
Announcements: projects 

– 805 students: Project proposals are due Sun 
10/2.  If you’d like to work with 605 
students then indicate this on your 
proposal.

– 605 students: the week after 10/2 I will post 

the proposals on the wiki and you will have 
time to contact 805 students and join teams.

– 805 students: let me know your team by 

10/9: I will approve the teams.
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Announcements: guinea pig tips 

– One student reported localization problems 
that were Iixed by setting


% export LC_ALL=C



– Try this out and let me know if there are 

problems with it: I will make it default for 
next class
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Announcements: Spark followup 

ReduceByKey is a transformation

Reduce is an action



Sounds crazy but it’s not:

– actions are eager, and return something 

(small) to the driver program

– transformations are lazy, and transform a 

(large) RDD 
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LEARNING AS OPTIMIZATION: 
MOTIVATION 
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Learning as optimization: warmup 

Goal: Learn the parameter θ of a binomial

Dataset: D={x1,…,xn}, xi is 0 or 1, k of them are 1


! P(D|θ)=θk(1-θ)n-k


! d/dθ  P(D|θ) = kθk-1(1-θ)n-k   + θk(n-k)(1-θ)n-k-1 
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Learning as optimization: warmup 

Goal: Learn the parameter θ of a binomial

Dataset: D={x1,…,xn}, xi is 0 or 1, k of them are 1


= 0


θ= 0

θ= 1


k- kθ – nθ + kθ = 0

è nθ  = k

è θ  = k/n
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Learning as optimization: general 
procedure 
•  Goal: Learn parameter θ (or weight vector w)

•  Dataset: D={(x1,y1)…,(xn , yn)} 

•  Write down loss function: how well w Iits the 

data D as a function of w

– Common choice:  log Pr(D|w) 


•  Maximize by differentiating

– Then gradient descent: repeatedly take a 

small step in the direction of the gradient
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Learning as optimization: general procedure 
for SGD (stochastic gradient descent) 

•  Big-data problem: we don’t want to load all the 
data D into memory, and the gradient depends on 
all the data


•  Solution: 

–  pick a small subset of examples B<<D

–  approximate the gradient using them


•  “on average” this is the right direction

–  take a step in that direction

–  repeat….


•  Math: Iind gradient of w for a single example, not a 
dataset


B = one 
example is 
a very 
popular 
choice 
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SGD vs streaming 

•  Streaming: 

–  pass through the data once

–  hold model + one example in memory

–  update model for each example


•  Stochastic gradient:

–  pass through the data multiple times


•  stream through a disk Iile 
repeatedly


–  hold model + B examples in memory

–  update model via gradient step


B = one example is 
a very popular 
choice 
 
its simple J 
 
sometimes its 
cheaper to evaluate 
100 examples at 
once than one 
example 100 times 
L 
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Logistic Regression 
vs Rocchio 
•  Rocchio looks like: 


•  Two classes, y=+1 or y=-1:
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f (d) = argmaxy v(d) ⋅v(y)

f (d) = sign [v(d) ⋅v(+1)]−[v(d) ⋅v(−1)]( )
= sign v(d) ⋅[v(+1)− v(−1)]( )

f (x) = sign(x ⋅w) w = v(+1) - v(-1)

x = v(d)




Logistic Regression 
vs Naïve Bayes 

•  Naïve Bayes for two classes can also be 
written as:


•  Since we can’t differentiate sign(x), a 
convenient variant is a logistic 
function: 
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f (x) = sign(x ⋅w)

σ (x) = 1
1+ e−x



Efficient Logistic Regression 
with Stochastic Gradient 

Descent 
William Cohen
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Learning as optimization for logistic regression 

•  Goal: Learn the parameter w of the 
classiIier


•  Probability of a single example P(y|x,w) 
would be




•  Or with logs:
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p 
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Again: Logistic regression 

•  Start with Rocchio-like 
linear classiIier:


•  Replace sign(...) with 
something differentiable: 

–  Also scale from 0-1 not 

-1 to +1


•  DeIine a loss function:


•  Differentiate….


