BigML Assignment 3: Streaming Phrase Finding

Due Tuesday, February 14, 2012 via Blackboard

Out February 7, 2012

1 Important Note

This assignment is the first of two that use the phrase finding algorithm we discussed in
class (see Tomokiyo and Hearst, 2003, http://dl.acm.org/citation.cfm?id=1119287). You
will be expected to reuse the code you develop for this assignment for a future assignment,
and you are expected to use Java for this assignment.

Alona Fyshe (afyshe@cs.cmu.edu) is the contact TA for this homework. Please post
clarification questions to the Google Group:
machine-learning-with-large-datasets-10-605-in-spring-2012

2 Streaming Phrase Finding

This assignment is based on the method in A language model approach to keyphrase ex-
traction, Tomokiyo and Hearst, 2003, http://dl.acm.org/citation.cfm?id=1119287 . The
basic goal is to pick out word sequences in a corpus that are meaningful as phrases (in the
paper’s words, have high phraseness), and over-represented in the corpus (have high infor-
mativeness). Phraseness and informativeness are computed based on some simple frequency
features, which we will denote as

C(x,y) frequency of the phrase x y in the corpus of interest
B(x,y) analogous for the background corpus
C(x), C(y) | frequency of a word x or y in the corpus of interest
B(x), B(y) | analogous for the background corpus

You also need a handful of constants, like the number of words and bigrams in each
corpus, and the vocabulary sizes. For this assignment, the corpus of interest (foreground
corpus) is those books published in the years 1990-1999. The background corpus is those
books published in the years 1960-1989. We’ve done some of the preprocessing for you (for
example, we’ve thrown out words and phrases with non-letter characters, normalized the



words to their lowercase variants, and aggregated the counts by decade). As before, there
is a smaller test set for debugging your code.

We suggest using a simple data structure that associates a set of attribute-value pairs
with a phrase. Once you have this data structure - for instance like the examples below -
its easy to compute phraseness and informativeness in a streaming setting:

Key

Value

united states
white house

Cxy=104324,Bxy=214442,Cx=321313,Cy=424134,Bx=23141,By—=444141
Cxy=4343003, Bxy=43322,Cx=2344233,Cy=786677,Bx=235661,By=1056773

Consider the first row in the example above. Cxy denotes the C(x,y) count for the
phrase united states in the foreground corpus. Cx is the count for united and Cy is the
count for states in the foreground corpus. Its easy enough to tally up these counts over
the corpus. The tricky part is getting these counts in one place.

As in assignment 2, we'’re going to assume the unigrams won’t fit in memory; all Java
commands must be followed with -Xmx128m. We must implement a stream and sort
algorithm to request count, fulfill the requests, and aggregate the responses. Here’s a
general outline of the algorithm for aggregating the counts (refer also to the lecture slides
from January 31):

1. Compute counter files mapping © — Bz, x — Cz,zy — Cxy,xy — Bxy

e This is mostly done, but you will need to aggregate together the counts for the
different decades in the background corpus.

2. Gather together the background and foreground counts for each unigram to create
one data structure with key x and value Bx=some number,Cx=some number. Do the
same for the bigrams.

3. Stream through all the phrases and for each phrase x y, create two messages—one
asking for the unigram frequencies for x, and one asking for the frequencies of y.
Each message is just a pair consisting of the query word and the phrase making the
request: so the phrase united states will generate the messages

united,united states
states,united states

4. To deliver the messages, sort them in with the unigram frequency file. Use a secondary
key so the attribute-value pairs come first, and the messages come last (as described
in lecture). While scanning through the unigram file, you will do something like this:

(a) for each distinct key x (e.g. united)




i. read the attribute-value pairs for = (e.g. Bx=14342,Cx=24123)
ii. for each message from step two addressed to x from a phrase of the form
zz (e.g. united states):

A. send a message to xz with the attribute-value list at the content. (i.e.
write out a pair with key zz and value of the attribute-value list (eg,
united states, Bx=14342,Cx=24123)

iii. for each message from step two addressed to x from a phrase of the form
zx (e.g. fly united):

A. send a message to zz with the attribute-value list at the content. (i.e.
write out a pair with key zx and value of the attribute-value list (eg,
united states, By=14342,Cy=24123)

(***Notice the change from z to y in the value list***)

5. Now you’ve created two new data structures for each bigram, one with Bx=some
number ,Cx=some number and one with By=some number,Cy=some number . To de-
liver these messages, sort them in with the bigram frequency file that contains
Bxy=some number,Cxy=some number , and merge the data structures.

Now you have all of the counts in the same data structure, and can compute the
phraseness and informativeness scores as described in the paper. Recall the definition of
point wise KL Divergence:

5. (pl]q) = plw)log (55;) W

Phraseness is point wise KL Divergence
p=prg(x Ny) a=psg(x)Prg(y)- (2)

Informativeness is point wise KL Divergence with

p=prg(®xNy) q=ppg(zAy) (3)

Where py, is the probability of an event under the foreground corpus (corpus of interest),
and py, is the probability of an event under the background corpus. The phrase score is
just the sum of phraseness and informativeness. Please use the natural logarithm for this
assignment. The paper uses a more complex smoothing algorithm, but you should just use
add one smoothing, as in Assignments 1 & 2.

3 The Data

We are using the google books corpus. We’ve done some preprocessing of the data, and
created two sets of data files. This is unsupervised learning, so there is no test set.
The data has the following format:



<text>\t<decade>\t<count>

where text is either a bigram or a unigram, and count is the number of times that text
occurred in a book in the given decade. The smaller dataset is all bigrams that contain
the word apple, and all unigrams appearing in those bigrams. This subsample was chosen
because Apple Computer became a more popular company in the 90s, and thus the word
Apple took on a different meaning. You should be able to see that trend in the phrase
statistics you calculate for the smaller dataset.

The data appears at /afs/cs.cmu.edu/project/bigML/phrases/. Files with the word
apple in the name are the subsampled datasets.

4 Deliverables

Submit a compressed archive (zip, tar, etc) of your code. Your code should print out the
phrases and the scores in this format:

<phrase>\t<total score>\t<phraseness score>\t<informativeness score>

where total score is the sum of phraseness score and informativeness score.
With it, include a makefile so that

e The command make demo will compile counts from scratch (i.e. perform all of the
steps outlined above) using the apple corpus on afs, and write to stdout the top 20
phrases sorted by by total score.

In addition to your code and a makefile, please include a pdf document with:

1. The top 20 phrases (sorted by total score) from the full data set and the apple data
set.

2. Answers to the following questions:

a at do you notice about the phrases ranked highest in your results for the two
What d tice about the ph ked highest i Its for the t
data sets? Do they give you any insights into what was going on in the 90s?

(b) Are there any downfalls you see to using the total phrase score? For example,
are there some phrases that are ranked high even though you don’t think they
should be? Why are they ranked so high?

(¢) How could you improve upon the total score proposed by Tomokiyo and Hurst?

BONUS question:

1. Implement the improvement you outlined for question 2 (c), and show the results.
How is your method better? Are there any further improvements to be made?



5 Marking breakdown

e Code correctness and makefile functionality [60 points].

1 [10 points]

2a [10 points]

2b [10 points]

2c [10 points]

e Bonus question: [15 points]

6 Hints/Good to know

Unix sort can handle very large files. This is helpful when you need to collect together the
counts for a particular key. To ensure sort behaves properly, you should set the following
environment variable:

LC_ALL="C’
Get it to sort using tabs by setting this flag:
-t $ ) \t )

And, when files are large it may be a good idea to tell sort where to store its temporary
files:

-T /some/dir



