
10605 BigML Assignment 1(b):

Naive Bayes with Hadoop API

Due: Thursday, Sept. 15, 2016 23:59 EST via Autolab

August 2, 2017

Policy on Collaboration among Students

These policies are the same as were used in Dr. Rosenfeld’s previous version of 10601 from
2013. The purpose of student collaboration is to facilitate learning, not to circumvent it.
Studying the material in groups is strongly encouraged. It is also allowed to seek help
from other students in understanding the material needed to solve a particular homework
problem, provided no written notes are shared, or are taken at that time, and provided
learning is facilitated, not circumvented. The actual solution must be done by each student
alone, and the student should be ready to reproduce their solution upon request. The
presence or absence of any form of help or collaboration, whether given or received, must
be explicitly stated and disclosed in full by all involved, on the first page of their assignment.
Specifically, each assignment solution must start by answering the following questions in
the report:

• Did you receive any help whatsoever from anyone in solving this assignment? Yes /
No. If you answered ‘yes’, give full details: (e.g. “Jane explained
to me what is asked in Question 3.4”)

• Did you give any help whatsoever to anyone in solving this assignment? Yes / No. If
you answered ‘yes’, give full details: (e.g. “I pointed Joe to section
2.3 to help him with Question 2”.

Collaboration without full disclosure will be handled severely, in compliance with
CMU’s Policy on Cheating and Plagiarism. As a related point, some of the homework
assignments used in this class may have been used in prior versions of this class, or in
classes at other institutions. Avoiding the use of heavily tested assignments will detract
from the main purpose of these assignments, which is to reinforce the material and stim-
ulate thinking. Because some of these assignments may have been used before, solutions
to them may be (or may have been) available online, or from other people. It is explicitly
forbidden to use any such sources, or to consult people who have solved these problems

1

before. You must solve the homework assignments completely on your own. I will mostly
rely on your wisdom and honor to follow this rule, but if a violation is detected it will be
dealt with harshly. Collaboration with other students who are currently taking the class
is allowed, but only under the conditions stated below.

1 Important Note

As usual, you are expected to use Java for this assignment.

This assignment is worth 100 points. Similar to part (a), this part (b) is also a
relatively small assignment because you will be able to reuse some of the code from pre-
vious Naive Bayes assignments. However, unlike the Hadoop streaming settings in part
(a), in this assignment, you will have to port your naive Bayes code to the real Hadoop
environment using Hadoop APIs to train a naive Bayes classifier.

Lanxiao Xu (lanxiaox@andrew.cmu.edu) and Chenran Li (chenranl@andrew.cmu.edu)
are the contact TAs for this assignment. Please post clarification questions to the Piazza,
and the instructors can be reached at the following email address: 10605-Instructors@cs.cmu.edu.

2 Introduction

In this part of the assignment, you need to re-implement naive Bayes for the Hadoop
MapReduce framework. Similar to part (a), you only need to write Hadoop naive Bayes
training, and you do not need to care about the testing part.

2.1 Using AWS and elastic MapReduce (EMR)

We have already distributed the AWS gift code to every registered student. If you have
not got one, let us know. Here are a few hints for running the real Hadoop jobs on AWS.

2.1.1 Submitting a Jar job

Important: unlike homework 1a, in this part b, after setting up your EMR cluster on AWS,
you will run your job in the Hadoop API mode on AWS.

2.1.2 Viewing job progress

Tutorial for viewing the jobtracker on your local machine (via proxy) 1. (You can also ssh
into the machine using the command line interface, and then use the Linux commands in
the login preamble to view the job tracker.)

1http://docs.amazonwebservices.com/ElasticMapReduce/latest/DeveloperGuide/UsingtheHadoopUserInterface.html

2

2.2 Debugging with the CMU Hadoop cluster

You have access to the OpenCloud cluster from the PDL team at CMU. You should be
receiving an email soon with your login details. To login to the cluster, make sure you
are on a CMU network, or using the vpn, and then ssh into shell.stoat.pdl.local.cmu.edu.
Once there, you can run hadoop commands.

To test your code: First, create a jar of your Naive Bayes implementation. You need this
for AWS as well. Once you have your jar, you can scp it to the cluster and run it with the
following command:

hadoop jar name-of-jar.jar path/to/input path/to/output num_reducers

Note that the path to input and output is on HDFS, not the local machine. This will read
input from HDFS and store output on HDFS. To upload your training set to HDFS, use
“hadoop fs -put path/to/data.txt”. For a more exhaustive list of commands, see

http://hortonworks.com/hadoop-tutorial/using-commandline-manage-files-hdfs/.

Another option is to install and run Hadoop on your local machine. While this isn’t stream-
ing, it will allow you to test your implementation.