ŷ = sign(x ⋅w)

ŷ =σ (x ⋅w) = p

σ (s) = 1
1+ e−s

L(w | y,x) =
logσ (w ⋅x) y =1

log(1−σ (w ⋅x)) y = 0

#
$
%

&%

= log σ (w ⋅x)y (1−σ (w ⋅x))1−y( )
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Magically, when we differentiate, we end up with 
something very simple and elegant…..


p =σ (x ⋅w)

∂
∂w

L(w | y,x) = (y− p)x

∂
∂w j L(w | y,x) = (y− p)x

j

The update for gradient descent is just:
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Logistic regression has a 
sparse update 

19 



Key computational point:  

•  if xj=0 then the gradient of wj is zero

•  so when processing an example you 

only need to update weights for the 
non-zero features of an example.


An observation: sparsity! 

20 



Learning as optimization for logistic 
regression 
•  The algorithm:


-- do this in random order 
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Another observation 

•  Consider averaging the gradient over 
all the examples D={(x1,y1)…,(xn , yn)} 


•  This will overIit badly with sparse features

– Consider any word that appears only in positive 

examples!
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Learning as optimization for logistic 
regression 
•  Goal: Learn the parameter θ of a 

classiIier

–  Which classiIier?

–  We’ve seen y = sign(x . w) but sign is 

not continuous…

–  Convenient alternative: replace sign 

with the logistic function 


•  Practical problem:  this overIits badly with sparse features

–  e.g., if wj is only in positive examples, its gradient is always positive !
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REGULARIZED LOGISTIC 
REGRESSION 
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Regularized logistic regression 
•  Replace LCL




•  with LCL + penalty for 

large weights, eg


•  So:


•  becomes:
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Regularized logistic regression 
•  Replace LCL




•  with LCL + penalty for large 

weights, eg


•  So the update for wj becomes:


•  Or
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Learning as optimization for logistic 
regression 
•  Algorithm:


-- do this in random order 
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Learning as optimization for 
regularized logistic regression 
•  Algorithm:


Time goes from O(nT) to O(mVT) 
where 
•  n = number of non-zero entries,  
•  m = number of examples 
•  V = number of features  
•  T = number of passes over data 
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This change is very important for large 
datasets 
•  We’ve lost the ability to 

do sparse updates

•  This makes learning much 

much more expensive

– 2*106 examples

– 2*108 non-zero entries

– 2*106 + features

– 10,000x slower (!)


Time goes from O(nT) to O(mVT) 
where 
•  n = number of non-zero entries,  
•  m = number of examples 
•  V = number of features  
•  T = number of passes over data 
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SPARSE UPDATES FOR REGULARIZED 
LOGISTIC REGRESSION 
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Learning as optimization for 
regularized logistic regression 
•  Final algorithm:

•  Initialize hashtable W

•  For each iteration t=1,…T

– For each example (xi,yi)

• pi = …

• For each feature W[j]


– W[j] = W[j]  - λ2µW[j]

– If xi

j>0 then

» W[j] =  W[j]  + λ(yi - pi)xj
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Learning as optimization for 
regularized logistic regression 
•  Final algorithm:

•  Initialize hashtable W

•  For each iteration t=1,…T

– For each example (xi,yi)

• pi = …

• For each feature W[j]


– W[j]   *= (1  - λ2µ)

– If xi

j>0 then

» W[j] =  W[j]  + λ(yi - pi)xj
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Learning as optimization for 
regularized logistic regression 
•  Final algorithm:

•  Initialize hashtable W

•  For each iteration t=1,…T

– For each example (xi,yi)

• pi = …

• For each feature W[j]


– If xi
j>0 then


» W[j]   *= (1  - λ2µ)A

» W[j] =  W[j]  + λ(yi - pi)xj


A is number of 
examples seen since the 
last time we did an 
x>0 update on W[j] 
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Learning as optimization for 
regularized logistic regression 
•  Final algorithm:

•  Initialize hashtables W, A   and set k=0

•  For each iteration t=1,…T

– For each example (xi,yi)

• pi = … ; k++

• For each feature W[j]


