
Announcements: projects

– 805 students: Project proposals are due Sun
10/2. If you’d like to work with 605
students then indicate this on your
proposal.

– 605 students: the week after 10/2 I will post

the proposals on the wiki and you will have
time to contact 805 students and join teams.

– 805 students: let me know your team by

10/9: I will approve the teams.

1

Announcements: guinea pig tips

– One student reported localization problems
that were Iixed by setting

% export LC_ALL=C

– Try this out and let me know if there are

problems with it: I will make it default for
next class

2

Announcements: Spark followup

ReduceByKey is a transformation

Reduce is an action

Sounds crazy but it’s not:

– actions are eager, and return something

(small) to the driver program

– transformations are lazy, and transform a

(large) RDD

3

LEARNING AS OPTIMIZATION:
MOTIVATION

4

Learning as optimization: warmup

Goal: Learn the parameter θ of a binomial

Dataset: D={x1,…,xn}, xi is 0 or 1, k of them are 1

! P(D|θ)=θk(1-θ)n-k

! d/dθ P(D|θ) = kθk-1(1-θ)n-k + θk(n-k)(1-θ)n-k-1

5

Learning as optimization: warmup

Goal: Learn the parameter θ of a binomial

Dataset: D={x1,…,xn}, xi is 0 or 1, k of them are 1

= 0

θ= 0

θ= 1

k- kθ – nθ + kθ = 0

è nθ = k

è θ = k/n

6

Learning as optimization: general
procedure
•  Goal: Learn parameter θ (or weight vector w)

•  Dataset: D={(x1,y1)…,(xn , yn)}

•  Write down loss function: how well w Iits the

data D as a function of w

– Common choice: log Pr(D|w)

•  Maximize by differentiating

– Then gradient descent: repeatedly take a

small step in the direction of the gradient

 7

Learning as optimization: general procedure
for SGD (stochastic gradient descent)

•  Big-data problem: we don’t want to load all the
data D into memory, and the gradient depends on
all the data

•  Solution:

–  pick a small subset of examples B<<D

–  approximate the gradient using them

•  “on average” this is the right direction

–  take a step in that direction

–  repeat….

•  Math: Iind gradient of w for a single example, not a
dataset

B = one
example is
a very
popular
choice

8

SGD vs streaming

•  Streaming:

–  pass through the data once

–  hold model + one example in memory

–  update model for each example

•  Stochastic gradient:

–  pass through the data multiple times

•  stream through a disk Iile
repeatedly

–  hold model + B examples in memory

–  update model via gradient step

B = one example is
a very popular
choice

its simple J

sometimes its
cheaper to evaluate
100 examples at
once than one
example 100 times
L

9

Logistic Regression
vs Rocchio
•  Rocchio looks like:

•  Two classes, y=+1 or y=-1:

10

f (d) = argmaxy v(d) ⋅v(y)

f (d) = sign [v(d) ⋅v(+1)]−[v(d) ⋅v(−1)]()
= sign v(d) ⋅[v(+1)− v(−1)]()

f (x) = sign(x ⋅w) w = v(+1) - v(-1)

x = v(d)

Logistic Regression
vs Naïve Bayes

•  Naïve Bayes for two classes can also be
written as:

•  Since we can’t differentiate sign(x), a
convenient variant is a logistic
function:

11

f (x) = sign(x ⋅w)

σ (x) = 1
1+ e−x

Efficient Logistic Regression
with Stochastic Gradient

Descent
William Cohen

12

Learning as optimization for logistic regression

•  Goal: Learn the parameter w of the
classiIier

•  Probability of a single example P(y|x,w)
would be

•  Or with logs:

13

14

p

15

16

Again: Logistic regression

•  Start with Rocchio-like
linear classiIier:

•  Replace sign(...) with
something differentiable:

–  Also scale from 0-1 not

-1 to +1

•  DeIine a loss function:

•  Differentiate….

