BigML Assignment 5: Logistic Regression
Using Stochastic Gradient Descent

Due Wednesday, March 20, 2013 via Blackboard
Out March 6, 2013

1 Important Note

As usual, you are expected to use Java for this assignment. It could
take hours to run your experiments. Start early.

Bin Zhao (binzhao@cs.cmu.edu) is the contact TA for this assignment.
Please post clarification questions to the Google Group:
machine-learning-with-large-datasets-10-605-in-spring-2013

2 Background: SGD for Logistic Regression

One fairly simple way (and extremely scalable way) to implement logistic
regression is stochastic gradient descent.

In the lecture we followed Charles Elkan’s notes!, which are for a binary
classification task. We estimate the probability p that an example x =
(x1,...,2q) is positive in the log-odds form:

p
log—— =a+ Z Bix; (1)
I=p j=1l..d

If we assume there is a “bias feature” x(that is true for every example, then
you can simplify and drop the «, leaving just the §;’s to estimate. Therefore

_exp(fTx)
1+ exp(87x))

"http://cseweb.ucsd.edu/~elkan/250B/logreg. pdf

(2)

1

It’s convenient to consider examples of the form x,y where y = 0 or
y = 1. The log of the conditional likelihood for example is example will be
LCL(x,y) =logp if y = 1 and LCL(x,y) = log(1 — p) if y = 0, where p is
computed as in Eq. 1. With a little calculus you can show that for a positive
example,

0 1 0
2 LCL(x,y) = -2
9B; 9) p OB,

and for a negative example,

0 1 0
— LCL(x,y) = —(——
95 LOLbo) = T (g5
and that 9
—aﬁjp = p(1 - p)z;

and putting this together we get that if y =1

0

—LCL =(1-— ;

57 LOLGx.y) = (1=
and if y = 0 then

0
—LCL

so in either case 9

—LCL = (y — ; 3

So an update to the §’s that would improve most LCL would be along the
gradient—i.e., for some small step size A, let

B =B+ Ay —p)

Notice that if ; = 0 then 3; is unchanged.
So this leads to this algorithm, which is very fast (assuming you have
enough memory to hash all the parameter values).

1. Initialize a hashtable B
2. Fort=1,...,T

e For each example x;, y;:

— For each non-zero feature of x; with index j and value x;:
« If j is not in B, set B[j] = 0.
* Set Bj] = B[j] + Ay — p);

3. Output the parameters Sy, ..., G,

The time to run this is O(nT’), where n is the total number of non-zero
features for each example and T is the number of iterations.

3 Efficient regularized SGD

Logistic regression tends to overfit when there are many rare features. One
fix is to penalize large values of 3, by optimizing, instead of LC'L, some
function such as LC'L — Z;‘l=1 5]2-. Here i controls how much weight to give
to the penalty term. The update for 8; becomes

Bi = B + My — p)r: — 2up;)

or equivalently
Bj = B; + Ay — p)ui — A2uB;

Experimentally this greatly improves overfitting - but unfortunately, this
makes the computation much more expensive, because now every (; needs
to be updated, not only the ones that are non-zero.

The trick to making this efficient is to break the update into two parts.
One is the usual update of adding A(y — p)z;. Let’s call this the “LCL” part
of the update. The second is the “regularization part” of the update, which
is to replace 8 by

i =B = A2up; = B; - (1 = 2A\p)
So we could perform our update of 3; as follows:
o Set B; = ;- (1 —2\p)
o If z; #0,set B, =5; + ANy — p)z;

Following this up, we note that we can perform m successive “regulariza-
tion” updates by letting B; = B, - (1 — 2Au)™. The basic idea of the new
algorithm is to not perform regularization updates for zero-valued z;’s, but

3

instead to simply keep track of how many such updates would need to be
performed to update f3;, and perform them only when we would normally
perform “LCL” updates (or when we output the parameters at the end of
the day).

Here’s the final algorithm (for more detail, see “Lazy sparse stochastic
gradient descent for regularized multinomial logistic regression”, Bob Car-
penter?)

1. Let k = 0, and let A and B be empty hashtables. A will record the
value of k last time B[j] was updated.

2. Fort=1,...,T

e For each example x;, y;:
e letk=k+1
— For each non-zero feature of x; with index j and value x;:
« If 7 is not in B, set B[j] = 0.
« If j is not in A, set A[j] = 0.
x Simulate the “regularization” updates that would have

been performed for the k — A[j] examples since the last
time a non-zero x; was encountered by setting

Blj] = B[j] - (1 — 2 p)*=40]

* Set Blj] = B[j] + Ay — p);
x Set A[j] =k
3. For each parameter (31, ..., B4, set

Blj] = B[j] - (1 — 22p)*—AV]

4. Output the parameters Sy, ..., Bq.

The learning rate A is often decreased over time. On the ¢-th sweep
through the data, set A = ;. T used 7 = 0.5. (Sometimes A is also scaled by
1/ne, where n, is the number of examples.) I also used a value of 2 = 0.1.

