
Machine Learning with Large Dataset Assignment 3: Logistic

Regression Using Stochastic Gradient Descent

Due Thursday, Oct. 13, 2016 via Autolab

Out Thursday, Sept. 29, 2016

Policy on Collaboration among Students

These policies are the same as were used in Dr. Rosenfeld’s previous version of 10601 from
2013. The purpose of student collaboration is to facilitate learning, not to circumvent it.
Studying the material in groups is strongly encouraged. It is also allowed to seek help
from other students in understanding the material needed to solve a particular homework
problem, provided no written notes are shared, or are taken at that time, and provided
learning is facilitated, not circumvented. The actual solution must be done by each student
alone, and the student should be ready to reproduce their solution upon request. The
presence or absence of any form of help or collaboration, whether given or received, must
be explicitly stated and disclosed in full by all involved, on the first page of their assignment.
Specifically, each assignment solution must start by answering the following questions in
the report:

• Did you receive any help whatsoever from anyone in solving this assignment? Yes /
No. If you answered ‘yes’, give full details: (e.g. “Jane explained
to me what is asked in Question 3.4”)

• Did you give any help whatsoever to anyone in solving this assignment? Yes / No. If
you answered ‘yes’, give full details: (e.g. “I pointed Joe to section
2.3 to help him with Question 2”.

Collaboration without full disclosure will be handled severely, in compliance with
CMU’s Policy on Cheating and Plagiarism. As a related point, some of the homework
assignments used in this class may have been used in prior versions of this class, or in
classes at other institutions. Avoiding the use of heavily tested assignments will detract
from the main purpose of these assignments, which is to reinforce the material and stim-
ulate thinking. Because some of these assignments may have been used before, solutions
to them may be (or may have been) available online, or from other people. It is explicitly
forbidden to use any such sources, or to consult people who have solved these problems
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before. You must solve the homework assignments completely on your own. I will mostly
rely on your wisdom and honor to follow this rule, but if a violation is detected it will be
dealt with harshly. Collaboration with other students who are currently taking the class
is allowed, but only under the conditions stated below.

1 Important Note

As usual, you are expected to use Java for this assignment. It could take hours
to run your experiments. Start early.

Yulan Huang (yulanh@andrew.cmu.edu) and Jingyuan Liu (jingyual@andrew.cmu.edu)
are the contact TAs for this assignment. Please post clarification questions to Piazza, and
the instructors can be reached out at the following eamil address: 10605-Instructors@cs.cmu.edu.

2 Background: SGD for Logistic Regression

One fairly simple way (and extremely scalable way) to implement logistic regression is
stochastic gradient descent.

In the lecture we followed Charles Elkan’s notes1, which are for a binary classification
task. We estimate the probability p that an example x = 〈x1, . . . , xd〉 is positive in the
log-odds form:

log
p

1− p
= α+

∑
j=1...d

βjxj (1)

If we assume there is a “bias feature” x0 that is true for every example, then you can
simplify and drop the α, leaving just the βj ’s to estimate. Therefore

p =
exp(βTx)

1 + exp(βTx))
. (2)

It’s convenient to consider examples of the form x, y where y = 0 or y = 1. The log of
the conditional likelihood for example is example will be LCL(x, y) = log p if y = 1 and
LCL(x, y) = log(1− p) if y = 0, where p is computed as in Eq. ??. With a little calculus
you can show that for a positive example,

∂

∂βj
LCL(x, y) =

1

p

∂

∂βj
p

and for a negative example,

∂

∂βj
LCL(x, y) =

1

1− p
(− ∂

∂βj
p)

1http://cseweb.ucsd.edu/~elkan/250B/logreg.pdf
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and that
∂

∂βj
p = p(1− p)xj

and putting this together we get that if y = 1

∂

∂βj
LCL(x, y) = (1− p)xj

and if y = 0 then
∂

∂βj
LCL(x, y) = −pxj

so in either case
∂

∂βj
LCL(x, y) = (y − p)xj (3)

So an update to the β’s that would improve most LCL would be along the gradient—i.e.,
for some small step size λ, let

βj = βj + λ(y − p)xi
Notice that if xi = 0 then βj is unchanged.

So this leads to this algorithm, which is very fast (assuming you have enough memory
to hash all the parameter values).

1. Initialize a hashtable B

2. For t = 1, . . . , T

• For each example xi, yi:

– For each non-zero feature of xi with index j and value xj :

∗ If j is not in B, set B[j] = 0.

∗ Set B[j] = B[j] + λ(y − p)xi

3. Output the parameters β1, . . . , βd.

The time to run this is O(nT ), where n is the total number of non-zero features for
each example and T is the number of iterations.

