
10605 BigML Assignment 2:

Naive Bayes using GuineaPig

Due: Thursday, Sept. 29, 2016 23:59 EST via Autolab

August 2, 2017

Policy on Collaboration among Students

These policies are the same as were used in Dr. Rosenfeld’s previous version of 10601 from
2013. The purpose of student collaboration is to facilitate learning, not to circumvent it.
Studying the material in groups is strongly encouraged. It is also allowed to seek help
from other students in understanding the material needed to solve a particular homework
problem, provided no written notes are shared, or are taken at that time, and provided
learning is facilitated, not circumvented. The actual solution must be done by each student
alone, and the student should be ready to reproduce their solution upon request. The
presence or absence of any form of help or collaboration, whether given or received, must
be explicitly stated and disclosed in full by all involved, on the first page of their assignment.
Specifically, each assignment solution must start by answering the following questions in
the report:

• Did you receive any help whatsoever from anyone in solving this assignment? Yes /
No. If you answered ‘yes’, give full details: (e.g. “Jane explained
to me what is asked in Question 3.4”)

• Did you give any help whatsoever to anyone in solving this assignment? Yes / No. If
you answered ‘yes’, give full details: (e.g. “I pointed Joe to section
2.3 to help him with Question 2”.

Collaboration without full disclosure will be handled severely, in compliance with
CMU’s Policy on Cheating and Plagiarism. As a related point, some of the homework
assignments used in this class may have been used in prior versions of this class, or in
classes at other institutions. Avoiding the use of heavily tested assignments will detract
from the main purpose of these assignments, which is to reinforce the material and stim-
ulate thinking. Because some of these assignments may have been used before, solutions
to them may be (or may have been) available online, or from other people. It is explicitly
forbidden to use any such sources, or to consult people who have solved these problems

1



before. You must solve the homework assignments completely on your own. I will mostly
rely on your wisdom and honor to follow this rule, but if a violation is detected it will be
dealt with harshly. Collaboration with other students who are currently taking the class
is allowed, but only under the conditions stated below.

1 Important Note

In this assignment, you will be using Python.

This assignment is worth 100 points. In this assignment, you will have to create
a Naive Bayes classifier that will run with GuineaPig on Python.

Lanxiao Xu (lanxiaox@andrew.cmu.edu) and Chenran Li (chenranl@andrew.cmu.edu) are
the contact TAs for this assignment. Please post clarification questions to the Piazza, and
the instructors can be reached at the following email address: 10605-Instructors@cs.cmu.edu.

2 Introduction

In this part of the assignment, you need to implement the Naive Bayes algorithm in
GuineaPig. Unlike the previous assignment, the goal is to implement a small-memory
test algorithm for Naive Bayes - i.e, testing where the vocabulary and test data do not fit
into memory. Note: some counts such as number of labels and vocabulary size
cannot be pre-computed and used directly as parameters

Below is a high-level sketch of the algorithm:

• Generate event counts from the training data (this phase is identical to what you
have already implemented)

• Convert the event counts to key-value pairs (k,v) where k is a word, and v is some
representation of all the counts for that word.

• Generate requests for word counts from the test file, i.e. flatten the test documents
into pairs(word,docId).

• Join the flattened test documents with the reorganized event counts.

• Group the joined result together so that you can classify the test documents.

2.1 Introduction to GuineaPig

GuineaPig is a lightweight Python library that is similar to Pig, but is easier to learn
and debug. You are required to have some working knowledge of Python and Hadoop

2



to be able to use GuineaPig. You will express your workflow using high level constructs
(such as Join, Augment etc.) and GuineaPig spawns off MapReduce tasks behind the
scenes to do the compute. GuineaPig provides for you a layer of abstraction over bare-
bones Hadoop. You can find more information about GuineaPig (including a tutorial) at
http://curtis.ml.cmu.edu/w/courses/index.php/GuineaP ig.Itisrecommendedthatyoureadthisdocumentbeforeproceedingwiththeassignment.Y oucandirectlydownloadGuineaP igathttps : //github.com/TeamCohen/GuineaP ig/archive/master.ziporworkwithsourcecodedistributedwiththetutorial.http : //curtis.ml.cmu.edu/w/courses/index.php/GuineaP igQuickStart.

2.2 Local Execution

In addition to providing an abstraction over Hadoop, GuineaPig programs can also be
executed locally, without Hadoop. This feature makes your program much easier to debug.
We recommend that you debug locally and test on Hadoop using the Stoat cluster before
submitting.

2.3 Using Hadoop on the Stoat cluster

By now, you should all have access to Stoat, which already has an installation of Hadoop
ready to use. You just need to copy GuineaPig, with your code, to the cluster:

scp -r /path/to/GuineaPig <username>@shell.stoat.pdl.local.cmu.edu:~

You can SSH to Stoat from within CMU?s network:

ssh <username>@shell.stoat.pdl.local.cmu.edu

In order to set up GuineaPig to execute on Hadoop, follow the instructions on the wiki:
http://curtis.ml.cmu.edu/w/courses/index.php/GuineaP igUsingHadoop.

3 The Data

We are using the same dataset as the one in Homework 1. These are articles from DBPedia,
and the label is the type of the article. There are in total 18 classes in the dataset, and
they are from the first level class in DBpedia ontology. For more information about this
dataset, you can refer to http://wiki.dbpedia.org/Downloads2015-04. The data is of the
format:

<id> <label1>,<label2>,<label3>... w1 w2 w3 w4...