ŷ = sign(x ⋅w)

ŷ =σ (x ⋅w) = p

σ (s) = 1
1+ e−s

L(w | y,x) =
logσ (w ⋅x) y =1

log(1−σ (w ⋅x)) y = 0

#
$
%

&%

= log σ (w ⋅x)y (1−σ (w ⋅x))1−y()
17

Magically, when we differentiate, we end up with
something very simple and elegant…..

p =σ (x ⋅w)

∂
∂w

L(w | y,x) = (y− p)x

∂
∂w j L(w | y,x) = (y− p)x

j

The update for gradient descent is just:

18

Logistic regression has a
sparse update

19

Key computational point:

•  if xj=0 then the gradient of wj is zero

•  so when processing an example you

only need to update weights for the
non-zero features of an example.

An observation: sparsity!

20

Learning as optimization for logistic
regression
•  The algorithm:

-- do this in random order

21

Another observation

•  Consider averaging the gradient over
all the examples D={(x1,y1)…,(xn , yn)}

•  This will overIit badly with sparse features

– Consider any word that appears only in positive

examples!

22

Learning as optimization for logistic
regression
•  Goal: Learn the parameter θ of a

classiIier

–  Which classiIier?

–  We’ve seen y = sign(x . w) but sign is

not continuous…

–  Convenient alternative: replace sign

with the logistic function

•  Practical problem: this overIits badly with sparse features

–  e.g., if wj is only in positive examples, its gradient is always positive !

23

REGULARIZED LOGISTIC
REGRESSION

24

Regularized logistic regression
•  Replace LCL

•  with LCL + penalty for

large weights, eg

•  So:

•  becomes:

25

Regularized logistic regression
•  Replace LCL

•  with LCL + penalty for large

weights, eg

•  So the update for wj becomes:

•  Or

26

Learning as optimization for logistic
regression
•  Algorithm:

-- do this in random order

27

Learning as optimization for
regularized logistic regression
•  Algorithm:

Time goes from O(nT) to O(mVT)
where
•  n = number of non-zero entries,
•  m = number of examples
•  V = number of features
•  T = number of passes over data

28

This change is very important for large
datasets
•  We’ve lost the ability to

do sparse updates

•  This makes learning much

much more expensive

– 2*106 examples

– 2*108 non-zero entries

– 2*106 + features

– 10,000x slower (!)

Time goes from O(nT) to O(mVT)
where
•  n = number of non-zero entries,
•  m = number of examples
•  V = number of features
•  T = number of passes over data

29

SPARSE UPDATES FOR REGULARIZED
LOGISTIC REGRESSION

30

Learning as optimization for
regularized logistic regression
•  Final algorithm:

•  Initialize hashtable W

•  For each iteration t=1,…T

– For each example (xi,yi)

• pi = …

• For each feature W[j]

– W[j] = W[j] - λ2µW[j]

– If xi

j>0 then

» W[j] = W[j] + λ(yi - pi)xj

31

Learning as optimization for
regularized logistic regression
•  Final algorithm:

•  Initialize hashtable W

•  For each iteration t=1,…T

– For each example (xi,yi)

• pi = …

• For each feature W[j]

– W[j] *= (1 - λ2µ)

– If xi

j>0 then

» W[j] = W[j] + λ(yi - pi)xj

32

Learning as optimization for
regularized logistic regression
•  Final algorithm:

•  Initialize hashtable W

•  For each iteration t=1,…T

– For each example (xi,yi)

• pi = …

• For each feature W[j]

– If xi
j>0 then

» W[j] *= (1 - λ2µ)A

» W[j] = W[j] + λ(yi - pi)xj

A is number of
examples seen since the
last time we did an
x>0 update on W[j]

33

Learning as optimization for
regularized logistic regression
•  Final algorithm:

•  Initialize hashtables W, A and set k=0

•  For each iteration t=1,…T

– For each example (xi,yi)

• pi = … ; k++

• For each feature W[j]

