
Efficient Approximate PageRank

TAs: Longqi Cai, Tzu-Ming Kuo

Out 10/20/2016 14:50
Due 11/3/2016 23:59

Guidelines for Answers: Please answer to the point. Please state any
additional assumptions you make while answering the questions. You need to
submit a tar file containing source files and a pdf version of report separately
to autolab. Please make sure you write the report legibly for grading.

Rules for Student Collaboration: The purpose of student collabo-
ration in solving assignments is to facilitate learning, not to circumvent it.
Studying the material in groups is strongly encouraged. It is allowed to seek
help from other students in understanding the material needed to solve a
homework problem, provided no written notes are taken or shared during
group discussions. The actual solutions must be written and implemented
by each student alone, and the student should be ready to reproduce their
solution upon request. You may ask clarifying questions on Piazza. However,
under no circumstances should you reveal any part of the answer publicly on
Piazza or any other public website. Any incidents of plagiarism or collabo-
ration without full disclosure will be handled severely.

Rules for External Help: Some of the homework assignments used in
this class may have been used in prior versions of this class, or in classes at
other institutions. Avoiding the use of heavily tested assignments detracts
from the main purpose of these assignments, which is to reinforce the material
and stimulate thinking. Because some of these assignments may have been
used before, solutions to them may be available online or from other people.
It is explicitly forbidden to use any such sources or to consult people who have
solved these problems before. You must solve the homework assignments
completely on your own. We will mostly rely on your wisdom and honor
to follow this rule. However, if a violation is detected, it will be dealt with
harshly.

1



• Did you receive any help whatsoever from anyone in solving this as-
signment? Yes/No

• If you answered yes, give full details:
(e.g. ”Jane explained to me what is asked in Question 3.4” )

• Did you give any help whatsoever to anyone in solving this assignment?
Yes/No

• If you answered yes, give full details:
(e.g. ”I pointed Joe to section 2.3 to help him with Question 2” )

1 Background

A “snowball sample” of a graph starts with some set of seed nodes of interest,
and then repeatedly adds some neighbors of the seed nodes and their incident
edges. The idea is to come up with some version of the “local neighborhood”
of a node so that one can do analysis of, say, the Facebook friend graph of
a small subcommunity. Doing this is unfortunately tricky for a large graph.
This assignment uses some of the ideas in a 2006 FOCS paper “Local graph
partitioning using PageRank vectors” by Andersen, Chung, and Lang to do
a sort of snowball sampling of a large graph—one which you have on disk.

Some notation first.

• G is a graph, V the vertices, E the edges, n = |V |, and m = |E|.

• We will use indices i for vertices when convenient, so vi has index i.

• d(v) is the degree of v ∈ V , and D is a matrix with Di,i = d(vi).

• χv is a unit vector with all weight on vertex vi.

• A is an adjacency matrix for G. W = 1
2
(I +D−1A) is a “lazy random

walk” matrix, where there is probability 1/2 of staying at vertex v, and
probability 1/2 of moving to some other vertex u connected to v.

• We consider a “lazy” version of personalized PageRank, which is the
unique solution to

pr(α, s) = αs+ (1− α)pr(α, s)W (1)

2



where α is a “teleportation constant” and s is a “seed” distribution.
Note that s and pr(α, s) are row vectors.

• It’s easy to show that

pr(α, s) = αs+ (1− α)pr(α, sW ) (2)

(Note the subtle difference from Eq 1 - this statement is true, but not
obvious.)

2 Approximating PageRank with “pushes”

The personalized PageRank vector pr(α, s) can be incrementally approxi-
mated as the following.

We maintain a pair of vectors p (the current approximation) and r (the
“residual”). Initially r = χv and p is an all-zeros vector. This guarantees the
following equality holds.

p+ pr(α, r) = pr(α, χv) (3)

Now we repeatedly apply Eq 2 to move probability mass from r to p, but
maintain the equality in Eq 3.

We define a push(u, p, r) operation as

p′ = p+ αru

r′ = r − ru + (1− α)ruW.

where u is a node with non-zero weight in r and ru is a vector which is zero
everywhere except with weight r(u) on node u. A push operation moves α of
u’s weight from r to p, and then distribute the remaining (1−α) weight within
r as if a single step of the random walk associated with W were performed.
This operation maintains the equality Eq 3. Notice that you only need d(u)
to decide if you push, and the neighbors of u to perform push operation.