– If xi
j>0 then


» W[j]   *= (1  - λ2µ)k-A[j]

» W[j] =  W[j]  + λ(yi - pi)xj

» A[j] = k


k-A[j] is number of 
examples seen since the 
last time we did an 
x>0 update on W[j] 
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Learning as optimization for 
regularized logistic regression 
•  Final algorithm:

•  Initialize hashtables W, A   and set k=0

•  For each iteration t=1,…T

– For each example (xi,yi)

• pi = … ; k++

• For each feature W[j]


– If xi
j>0 then


» W[j]   *= (1  - λ2µ)k-A[j]

» W[j] =  W[j]  + λ(yi - pi)xj

» A[j] = k


•  k = “clock” reading 
•  A[j] = clock reading last 

time feature j was 
“active” 

•  we implement the 
“weight decay” update 
using a “lazy” strategy: 
weights are decayed in 
one shot when a feature 
is “active” 
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Learning as optimization for 
regularized logistic regression 

•  Final algorithm:

•  Initialize hashtables W, A   and set k=0

•  For each iteration t=1,…T

– For each example (xi,yi)

• pi = … ; k++

• For each feature W[j]


– If xi
j>0 then


» W[j]   *= (1  - λ2µ)k-A[j]

» W[j] =  W[j]  + λ(yi - pi)xj

» A[j] = k


Time goes from O(nT) to O(mVT) 
where 
•  n = number of non-zero entries,  
•  m = number of examples 
•  V = number of features  
•  T = number of passes over data 

Memory use doubles. 
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Comments 
•  What’s happened here:

– Our update involves a sparse part and a dense part

•  Sparse: empirical loss on this example

•  Dense: regularization loss – not affected by the example


– We remove the dense part of the update

•  Old example update:


–  for each feature { do something example-independent}

–  For each active feature { do something example-dependent}


•  New example update:

–  For each active feature :


»  {simulate the prior example-independent updates}

»  {do something example-dependent}
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Comments 

•  Same trick can be applied in other contexts

– Other regularizers (eg L1, …)

– Conjugate gradient (Langford)

– FTRL (Follow the regularized leader)

– Voted perceptron averaging

– …?
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BOUNDED-MEMORY LOGISTIC 
REGRESSION 
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Question 

•  In text classiIication most words are

a.  rare

b.  not correlated with any class

c.  given low weights in the LR classiIier

d.  unlikely to affect classiIication

e.  not very interesting
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Question 

•  In text classiIication most bigrams are

a.  rare

b.  not correlated with any class

c.  given low weights in the LR classiIier

d.  unlikely to affect classiIication

e.  not very interesting
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Question 

•  Most of the weights in a classiIier are

– important

– not important
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How can we exploit this? 
•  One idea: combine uncommon words together randomly

•  Examples:


–  replace all occurrances of “humanitarianism” or “biopsy” with 
“humanitarianismOrBiopsy”


–  replace all occurrances of “schizoid” or “duchy” with 
“schizoidOrDuchy”


–  replace all occurrances of “gynecologist” or “constrictor” with 
“gynecologistOrConstrictor”


–  …

•  For Naïve Bayes this breaks independence assumptions


–  it’s not obviously a problem for logistic regression, though

•  I could combine


–  two low-weight words (won’t matter much)

–  a low-weight and a high-weight word (won’t matter much)

–  two high-weight words (not very likely to happen)


•  How much of this can I get away with?

–  certainly a little

–  is it enough to make a difference?  how much memory does it save?
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How can we exploit this? 
•  Another observation: 

–  the values in my hash table are weights

–  the keys in my hash table are strings for the feature 

names

• We need them to avoid collisions


•  But maybe we don’t care about collisions?

