
BigML Assignment 2: Small Memory Footprint Streaming

Naive Bayes

Due Tuesday, February 4 11:59pm via Blackboard

January 28, 2013

1 Important Note

This assignment is the second of three that use the Naive Bayes algorithm. You will be
expected to reuse the code you develop for this assignment for a future assignment, and
you are expected to use Java for this assignment.

Bin Zhao (binzhao@cs.cmu.edu) is the contact TA for this homework. Please post
clarification questions to the Google Group:
machine-learning-with-large-datasets-10-605-in-spring-2013

2 Naive Bayes with limited memory

The algorithm for this assignment is exactly the same as for assignment 1, but now we will
constrain the size of the memory footprint. In your makefile for this assignment, all Java
commands must be followed with -Xmx128m which limits the size of the Java heap space.

3 The Data

For this assignment, we will be classifying Wikipedia articles by the languages in which
they are also available. The data appears at /afs/cs.cmu.edu/project/bigML/dbpedia/

The data format is the same as for Assignment 1. There is one instance per line. The
first token of each line is the (comma separated) list of class names , then a tab, then the
data. Please do multi-label learning and evaluation as described for Assignment 1.

There are 6 data sets for this assignment. Again, they are in increasing size so that you
can debug your code on smaller data. The files that start with abstract include Wikipidia
text. The files that start with links are the outlinks from each wikipedia page.

abstract.small.test

abstract.small.train

1



abstract.test

abstract.train

abstract.tiny.test

abstract.tiny.train

links.small.test

links.small.train

links.test

links.train

links.tiny.test

links.tiny.train

4 Deliverables

Submit a compressed archive (zip, tar, etc) of your code. With it, include a makefile so
that

• The command make demo will build and test a classifier using the training and test
files for the “abstract.tiny” dataset.

• The command make test TESTFILE=“test.txt” builds a classifier using the “ab-
stract.tiny” training file, and then classifies the documents in the file provided (test.txt
in this example).

Your classification code should print out the classification results, with format the same as
Assignment 1.

In addition to your code and a makefile, please include a pdf document with:

1. The output of your “make demo” command, as well as the percent correct on the
other five test sets (using classifiers trained with the corresponding train set).

2. Answers to the following questions:

(a) Compare and discuss the performance for the full links vs full abstract data.

(b) For the last assignment we were classifying into the top level of the Reuter’s hi-
erarchy, and we asked you how you would extend the Naive Bayes Algorithm to
handle news articles with multiple labels. The Reuter’s hierarchy is actually sev-
eral levels deep, and the links denote an is-a relationship. For example, Figure 1
shows the Markets subtree. The tree shows that an article about Metals Trad-
ing is an article about the Commodity Market, which is an article about Mar-
kets. The full list of class codes can be found at http://jmlr.csail.mit.edu/
papers/volume5/lewis04a/a02-orig-topics-hierarchy/rcv1.topics.hier.

orig.

2



i. Consider the meaning of multiple labels in a hierarchy. An article cannot be
about Metals trading if it is not also about the Commodity Market. How
can you extend your algorithm to ensure such inconsistencies in classification
don’t occur?

ii. As the RCV1 class labels become more specific, there are fewer training
instances, and the word counts can become more sparse. So, while you may
not have seen word A in a Forex Markets article, you may have seen it in a
Money Markets article. How can you leverage the information from the ar-
ticles from parent classes to improve your smoothing algorithm for children
classes? (Hint: It may be wise to reflect upon the lecture of January 24, and
specifically the strategy for affect/effect classification when we encountered
a new unseen word context at test time.)

BONUS question:

1. Using a local copy of the RCV1.small train.txt file from Assignment 1, compare the
performance of creating your Naive Bayes feature dictionary for last assignment and
this assignment. Time all parts of the dictionary creation (including, for example,
sorting and combining counts for your Assignment 2 solution). Average over 10 calls.
Please include in your write up the commands you used to do this comparison.

5 Marking breakdown

• Code correctness and makefile functionality [60 points].

• 1 [10 points]

• 2a [10 points]

• 2b i [10 points]

• 2b ii [10 points]

• Bonus question: [10 points]

Figure 1: The Markets subtree of the RCV1 hierarchy.

3



6 Hints/Good to know

Unix sort can handle very large files. This is helpful when you need to collect together the
counts for a particular key. To ensure sort behaves properly, you should set the following
environment variable:

LC_ALL=’C’

Get it to sort using tabs by setting this flag:

-t $’\t’

And, when files are large it may be a good idea to tell sort where to store its temporary
files:

-T /some/dir

4