– If xi
j>0 then

» W[j] *= (1 - λ2µ)k-A[j]

» W[j] = W[j] + λ(yi - pi)xj

» A[j] = k

k-A[j] is number of
examples seen since the
last time we did an
x>0 update on W[j]

34

Learning as optimization for
regularized logistic regression
•  Final algorithm:

•  Initialize hashtables W, A and set k=0

•  For each iteration t=1,…T

– For each example (xi,yi)

• pi = … ; k++

• For each feature W[j]

– If xi
j>0 then

» W[j] *= (1 - λ2µ)k-A[j]

» W[j] = W[j] + λ(yi - pi)xj

» A[j] = k

•  k = “clock” reading
•  A[j] = clock reading last

time feature j was
“active”

•  we implement the
“weight decay” update
using a “lazy” strategy:
weights are decayed in
one shot when a feature
is “active”

35

Learning as optimization for
regularized logistic regression

•  Final algorithm:

•  Initialize hashtables W, A and set k=0

•  For each iteration t=1,…T

– For each example (xi,yi)

• pi = … ; k++

• For each feature W[j]

– If xi
j>0 then

» W[j] *= (1 - λ2µ)k-A[j]

» W[j] = W[j] + λ(yi - pi)xj

» A[j] = k

Time goes from O(nT) to O(mVT)
where
•  n = number of non-zero entries,
•  m = number of examples
•  V = number of features
•  T = number of passes over data

Memory use doubles.

36

Comments
•  What’s happened here:

– Our update involves a sparse part and a dense part

•  Sparse: empirical loss on this example

•  Dense: regularization loss – not affected by the example

– We remove the dense part of the update

•  Old example update:

–  for each feature { do something example-independent}

–  For each active feature { do something example-dependent}

•  New example update:

–  For each active feature :

»  {simulate the prior example-independent updates}

»  {do something example-dependent}

37

Comments

•  Same trick can be applied in other contexts

– Other regularizers (eg L1, …)

– Conjugate gradient (Langford)

– FTRL (Follow the regularized leader)

– Voted perceptron averaging

– …?

38

BOUNDED-MEMORY LOGISTIC
REGRESSION

39

Question

•  In text classiIication most words are

a.  rare

b.  not correlated with any class

c.  given low weights in the LR classiIier

d.  unlikely to affect classiIication

e.  not very interesting

40

Question

•  In text classiIication most bigrams are

a.  rare

b.  not correlated with any class

c.  given low weights in the LR classiIier

d.  unlikely to affect classiIication

e.  not very interesting

41

Question

•  Most of the weights in a classiIier are

– important

– not important

42

How can we exploit this?
•  One idea: combine uncommon words together randomly

•  Examples:

–  replace all occurrances of “humanitarianism” or “biopsy” with
“humanitarianismOrBiopsy”

–  replace all occurrances of “schizoid” or “duchy” with
“schizoidOrDuchy”

–  replace all occurrances of “gynecologist” or “constrictor” with
“gynecologistOrConstrictor”

–  …

•  For Naïve Bayes this breaks independence assumptions

–  it’s not obviously a problem for logistic regression, though

•  I could combine

–  two low-weight words (won’t matter much)

–  a low-weight and a high-weight word (won’t matter much)

–  two high-weight words (not very likely to happen)

•  How much of this can I get away with?

–  certainly a little

–  is it enough to make a difference? how much memory does it save?

43

How can we exploit this?
•  Another observation:

–  the values in my hash table are weights

–  the keys in my hash table are strings for the feature

names

• We need them to avoid collisions

•  But maybe we don’t care about collisions?