Let apr(α, ε, v0) be an “approximate PageRank” vector which is the result
of performing “pushes” repeatedly, in any order, until there is no vertex u
such that r(u)/d(u) ≥ ε (and then using p as the approximation). Then you
can show that

• Computing apr(α, v0) takes O( 1
εα

) time

3



•
∑

v:p(v)>0 d(v) ≤ 1
εα

It can also be shown that if there is a small, low-conductance set of vertices
that contains v0, then for an appropriately chosen α and ε, the non-zero
elements of p will contain that set.

3 Approximating PageRank on a very large

graph

This suggests a scheme for approximating PageRank on a very large graph
— one too large for even a complete vertex-weight vector to fit in memory.
Compute apr(α, ε, v0) by repeatedly scanning through the adjacency-list of
the graph. Whenever you scan past a node u with neighbors v1, . . . , vk in the
stream, push u if r(u)/d(u) > ε, and otherwise ignore u.

In more detail, let the graph be stored in a file where each line contains

u, d(u), v1, . . . , vk

where the vi’s are the neighbors of u. The algorithm is then

• Let p = 0 and r = χv0 .

• Repeat the following until no pushes are made in a complete scan:

– For each line in the graph file

∗ If r(u)/d(u) > ε then let p, r = push(u, p, r)

Finally, take the nodes that have non-zero weight in p, and include all
the edges that are incident on these nodes.

4 Building a low-conductance subgraph

Some more notation:

• The “volume” of a set S is the number of edges incident on S, i.e.

volume(S) =
∑
u∈S

d(u)

4



• The “boundary” of a set S are the edges from a node u ∈ S to a node
v 6∈ S.

boundary(S) ≡ {(u, v) ∈ E : u ∈ S, v 6∈ S}

• The “conductance of S” for a small set S is the fraction of edges in S
that are not in the boundary.

Φ(S) =
|boundary(S)|
volume(S)

More generally

Φ(S) =
|boundary(S)|

min(volume(S), |E| − volume(S))
,

but if S is small then the min in the denominator is the same as
volume(S).

Intuitively, if a node u is in a low-conductance set S that contains a seed
node v0, then it’s plausible that u would have a high score in pr(α, χv0). If
that’s true one way to find such a set would be the following.

• Let S = {v0} and let S∗ = S

• For all nodes u 6= v0, in decreasing order of the personalized PageRank
score p(u):

– Add u to S.

– If Φ(S) < Φ(S∗), then let S∗ = S.

• Return S∗.

Andersen, Chung and Lang call this operation “sweep”, and show that it
will find a small, low-conductance set S if one exists. Note that boundary(S),
and hence Φ(S), can be computed incrementally: boundary(S + {u}) is the
edges in boundary(S), after removing the set of edges that enter u, and adding
the edges from u to any node v 6∈ S + {u}.

5



5 Data

You will be given a tarball containing stater code, data and script for visu-
alization. Data are located in the data directory:

• polblogs.adj is a file containing the adjacency list of a graph.

• polblogs-nodes.txt are the actual blog sites. The k-th line contains the
site name of the node in the k-th line of polblogs.adj. This file is NOT
used for visualization. Those who are curious may want to take a look.

The format of polblogs.adj comes as following:

• Each line represents a node and the outlinks of the node.

• Within each line, there will be multiple node indexes separated by \t.

• The first index is the index of the node, while others are the index of
destinations of edges starting from the node.

Data for test is not given to you, and note that the indices are not
necessarily numbers. You should consider indices as strings. An example
of test dataset is located at here1. It will be very large, so do NOT try to
load the entire graph into memory at once.

6 Assignment

In this assignment you are going to implement the snowball algorithm and
visualize the two sub-communities induced by two different seed.

A visualization software (Gephi)2 is available for download. You may use
other visualization tool as you like but you are expected to produce a similar
visualization of the graph as the one in Figure 1.