The three columns are separated by tab, and the documents are preprocessed so that there
are no tabs in the body. You can find the data in /afs/cs.cmu.edu/project/bigML/dbpedia16fall/.

For this homework, feel free to play with the parameters, tokenizer and output to improve
your Naive Bayes classifier.

3



4 Deliverables

At this point, you should be very familiar with Naive Bayes. In this assignment, you will
implement Naive Bayes in GuineaPig, a library in Python that works with Hadoop and
allows a scripting version of streaming algorithms.

4.1 Autolab Implementation Details

We have given you a starter file, nb.py, that contains some setup code. You should imple-
ment Naive Bayes in this file, and it should handle both training and testing. We will test
your code with the following command:

python nb.py --store output \\

--params trainFile:path/to/train,testFile:path/to/test

After running, you should store your final predictions in the “output” variable, which will
then be stored in “gpig views/output.gp” by GuineaPig. The output file should be of the
form

(id, prediction, probability)

(id, prediction, probability)

...

output should be python tuples, where the first element is an id of type string, the second
element is prediction of type string, and the third element is a probability of type float. You
don’t need to worry about the ordering of the output, as long as all the information is there.

For the autograding, you don’t need to worry about setting Python paths. Just assume
that from guineapig import * will work.

You should look through the GuineaPig guide at
http://curtis.ml.cmu.edu/w/courses/index.php/GuineaP ig.Thewordcountexamplemightbeagoodplacetostart.

4.2 Report

Submit your implementations via AutoLab. You should implement the algorithm by your-
self instead of using any existing machine learning toolkit. You should upload your code
(including all your function files) along with a report, which should solve the following
questions:

1. Answer the questions in the collaboration policy on page 1.

2. (10 points) Using the Stoat cluster and the abstract.smaller dataset, run your code
using parallel modes 1, 2, 4, and 8, and measure the runtime of each. Using parallel

4



mode n, GuineaPig will use n reducers for each MapReduce task. In addition, it will
use n mappers for every intermediate (uses only results from a previous MapReduce
step) MapReduce step in an execution chain. The following command will run your
code using parallel mode n:

python nb.py --store output \\

--opts target:hadoop,viewdir:/user/<username>/gpig_views,parallel:<n>

To measure the total runtime of your program, sum together the runtimes be-
tween each map 0% reduce 0% and map 100% reduce 100% for each MapReduce
task spawned. You may want to pipe the output to a file in order to save it.

(a) Plot the runtime of your experiments vs. the parallel mode used.
(b) A program is perfectly scalable when the runtime halves if the number of worker
machines is doubled. List three reasons why your program might not achieve this
ideal scalability.

3. (10 points) In this question, you will use GuineaPig to answer queries. Suppose
we have a career dataset recording every position along each member’s career. The
format of the career dataset is as follows:

data: (Id, [(positionId1, companyId1), (positionId2, companyId2), ...])

where for each position the dataset stores the positionId and companyId. Note: a
member can work for the same company but in different positions.

Now we have a query dataset providing a bunch of company pairs, for each pair of
company, we want to know how many people have worked for both two companies.
The format of the query dataset is as follows:

query: (srcCompany, destCompany)

where the company pairs in the query dataset are unordered and unique.
Please write down the GuineaPig commands needed to answer the queries. In this
question, you’re not allowed to write supporting functions. GuineaPig basic com-
mands are sufficient.

4. (10 points) Consider the following sequence of GuineaPig commands:

def flat1(tokens):

for w in tokens:

if w.isalpha():

yield w

def flat2(tokens):

5



for w in tokens:

if not w.isalpha():

yield re.sub("[^a-zA-Z]+", "", w) #regex substitution

data = ReadLines(‘data.txt’) \

| Map(by = lambda line : line.strip().split(’ ’))

t1 = FlatMap(data, by = flat1)

t2 = FlatMap(data, by = flat2)

t3 = Join(Jin(t1), Jin(t2)) | Map(by = lambda(w1, w2) : w2)

View t3 will contain tokens from data.txt. In one sentence, describe these tokens.

5 Submission

You must submit your homework through Autolab. You submit a tar file that contains
nb.py, as well as a pdf containing your answers to the report questions. In this homework,
there will be a validation link.

• HW2 - validation: You will be notified by Autolab if you can successfully finish your
job on the Autolab virtual machines. Note that this is not the place you should
debug or develop your algorithm. All development should be done on your local
computer or Stoat machines. There will be NO feedback on your performance in
the validation. You have unlimited amount of submissions here. To avoid Autolab
queues on the submission day, the validation link may be closed 24 hours prior to the
official deadline. If you have received a score of 1000 with no errors, this means that
you code has passed the validation.

• HW2 - NB with GuineaPig: This is where you should submit your tar ball. You have
a total of 10 possible submissions. Your score will be reported, and feedback will
be provided immediately.

6 Grading

You will be graded on memory, efficiency and accuracy. You will receive 15 for memory
based on your peak memory usage through your run. For efficiency, we will time your
code and assign a score out of 15. For accuracy, we will be testing your implementation
against a hidden training and testing set on Autolab and assigned a score out of 25. In
this assignment, we do not want you to load any of the datasets into memory. All data
should be streamed through GuineaPig, and high memory usage will be penalized.

6