– Allowing “schizoid” & “duchy” to collide is

equivalent to replacing all occurrences of “schizoid”
or “duchy” with “schizoidOrDuchy”

44

Learning as optimization for
regularized logistic regression

•  Algorithm:

•  Initialize hashtables W, A and set k=0

•  For each iteration t=1,…T

– For each example (xi,yi)

• pi = … ; k++

• For each feature j: xi

j>0:

» W[j] *= (1 - λ2µ)k-A[j]

» W[j] = W[j] + λ(yi - pi)xj

» A[j] = k

45

Learning as optimization for
regularized logistic regression

•  Algorithm:

•  Initialize arrays W, A of size R and set k=0

•  For each iteration t=1,…T

– For each example (xi,yi)

•  Let V be hash table so that

• pi = … ; k++

• For each hash value h: V[h]>0:

» W[h] *= (1 - λ2µ)k-A[j]

» W[h] = W[h] + λ(yi - pi)V[h]

» A[h] = k

V[h]= xi
j

j:hash(xi
j)%R=h
∑

46

Learning as optimization for
regularized logistic regression

•  Algorithm:

•  Initialize arrays W, A of size R and set k=0

•  For each iteration t=1,…T

– For each example (xi,yi)

•  Let V be hash table so that

• pi = … ; k++

€

V[h] = xi
j

j:hash(j)%R ==h
∑

???

p ≡ 1
1+ e−V⋅w

47

IMPLEMENTATION DETAILS

48

Fixes and optimizations

•  This is the basic idea but

– we need to apply “weight decay” to features

in an example before we compute the
prediction

– we need to apply “weight decay” before we

save the learned classiIier

– my suggestion:

•  an abstraction for a logistic regression classiIier

49

A possible SGD implementation
class SGDLogistic Regression {

 /** Predict using current weights **/

double predict(Map features);

 /** Apply weight decay to a single feature and record when in A[]**/

void regularize(string feature, int currentK);

/** Regularize all features then save to disk **/

 void save(string IileName,int currentK);

 /** Load a saved classiZier **/

 static SGDClassiIier load(String IileName);

/** Train on one example **/

 void train1(Map features, double trueLabel, int k) {

 // regularize each feature

 // predict and apply update

 }

}

// main ‘train’ program assumes a stream of randomly-ordered examples and

outputs classiIier to disk; main ‘test’ program prints predictions for each
test case in input.

50

A possible SGD implementation
class SGDLogistic Regression {

…

}

// main ‘train’ program assumes a stream of randomly-ordered

examples and outputs classiIier to disk; main ‘test’ program prints
predictions for each test case in input.

<100 lines (in python)

Other mains:

•  A “shufIler:”

–  stream thru a training Iile T times and output instances

–  output is randomly ordered, as much as possible, given a buffer

of size B

•  Something to collect predictions + true labels and produce error

rates, etc.

51

A possible SGD implementation
•  Parameter settings:

– W[j] *= (1 - λ2µ)k-A[j]

– W[j] = W[j] + λ(yi - pi)xj

•  I didn’t tune especially but used

– µ=0.1

– λ=η* E-2 where E is “epoch”, η=½

•  epoch: number of times you’ve iterated over the

dataset, starting at E=1

52

ICML 2009

53

An interesting example
•  Spam Iiltering for Yahoo mail

– Lots of examples and lots of users

– Two options:

•  one Iilter for everyone—but users disagree

•  one Iilter for each user—but some users are lazy

and don’t label anything

– Third option:

•  classify (msg,user) pairs

•  features of message i are words wi,1,…,wi,ki

•  feature of user is his/her id u

•  features of pair are: wi,1,…,wi,ki and u"wi,1,…,u"wi,ki

•  based on an idea by Hal Daumé

54

An example
•  E.g., this email to wcohen

•  features:

–  dear, madam, sir,…. investment, broker,…, wcohen�dear,

wcohen�madam, wcohen,…,

•  idea: the learner will Iigure out how to personalize

my spam Iilter by using the wcohen�X features

55

An example

Compute personalized features and multiple hashes on-the-fly:
a great opportunity to use several processors and speed up i/o

56

Experiments

•  3.2M emails

•  40M tokens

•  430k users

•  16T unique features – after personalization

57

An example

2^26 entries = 1 Gb @
8bytes/weight

58

59

