--batch_size 64 --dataset autolab

--epochs 15 --init_lr 0.5

--output_file output

python lstm.py --max_len 10 --num_hid 50

--batch_size 64 --dataset autolab

--epochs 15 --init_lr 0.5

--output_file output

In autolab we will call the main functions in mlp.py and lstm.py and pass
a dictionary of hyperparameter values. We will check your code for gradient
correctness, mean Loss on the output, memory and speed compared to the
benchmark code written by us. You will receive extra credit if your loss on
the test set is better than ours, but be careful about making your architecture
more complex – you may lose marks on speed and memory checks.

Your final output probabilities should be stored in the file specified by
–output-file in numpy format using np.save() in the same row order as the
input test file. Tar the following files for submission.

• mlp.py (This file would contain the MLP class and the main file with
the default params)

• lstm.py (This file would contain the LSTM class and the main class
with the default params)

• functions.py (This file would contain the function definitions and their
gradients)

• autograd.py

• Any other helper files

Tar the files directly using the command below. Do NOT put the above files
in a folder and then tar the folder. You do not need to upload the saved
temporary files.

14

tar -cvf hw5.tar lstm.py mlp.py functions.py autograd.py

Also, please do not forget to submit your report hw5.pdf via the HW5:
Report link in Autolab.

6 Questions

1. Plot the average training time per epoch for both MLP and LSTM for
batch size N = {16, 32, 64}, and default values of remaining hyperpa-
rameters. What trends do you observe for the two architectures? Are
they similar? Why or why not?

2. Plot the average training time per epoch for both MLP and LSTM
for maximum input length M = {10, 15, 20}, and default values for
remaining hyperparameters. What trends do you observe for the two
architectures? Are they similar? Why or why not?

3. Plot the total number of forward and backward steps in one update of
the LSTM for maximum input length M = {10, 15, 20}, and default
values for remaining parameters. Now repeat the plot for batch size
N = {16, 32, 64}. One forward step is defined as computing the output
of a primitive operation, and one backward step is defined as computing
the derivative of a primitive function wrt one of its inputs. Briefly
explain the trends that you observe.

Hint: You can count the forward and backward steps by placing coun-
ters in Autograd.eval and Autograd.bprop respectively.

4. Given feature vectors for tokens in a query q1, q2, . . . qM and feature
vectors for tokens in a document d1, d2, . . . dN , where qi, dj ∈ Rn ∀i, j,
the soft-attention distribution of ith query token over the document is
given by:

α
(i)
j =

exp qTi dj∑
j′ exp qTi dj′

j = 1, . . . N (10)

Given a M ×n matrix Q and an N ×n matrix D holding all the query
and document feature vectors respectively, write the steps needed to
compute all the attention distributions for i = 1, . . .M , using only
matrix operations. You can use broadcasting, and assume efficient
implementaions of row-sum and exp are given.

15

5. Consider a single-layer MLP without bias which computes f = tanh(
∑1000

i=1 xiwi)
where xi, wi ≥ 0 i = 1, . . . 1000. Recall that tanh(x) looks like:

We initialize the weights wi ∼ U [0, a]. Choose the scale a for the
following inputs:

• One-hot – xi = 1 for i = i0 and xi = 0 for i 6= i0.

• Small – xi ∈ [0, 1] for all i.

• Big – xi ∈ [1000, 1001] for all i.

7 Marking breakdown

• Code Correctness (gradient check)6 - 30 points

• Code Accuracy (loss on held-out test set) - 20 points

• Code Speed and Memory usage - 20 points

• Report Questions - 30 points

6Reminder - You must name the loss register as “loss” for our gradient checking to
work

16