Note: since the java version on OpenCloud is 1.6, the recommended way is to upload
your code and the package hadoop-core-1.0.1.jar to the cluster. Suppose you are in
the directory where there are your java source files, first invoke

javac -cp path/to/hadoop-core-1.0.1.jar:. *.java

to compile your code. Suppose your main class is “run”, then type
jar cfe NB_train.jar run *.class

to generate the jar file. And finally type
hadoop jar NB_train.jar path/to/input path/to/output num_reducers

to run your job.

2.3 Additional Hadoop Tutorial

In case you want to study extra tutorials about Hadoop, your honorary TA Malcolm
Greaves has kindly put together a wiki page here:

http://curtis.ml.cmu.edu/w/courses/index.php/GuideforHappyHadoopHacking.

2.4 About Java Version

The Java version is 1.6 on OpenCloud, and 1.8 on Autolab. So you can write your code
using Java 1.6 API and submit the same copy of your code both to OpenCloud and Autolab.
As for AWS, the default Java version depends on the specific machine you choose.

3

3 The Data

We are using a new dataset extracted from DBpedia. The labels of the article are mapping-
based types of the document. There are in total 18 (17 + other) classes in the dataset,
and they are from the first level class in DBpedia ontology.

3.1 Data Format

The format is one document per line. Each line contains three columns which are separated
by a single tab:

• a document id

• a comma separated list of class labels

• document words

The documents are preprocessed so that there are no tabs in the body.

3.2 Obtaining the Data

The full dataset for assignment 1b is loacated at /afs/cs.cmu.edu/project/bigML/dbpedia16fall/abstract.full.train.ThelocationonAWSwillbeannouncedlaterinpiazza.Y oudonotneedtocopythedatatoS3byyourself.
Note that you only need to submit the log files for running your code on the full

dataset. The small dataset is provided to you for debugging as usual2. Similar to home-
work 1a, please use the provided tokenizer from homework 1a.

4 Deliverables

4.1 Steps

What you need to do in this assignment can be summarized in the following steps:

• Port the naive Bayes training code into Hadoop using Hadoop’s MapReduce API.

• Run the Hadoop API MapReduce job on AWS with the full dataset with elastic
MapReduce using the Custom Jar option. (Note: use only one reducer here.)

• Download the controller and syslog text files, and submit via Autolab together with
the report and your source code in a tar ball.

Hint: The controller and syslog files from AWS for the mapreduce job can be down-
loaded from the AWS console. Simply go to the Elastic Mapreduce tab. Select your job in
the list, click View details and expand Steps to see jobs and log files.

2Note that Amazon will charge you a full hour for small jobs less than one hour, so you may not want
to develop or debug your code on AWS.

4

4.2 Report

Submit your implementations via AutoLab. You should implement the algorithm by your-
self instead of using any existing machine learning toolkit. You should upload your code
(including all your function files) along with a report, which should solve the following
questions:

1. Answer the questions in the collaboration policy on page 1.

2. For parallel computing, the optimal speedup gained through parallelization is linear
with respect to the number of jobs running in parallel. For example, with 5 reducers,
ideally we would expect parallel computing to take 1/5 wall clock time of single ma-
chine run. However, this optimal speedup is usually not achievable. In this question,
set the number of reducers in your hadoop run to 2, 4, 6, 8, 10, and record the wall
clock time. (The wall clock time of reducers can be inferred from syslogs - use the
time between “map 100% reduce 0%” and “map 100% reduce 100%”). Plot a curve,
where the horizontal axis is the number of reducers, and the vertical axis is the wall
time. Is the wall time linear with respect to the number of reducers? Explain what
you observed. (15 points)

3. You are performing the classical WordCount example on Hadoop MapReduce. Words
in real languages follow a power-law distribution - the frequency of words is highly
non-uniform and skewed, and some words occur much more in the corpus than other
words. Consider an extreme case of skew: for instance, assume that 10% of the
words in the document are copies of the word “the”. Will this adversely impact the
performance of your MapReduce job? Why or why not? If yes, suggest a fix for the
same. (10 points)

4. In information retrieval, sometimes we need to know the most relevant documents
in a corpus given a search query. This can be done by calculating the relevance score
of each document to that query, and ranking the documents according to their scores.