3 Efficient regularized SGD

Logistic regression tends to overfit when there are many rare features. One fix is to penalize
large values of β, by optimizing, instead of LCL, some function such as LCL−µ

∑d
j=1 β

2
j .

Here µ controls how much weight to give to the penalty term. The update for βj becomes

βj = βj + λ((y − p)xi − 2µβj)
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or equivalently
βj = βj + λ(y − p)xi − λ2µβj

Experimentally this greatly improves overfitting - but unfortunately, this makes the com-
putation much more expensive, because now every βj needs to be updated, not only the
ones that are non-zero.

The trick to making this efficient is to break the update into two parts. One is the usual
update of adding λ(y − p)xi. Let’s call this the “LCL” part of the update. The second is
the “regularization part” of the update, which is to replace β by

βj = βj − λ2µβj = βj · (1− 2λµ)

So we could perform our update of βj as follows:

• Set βj = βj · (1− 2λµ)

• If xj 6= 0, set βj = βj + λ(y − p)xi

Following this up, we note that we can perform m successive “regularization” updates
by letting Bj = Bj · (1 − 2λµ)m. The basic idea of the new algorithm is to not perform
regularization updates for zero-valued xj ’s, but instead to simply keep track of how many
such updates would need to be performed to update βj , and perform them only when we
would normally perform “LCL” updates (or when we output the parameters at the end of
the day).

Here’s the final algorithm (for more detail, see “Lazy sparse stochastic gradient descent
for regularized multinomial logistic regression”, Bob Carpenter2)

[suggestion: Current lazy regularized SGD algorithm is an approximation to dense regular-
ization. To make it not an approximation, we need to fix two points for the previous write-up
algorithm. The original algorithm is shown below:]

1. Let k = 0, and let A and B be empty hashtables. A will record the value of k last
time B[j] was updated.

2. For t = 1, . . . , T

• For each example xi, yi:

• Let k = k + 1

– For each non-zero feature of xi with index j and value xj :

∗ If j is not in B, set B[j] = 0.

∗ If j is not in A, set A[j] = 0.

2http://lingpipe.files.wordpress.com/2008/04/lazysgdregression.pdf
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∗ Simulate the “regularization” updates that would have been performed
for the k−A[j] examples since the last time a non-zero xj was encoun-
tered by setting

B[j] = B[j] · (1− 2λµ)k−A[j]

∗ Set B[j] = B[j] + λ(y − p)xi
∗ Set A[j] = k

3. For each parameter β1, . . . , βd, set

B[j] = B[j] · (1− 2λµ)k−A[j]

4. Output the parameters β1, . . . , βd.

[suggestion: To make it not an approximation, we have to fix two points:

• Before executing lazy gradients update, we need to loop over non-zero entries to do
regularization first. This is because in dense algorithm, the regularization is executed
right after gradients update for every example. Therefore, we need to execute previous
regularization before current example gradients update.

• After one epoch loop of data, we need to do the remaining regularization for all weights,
and clear the clock dict. This is because for next epoch, the learning rate λ is different.

The new algorithm is shown below: ]

1. Let k = 0, and let A and B be empty hashtables. A will record the value of k last
time B[j] was updated.

2. For t = 1, . . . , T

• Clear table B if B is not empty, Calculate λ based on current epoch

• For each example xi, yi:

• Let k = k + 1

– For each non-zero feature of xi with index j and value xj :

∗ If j is not in B, set B[j] = 0

∗ If j is not in A, set A[j] = 0

∗ Simulate the “regularization” updates that would have been performed
for the k − A[j] − 1 examples since the last time a non-zero xj was
encountered by setting

B[j] = B[j] · (1− 2λµ)k−A[j]−1
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∗ set A[j] = k

– Calculate p based on regularized B[j]

– For each non-zero feature of xi with index j and value xj :

∗ Simulate the “regularization” updates for current example by setting

B[j] = B[j] · (1− 2λµ)

∗ Gradients update by setting B[j] = B[j] + λ(y − p)xi
• After one epoch, For each parameter β1, . . . , βd, set

B[j] = B[j] · (1− 2λµ)k−A[j]

3. Output the parameters β1, . . . , βd.

The learning rate λ is often decreased over time. On the t-th sweep through the data,
set λ = η

t2
. we used η = 0.5. (Sometimes λ is also scaled by 1/ne, where ne is the number

of examples.) We also used a value of 2µ = 0.1.
When running stochastic gradient descent, it is usual to randomize the order of ex-

amples, and scale the feature values so that they are comparable (if they are not already
binary). However, randomization is not trivial to do for a large dataset. We recommend
implementing SGD as a process that streams once through a data stream, with the num-
ber of examples ne being passed in separately as a command-line argument so that the
algorithm is aware of what the current value of t is. Then write a separate module that
will input a file of examples and then stream the individual examples out in approximately
random order.

