
K-Means Clustering on MapReduce

Prepared by Yanbo Xu

Out April 3, 2013
Due Wednesday, April 17 2013 via Blackboard

1 Important Note

You are expected to use Java for this assignment.
Yanbo Xu (yanbox@cs.cmu.edu) is the contact TA for this homework.

Please post clarification questions to the Google Group:
machine-learning-with-large-datasets-10-605-in-spring-2013

2 Overview

K-Means iteratively improves the partition of the data into K sets:

• Predefine the number of clusters, K

• Initialize K cluster centroids

• Iteration until the centroids no longer change

– Associate each data instance with the closest centroid (we consider
them in a Euclidean space in this assignment)

– Recalculate centroids as an average of the associated data in-
stances

3 K-Means Clustering on MapReduce

To parallelize K-Means on MapReduce, we are going to share some small
information, i.e. the cluster centroids, across the iterations. This will result

1



in a duplication, but very minimal comparing with the large amount of data.

Therefore, before starting, a file is created accessible to all processors
(through FileSystem in Configuration()) that contains the initial K cluster
centroids. This file will be updated after each iteration to contain the latest
cluster centroids calculated by Reducer. Then

1. The Mapper reads this file to get the centroids from last iteration.
It then reads the input data and calculates the Euclidean distance to
each centroid. It associates each instance with the closest centroid, and
outputs (data instance id, cluster id).

2. Since this is a lot of data, we use a Combiner to reduce the size before
sending it to Reducer. The Combiner calculates the average of the
data instances for each cluster id, along with the number of the in-
stances. It outputs (cluster id, (intermediate cluster centroid, number
of instances)).

3. The Reducer calculates the weighted average of the intermediate cen-
troids, and outputs (cluster id, cluster centroid).

The main function runs multiple iteration jobs using the above Mapper +
Combiner + Reducer. You can use the following sample codes1 to implement
the multiple iterations in main:

int iteration = 0;

// counter from the previous running import job

long counter = job.getCounters().findCounter(Reducer.

Counter.CONVERGED).getValue();

iteration++;

while (counter > 0) {

conf = new Configuration();

conf.set("recursion.iter", iteration + "");

job = new Job(conf);

1http://codingwiththomas.blogspot.com/2011/04/controlling-hadoop-job-recursion.

html

2



job.setJobName("KMeans " + iteration);

//...

// job.set Mapper, Combiner, Reducer...

// ...

// always take the output from last iteration as the input

in = new Path("files/kmeans/iter_" + (iteration - 1) + "/");

out = new Path("files/kmeans/iter_" + iteration);

//...

// job.set Input, Output...

// ...

// wait for completion and update the counter

job.waitForCompletion(true);

iteration++;

counter = job.getCounters().findCounter(Reducer

.Counter.CONVERGED).getValue();

}

Regarding the Counter, you can define an enum in Reducer:

public enum Counter{

CONVERGED

}

and then update the counter:

context.getCounter(Counter.CONVERGED).increment(1);

4 The Data

We are going to cluster the Census data that was collected by the U.S. Cen-
sus Bureau in 1990. Many of the less useful attributes in the original data set
have been dropped, the few continuous variables have been discretized and
the few discrete variables that have a large number of possible values have
been collapsed to have fewer possible values. As a result, the data contains

3



68 categorical attributes.

The data appears at /afs/cs.cmu.edu/project/bigML/census/, and
are also available in the public s3 bucket: s3://bigml-shared/census. The
first row contains the list of attributes. The first attribute is a case id and
should be ignored during analysis. The data is comma delimited with one
case per row. Again, a small toy data is provided for debugging.

USCensus1990.small.txt

USCensus1990.full.txt

For the convenience of grading, the initial cluster centroids for K=8 and
K=12 were already randomly generalized. Please use the following files as
your starting points. Each row starts with a cluster id, and follows by the
centroid’s case id and values of the 68 attributes. Each row is still comma
delimited.

centroids8.small.txt

centroids12.small.txt

centroids8.full.txt

centroids12.full.txt

5 Deliverables

Submit a compressed archive (zip, tar, etc) of your code, along with the
controller and syslog files from AWS. Please include a pdf document with
answers to the questions below.

1. Run K=8 and K=12 clusters on the small data, report the cluster
centroids, the number of iterations for convergence, and the wall time
respectively.

2. Run K=8 and K=12 clusters on the full data, report the cluster cen-
troids, the number of iterations for convergence, and the wall time
respectively.

For each iteration, we compared each instance to each possible cen-
troid, which may result in a large computation cost. We can reduce

4



the number of distance comparison by applying the Canopy Selection,
described as in www.kamalnigam.com/papers/canopy-kdd00.pdf.

Please read the paper, and answer:

3. What distance metric would you choose for the canopy clustering?
Why?

4. Can you implement the Canopy Selection on MapReduce? If yes, please
describe the workflow.

5. Describe the workflow to combine the Canopy Selection with K-Means
on MapReduce.

BONUS question: Implement the Canopy Selection with K-Means on
MapReduce. Run K=12 on both small and full data. Report the cluster
centroids, the number of iterations for convergence, and the wall time re-
spectively.

6 Marking breakdown

• Code correctness: [45 points].

• Question 1, 2 [10+10 points]

• Question 3, 4, 5 [5 + 15 + 15 points]

• BONUS question: [20 points]

5