– Allowing “schizoid” & “duchy” to collide is 

equivalent to replacing all occurrences of “schizoid” 
or “duchy” with “schizoidOrDuchy”
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Learning as optimization for 
regularized logistic regression 

•  Algorithm:

•  Initialize hashtables W, A   and set k=0

•  For each iteration t=1,…T

– For each example (xi,yi)

• pi = … ; k++

• For each feature j: xi

j>0:

» W[j]   *= (1  - λ2µ)k-A[j]

» W[j] =  W[j]  + λ(yi - pi)xj


» A[j] = k
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Learning as optimization for 
regularized logistic regression 

•  Algorithm:

•  Initialize arrays W, A  of size R and set k=0

•  For each iteration t=1,…T

– For each example (xi,yi)

•  Let V be hash table so that 

• pi = … ; k++

• For each hash value h: V[h]>0:


» W[h]   *= (1  - λ2µ)k-A[j]

» W[h] =  W[h]  + λ(yi - pi)V[h]


» A[h] = k


V[h]= xi
j

j:hash(xi
j )%R=h
∑
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Learning as optimization for 
regularized logistic regression 

•  Algorithm:

•  Initialize arrays W, A  of size R and set k=0

•  For each iteration t=1,…T

– For each example (xi,yi)

•  Let V be hash table so that 

• pi = … ; k++


€ 

V[h] = xi
j

j:hash( j )%R ==h
∑

??? 

p ≡ 1
1+ e−V⋅w
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IMPLEMENTATION DETAILS 
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Fixes and optimizations 

•  This is the basic idea but

– we need to apply “weight decay” to features 

in an example before we compute the 
prediction

– we need to apply “weight decay” before we 

save the learned classiIier

– my suggestion:

•  an abstraction for a  logistic regression classiIier


49 



A possible SGD implementation 
class SGDLogistic Regression {

    /** Predict using current weights **/



double predict(Map features);

    /** Apply weight decay to a single feature and record when in A[ ]**/



void regularize(string feature, int currentK);


/** Regularize all features then save to disk **/



    void save(string IileName,int currentK);

    /** Load a saved classiZier **/

    static SGDClassiIier load(String IileName);



/** Train on one example **/

    void train1(Map features, double trueLabel, int k) {



     // regularize each feature

          // predict and apply update       

   }

}

// main ‘train’ program assumes a stream of randomly-ordered examples and 

outputs classiIier to disk; main ‘test’ program prints predictions for each 
test case in input.
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A possible SGD implementation 
class SGDLogistic Regression {



…

}

// main ‘train’ program assumes a stream of randomly-ordered 

examples and outputs classiIier to disk; main ‘test’ program prints 
predictions for each test case in input.





<100 lines (in python)




Other mains:

•  A “shufIler:”


–  stream thru a training Iile T times and output instances

–  output is randomly ordered, as much as possible, given a buffer 

of size B

•  Something to collect predictions + true labels and produce error 

rates, etc.


51 



A possible SGD implementation 
•  Parameter settings:

– W[j]   *= (1  - λ2µ)k-A[j]


– W[j] =  W[j]  + λ(yi - pi)xj


•  I didn’t tune especially but used

– µ=0.1

– λ=η* E-2  where E is “epoch”, η=½

•  epoch: number of times you’ve iterated over the 

dataset, starting at E=1
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ICML 2009 

53 



An interesting example 
•  Spam Iiltering for Yahoo mail

– Lots of examples and lots of users

– Two options:

•  one Iilter for everyone—but users disagree

•  one Iilter for each user—but some users are lazy 

and don’t label anything

– Third option:

•  classify (msg,user) pairs

•  features of message i are words wi,1,…,wi,ki

•  feature of user is his/her id u

•  features of pair are: wi,1,…,wi,ki and u"wi,1,…,u"wi,ki 

•  based on an idea by Hal Daumé
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An example 
•  E.g., this email to wcohen


•  features:

–  dear, madam, sir,…. investment, broker,…, wcohen�dear, 

wcohen�madam, wcohen,…,

•  idea: the learner will Iigure out how to personalize 

my spam Iilter by using the wcohen�X features
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An example 

Compute personalized features and multiple hashes on-the-fly: 
a great opportunity to use several processors and speed up i/o 
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Experiments 

•  3.2M emails

•  40M tokens

•  430k users

•  16T unique features – after personalization
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An example 

2^26 entries = 1 Gb @ 
8bytes/weight 
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