Hint: to randomly sort a file in linux you can do

shuf <text_file>

[suggestion: To sort it in mac system, you can install “gshuf” and use it like “shuf”]

To fit our model to the memory of a desktop we will use the hash trick discussed in
class: map every word to a features id in the range 0 N (allowing collisions), where N is
the dictionary size.

Hint: to convert a string to an id between 0 and N you can do something like

int id = word.hashCode() % N;

if (id<0) id+= N;
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4 Task

[suggestion: Actually, this is not a very good dataset to use for this homework. For this home-
work, we use 17 binary classifier. As a result, the training of all classes are heavily biased. Most
of the example for each class is negative. So a baseline, majority guess can achieve about 92%
accuracy, while a correctly implemented algorithm can achieve about 96%. This will cause
some problem when grading. Students can easily sacrifice accuracy score to achieve higher
performance score. Maybe we should try a dataset with less label, or just implement a 17-class
classifier.]

For this assignment, we will be using the same dataset as homework 1b and homework
2. The data appears at /afs/cs.cmu.edu/project/bigML/dbpedia_16fall/

The data format is the same as for Assignment 1. The three columns are separated by
tab, and the documents are preprocessed so that there are no tab in the body.

To reduce the experimental load we will only use the abstract data sets for this assign-
ment. Again, they are in increasing size so that you can debug your code on smaller data.
The files that start with abstract include Wikipidia text.

abstract.full.test

abstract.full.train

abstract.small.test

abstract.small.train

abstract.tiny.test

abstract.tiny.train

In contrast to the previous assignments, we are going to treat the multilabel classifi-
cation problem as multiple independent binary classification tasks. This means we are
going to train 17 binary classifiers. Ideally, to obtain perfect performance (which is often
hard in practice), you will need to correctly predict all labels associated with the target
document.

Hint: when using “sigmoid” function for classification, you can refer to Part 5 Deliv-
erables Question 1, using the “safe sigmoid” to avoid overflow.

To reduce the experimental load, fix the number of training iterations (scans of data
sets) to 20 for all data sets.

5 Deliverables

For your reference, we tested the running time, using a full score code, with following
command:

time cat train | java -Xmx128m LR 10000 0.5 0.1 1 44925 test > log
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To understand the meaning of the parameters, please go to the Autolab Implemen-
tation Details part. We tested it on a Mac with 8GB memory and 2.6 GHZ I5 Core.
To achieve good scores on Autolab, your code should run less than 20 seconds to finish 1
iteration on the small dataset.

You should implement the algorithm by yourself instead of using any existing machine
learning toolkit. You should upload your code (including all your function files) to the
HW3: SGD link in Autolab.

Also you should submit a report in pdf format via the HW3: Report link in Autolab,
which should solve the following questions:

1. Show values of overall likelihood function for each iteration when training with the
small data set having dictionary size 10000 and µ = 0.1. The objective function is
defined as the sum of all 17 classes

∑
i

∑
c LCLc(x

i, yc,i). Here c is the label id and
i is the document id.

Hint: in order to prevent overflow when calculating p as defined in equation (??)
you can use a special version of sigmoid function as the following:

static double overflow=20;

protected double sigmoid(double score) {

if (score > overflow) score =overflow;

else if (score < -overflow) score = -overflow;

double exp = Math.exp(score);

return exp / (1 + exp);

}

[suggestion: You can try to ask students to draw the average LCL per example per class.
Average LCL is easier to identify whether the results are in a reasonable range, since we
can transfer it to probability. Also we can mention this trick for students, so they can
debug their implementations in future]

2. Show accuracy curves for the small data set, using 20 iterations, with varying regu-
larization parameter µ = 0, 10−6, 10−5, 10−4, 10−3, 10−2, 10−1, 0.2, 0.3, 0.5, 1 and fixed
dictionary size 104, and discuss. [suggestion: Some students say the figure requirement
is a little big confusing. You can add this line: “Please set the µ as x-axis to draw the
figure”]

3. Show accuracy curves for the small data set, using 20 iterations, with varying dic-
tionary sizes D = 10, 100, 103, 104, 105, 106 and the best µ values you found in the
previous step, and discuss. [suggestion: Some students say the figure requirement is
a little big confusing. You can add this line: “Please set the D as x-axis to draw the
figure”]
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4. Currently we are using the L2-Norm regularization to penalize large values of β,
which means, in the context of learning as optimizations, instead of optimizing LCL,
we are trying to maximizing the objective function as

LCL− µ
d∑
j=1

β2j (4)

Here µ controls how much weight to give to the penalty term. Besides the L2-Norm,
the L1-Norm, also known as Lasso, is also very commonly used. For more details,
you can refer to:

https://en.wikipedia.org/wiki/Lasso_(statistics).