’http://lingpipe.files.wordpress.com/2008/04/1lazysgdregression.pdf

When running stochastic gradient descent, it is usual to randomize the
order of examples, and scale the feature values so that they are comparable
(if they are not already binary). However, randomization is not trivial to
do for a large dataset. I recommend implementing SGD as a process that
streams once through a data stream, with the number of examples n, being
passed in separately as a command-line argument so that the algorithm is
aware of what the current value of ¢ is. Then write a separate module that
will input a file of examples and then stream the individual examples out in

approximately random order. Hint: to randomly sort a file in linux you can
do

cat -n text_file | sort -R | cut -f2-

4 Task

For this assignment, we will be classifying Wikipedia articles by the languages
in which they are also available. The data appears at /afs/cs.cmu.edu/
project/bigML/dbpedia/

The data format is the same as for Assignment 1. There is one instance
per line. The first token of each line is the (comma separated) list of class
names , then a tab, then the data. Please do multi-label learning and evalu-
ation as described for Assignment 1.

To reduce the experimental load we will only use the abstract data sets for
this assignment. Again, they are in increasing size so that you can debug your
code on smaller data. The files that start with abstract include Wikipidia
text.

abstract.small.test
abstract.small.train
abstract.test
abstract.train
abstract.tiny.test
abstract.tiny.train

As in the naive Bayes assignment, we are going to train 14 binary classi-
fiers (one for each class nlel,ru,sl,pl,ca,fr,tr,hu,de,hr,es,ga,pt).

In contrast to the previous assignments, we are going to evaluate each
document as 14 independent binary classification problems. For each test
file, report a single accuracy which is the average over all labels and all test
samples.

To reduce the experimental load fix the number of training iterations
(scans of data sets) to 20 for all data sets. To fit our model to the memory
of a desktop we will use the hash trick discussed in class: map every word to
a features id in the range 0 — N, where N is the dictionary size.

Hint: to convert a string to an id between 0 and N you can do something
like

int id = word.hashCode() % N;
if (id<0) id+= N;

5 Deliverables

Submit a compressed archive (zip, tar, etc) of your code. With it, include a
makefile so that

e The command make demo will build and test a classifier using the
training and test files for the “abstract.tiny” dataset.

e The command make test TESTFILE= “test.tzt” builds a classifier using
the “abstract.tiny” training file, and then classifies the documents in
the file provided (test.txt in this example).

Your classification code should print out the classification results, with format
the same as Assignment 1.

In addition to your code and a makefile, please include a pdf document
with the output of your “make demo” command, as well as the percent correct
on the other five test sets (using classifiers trained with the corresponding
train set).

Also respond to the following questions.

1. Show values of overall likelihood function for each iteration when train-
ing with the small data set having dictionary size 10000 and pu =
0.1. The objective function is defined as the sum of all 14 classes
> i > LCL.(x",y*"). Here c is the label id and i is the document id.

Hint: in order to prevent overflow when calculating p as defined in
equation (2) you can use a special version of sigmoid function as the
following:

static double overflow=20;
protected double sigmoid(double score) {
if (score > overflow) score =overflow;
else if (score < -overflow) score = -overflow;
double exp = Math.exp(score);
return exp / (1 + exp);

2. Show accuracy curves for the full data set with varying regularization
parameter y© = 0,1e — 6,1e — 5,1e — 4,1e — 3,0.01,0.1,0.2,0.3,0.5, 1
and fixed dictionary size 1eb, and discuss.

3. Show accuracy curves for the full data set with varying dictionary sizes
D = 10,100, 1e3, 1le4, 1eb, 1e6 and the best p values you found in the
previous step, and discuss.

4. Compare SGD logistic regression with naive Bayes classifier and dis-
cuss. (You will need to retest the naive Bayes classifiers on all three
datasets with the new evaluation metric in this assignment).

BONUS question: Is there anything you find particular interesting during
this study?

6 Marking breakdown
e Code correctness and makefile functionality: [60 points].

e Question 1, 2, 3, 4: [10+10+10410 points|

e BONUS question: [10 points]