7 Autolab Implementation Details

We will use the following command to evaluate the correctness of your code
so please adhere to the order of command line arguments:

1/afs/cs.cmu.edu/project/bigML/wikiGraph/outlink.adj
2https://gephi.org/

6



Figure 1: A sample visualization of communities

java -cp .:* ApproxPageRank input-path seed alpha epsilon

Here the input-path and the seed are strings. The input-path is the path to
the adjacency list file whose format is identical to that of polblogs.adj. The
alpha and epsilon are doubles. The final output of ApproxPageRank class
should be the list of nodes present in the lowest conductance subgraph that
your code finds. The format of the output per line should be the string id of
the node followed by its Pagerank value. Please use tab as the delimiter and

7



output to standard output. You do not have to worry about the order as
we will sort your output before evaluating it.

8 Visualization Guide

After finishing your code and put it in the starter code directory, run

make gephi

It will use your code to discover two sub-communities induced by two pre-
defined seed and generate polblogs.gdf under vis folder. Open this file
with Gephi. You may want to go through the quick start tutorial 3 before
visualization.

A few more notes

• The official tutorial is based on an older version, but there’s no big
differences. Partition and Ranking tabs are merged into Appearance
tab in the new version.

• You may want to adjust node color and size under Appearance tab.

• Node color can be adjusted by class attribute of nodes, which can either
be left, right, or neutral.

• Node size can be adjusted by pagerank attribute. (Please set Min Size
to be 20, and Max Size to be 100)

• Layout your graph with Fruchterman Reingold.

9 Deliverables

Submit your implementations via AutoLab. You should implement the al-
gorithm by yourself instead of using any existing machine learning toolkit.
You should upload your code (including all your function files) as a tar file.
In addition, you should submit a report, which should solve the following
problems. (You can consult the lectures of the readings in solving these
problems.)

3https://gephi.org/users/quick-start/

8



1. (3 points) Let T be the total number of push operation performed, and
let di be the degree of the vertex u used in ith push. We can show that

T∑
i=1

di ≤
1

εα
.

Use this property to explain why the algorithm is guaranteed to finish
after finite number of push operations.

Solution: Note that di ≥ 1,∀i since a node must have at least one
neighbor to be pushed, and the right side of inequality is a constant.
T is at most floor[

]
1
εα

.

2. (4 points) Show that
pr(α, s) = sRα,

where

Rα = α
∞∑
t=0

(1− α)tW t.

This implies pr(α, s) is linear to s. (Hint: show that sRα satisfies Eq 1).

Solution:

αs+ (1− α)pr(α, s)W = αsI + αs
∞∑
t=1

(1− α)tW t

= αs
∞∑
t=0

(1− α)tW t

= sRα

= pr(α, s)

3. (4 points) Note that

Rα = α
∞∑
t=0

(1− α)tW t

= αI + (1− α)WRα.

Use the property above to show that

pr(α, s) = αs+ (1− α)pr(α, sW ).

9



Solution:

pr(α, s) = sRα

= αs+ (1− α)sWRα

= αs+ (1− α)pr(α, sW )

4. (4 points) Show that the equality below holds,

p′ + pr(α, r′) = p+ pr(α, r),

where

p′ = p+ αru

r′ = r − ru + (1− α)ruW.

This implies that after each push operation, the invariant Eq 3 still
holds. Hint: From what we derive above, we know pr(α, s) is linear to
s (i.e., pr(α, r) = pr(α, r − ru) + pr(α, ru)), and pr(α, s) = αs + (1 −
α)pr(α, sW ).

Solution:

p+ pr(α, r) = p+ pr(α, r − ru) + pr(α, ru)

= p+ pr(α, r − ru) + αru + (1− α)pr(α, ruW )

= p+ pr(α, r − ru) + αru + pr(α, (1− α)ruW )

= p+ αru + pr(α, r − ru + (1− α)ruW )

= p′ + pr(α, r′)

5. (15 points) Generate a visualization of the graph with Gephi. Please
follow the instruction in Section 8. Solution:

10



6. Answer the questions in the collaboration policy on page 1.

Marking breakdown

• Code Efficiency (30 points)

• Code Correctness (40 points)

• Report Questions (30 points in total)

11