Basically, the optimization objective function for Lasso regression is

LCL− µ
d∑
j=1

|βj | (5)

Please design an efficient lazy regularized SGD optimization algorithm for Lasso
regression (Lazy regularizer for L1-Norm). Also please discuss about the differences of
L1-Norm and L2-Norm in penalizing β. You do not need to implement this algorithm,
just give pseudo code or detailed steps. [suggestion: Please clarify that the gradients
for the regularization when weight = 0 is 0]

5. Currently we are using an “on-line” style SGD in training, which means we approx-
imated the true gradients over the whole corpus by gradients at a single example.
This is easy to imeplement and especially efficient with lazy regularizer for sparse
data.

Besides the “on-line” style, we can also do optimization in a “mini-batch” style, which
is to approximate true gradients with more than one training examples. This means
we will aggregate gradients from several training examples before we updating β.
Usually this can result in smoother convergence, as the gradient computed at each
step uses more training examples. For more details, you can refer to:

https://en.wikipedia.org/wiki/Stochastic_gradient_descent

Suppose we are using L2-Norm regularized logistic regression, please design a lazy
regularizied SGD in “mini-batch” style. You can assume the “mini-batch” size is 200,
which means you will aggregate gradients for 200 training examples and then update
β. You do not need to implement this algorithm, just give pseudo code or detailed
steps. Also please discuss if “mini-batch” style lazy regularizer is supposed to be as
efficient as “on-line” style lazy regularizer.
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Hint: the “on-line” style lazy regularizer is efficient because it takes advantages
of the sparsity of a single training example. If the feature space of a single training
example is not sparse, “on-line” style lazy regularizer will not be efficient.

6. Answer the questions in the collaboration policy on page 1.

Autolab Implementation Details

Your logistic regression program LR.java should be able to run without the out-of-memory
issue, using the follow example command:

for((i=1;i<=20;i++));

do shuf trainData.txt;

done | java -Xmx128m LR 10000 0.5 0.1 20 1000 testData.txt

Here, the first argument 10000 is the vocabulary size. Second argument 0.5 is the initial
value of the learning rate. The third argument 0.1 is the regularization coefficient. The
fourth argument 20 is the max iteration (# of passes through data). The fifth argument
is the size of the training dataset (which allows you to determine the starting point of a
new pass). The command produces output in the following format (one-line-per-test-
example):

label1<tab>p_label1,label2<tab>p_label2,label3<tab>p_label3,...

Here, binary classifiers and their prediction scores are separated by comma. For each of
the classifier, for example, in the first entry, label1 refers to the name of the classifier, and
p label1 is the posterior probability of the label given the observation. If the posterior is
larger than or equal to 0.5, then it means your classifier predicts a positive output for this
target label in this document. A tab is used to separate the label name and its posterior.

You should tar the following items into hw3.tar and submit to the homework 3 as-
signment via Autolab:

• LR.java

• and all other auxiliary functions you have written

Tar the files directly using tar -cvf hw3.tar *.java. Do NOT put the above files in
a folder and then tar the folder. You do not need to upload the saved temporary files.
Please make sure your code is working fine on unix.andrew.cmu.edu machines before you
submit.

Also, please do not forget to submit your report “hw3.pdf” via the HW3: Report link
in Autolab.
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6 Submission

You must submit your homework through Autolab via the HW3: SGD. In this homework,
we provide an additional tool called HW3-validation:

• HW3: validation: You will be notified by Autolab if you can successfully finish your
job on the Autolab virtual machines. Note that this is NOT the place you should de-
bug or develop your algorithm. All development should be done on unix.andrew.cmu.edu
machines. This is basically an Autolab debug mode. There will be NO feedback on
your performance in this mode. You have unlimited amount of submissions here.
To avoid Autolab queues on the submission day, the validation link will be closed 24
hours prior to the official deadline. If you have received a score of 1000, this means
that you code has passed the validation.

• HW3: SGD. This is where you should submit your validated final submission. You
have a total of 10 possible unpenalized submissions after which each additional
submission will be penalized by an additional 2 percent. Your performance will be
evaluated, and feedback will be provided immediately. Late submissions will lead to
a 50% penalty, and we do not accept submissions later than 2 days.

• HW3: Report. This is where you should submit your report.

7 Grading

The total grade of this assignment is 100 points. You will be graded based on the
memory usage (25 points) and runtime (25 points) for your code, and your final
test performance (20 points). Note that each pass in SGD is randomized, and there
will be sampling variance when measuring your memory and runtime information. You
may contact us to use your highest Autolab submission grade after homework is due. The
report (30 points) will be graded manually.
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