Okapi BM25 is a function used to calculate relevance scores of a given query and a
set of documents in a corpus. Given a query Q, containing keywords q1, . . . , qn, the
BM25 score of a document D is:

score(D,Q) =

n∑
i=1

IDF(qi) ·
TF(qi, D) · (k1 + 1)

TF(qi, D) + k1 · (1− b + b · |D|
avgdl)

,

where TF(qi, D) is qi’s term frequency in the document D, |D| is the length of the
document D, and avgdl is the average document length in the corpus. k1 and b
are free parameters, which can be treated as constants here. IDF(qi) is the inverse

5

document frequency weight of the query term qi. It can be computed as:

IDF(qi) = log
N − n(qi) + 0.5

n(qi) + 0.5
,

where N is the total number of documents in the collection, and n(qi) is the number
of documents containing qi.

Now given a query Q, containing keywords q1, . . . , qn and a corpus like below (With
two columns separated by tab, of which the first is the document id, and the second
is the content. You may assume there is no tab in the content, all words are in lower
case and any one of the documents can fit in memory):

....

d1 \t russian police raid rights group memorial and other...

d2 \t the us embassy in russia has asked the russian government...

....

Outline how can you employ stream and sort pattern to calculate BM25 score of each
document. The output should look like below (you don’t have to sort the documents
according to the scores):

....

(d1, score(d1, Q) = 0.08)

(d2, score(d2, Q) = 0.09)

....

You should write down the input and output format of each step. (15 points)

Hint: think of how you can get the BM25 score of each document w.r.t each keyword
in the query (because the score of each document w.r.t. the query can be calculated
by adding up all the scores of that document w.r.t each keyword in the query). For
example, if you have:
....

(q1, d1, score(d1, q1) = ?)

(q1, d2, score(d2, q1) = ?)

(q1, d3, score(d3, q1) = ?)

....

(q2, d1, score(d1, q2) = ?)

(q2, d2, score(d2, q2) = ?)

6

(q2, d3, score(d3, q2) = ?)

....

it will be much easier to get the final result.

4.3 Autolab Implementation details

Autolab is currently running Hadoop 1.0.1. In this part of homework, you will need to
follow the exact naming of the following files.

You must have the run.java class, which includes the main function that you call the
MapReduce version of the naive Bayes trainer (e.g. NB train hadoop.java). There will be
three arguments sent to this main function: InputPath, OutputPath, and the number
of reduce tasks. For example, in a standalone debugging version of Hadoop, your code
need to execute sucessfully via the following commands:

javac -cp hadoop-core-1.0.1.jar:. *.java;

java -cp hadoop-core-1.0.1.jar:hadoop/lib/*:. run InputPath OutputPath 1

Important: you should still use the tokenizer provided in homework 1a, and also the
key output format mentioned in homework 1a. For example:

Y=CCAT,W=he 3.0

Y=CCAT,W=saw 1.0

Y=CCAT,W=her 3.0

Y=CCAT,W=duck 4.0

Y=CCAT,W=or 1.0

Y=CCAT,W=* 123.0

Y=CCAT 10.0

Y=* 10.0

...

But this time Hadoop will do the sorting job for you.
You should tar the following items into hw1b.tar and submit to the homework 1b

assignment via Autolab:

• run.java

• NB train hadoop.java

• controller.txt

• syslog.txt

• and all other auxiliary functions you have written

• report.pdf

7

Tar the files directly using “tar -cvf hw1b.tar *.java *.txt report.pdf”. Do NOT put the
above files in a folder and then tar the folder. You do not need to upload the saved
temporary files.

5 Submission

You must submit your homework through Autolab. In this part of homework 1, there will
be a validation link.

• HW1b-validation: You will be notified by Autolab if you can successfully finish
your job on the Autolab virtual machines. Note that this is not the place you
should debug or develop your algorithm. All development should be done on
linux.andrew.cmu.edu machines. This is basically a Autolab debug mode. There will
be NO feedback on your performance in this mode. You have unlimited amount
of submissions here. To avoid Autolab queues on the submission day, the validation
link will be closed 24 hours prior to the official deadline. If you have received a score
of 1000 with no errors, this means that you code has passed the validation.

• HW1b-Hadoop-Naive-Bayes: This is where you should submit your tar ball. You
have a total of 10 possible submissions. Your score will be reported, and feedback
will be provided immediately.

6 Grading

• If you are able to successfully run the job on full dataset with AWS EMR, you will
receive 20 points. The successful run of your AWS job should be reflected in your
submitted log files. Do not submit someone elses log files. Autolab runs a cheat
checker, and we have zero tolerance for any cheating in the course.

• We will test your Hadoop code on Autolab in real time, and check the logs and
the correctness of your MapReduce output. In particular, all the counts that your
MapReduce program generates for the Naive Bayes model will be compared to refer-
ence counts to determine correctness of your program. This will count for 40 points.
As stated earlier, do not submit anyone elses code including that of past students
of the course. Such cheating will be caught by Autolab and the consequences for
cheating are severe.

• The report will be graded manually and its questions carry 40 points.

8

