
Announcements: projects 

– 805 students: Project proposals are due Sun 
10/2.  If you’d like to work with 605 
students then indicate this on your 
proposal.
– 605 students: the week after 10/2 I will post 

the proposals on the wiki and you will have 
time to contact 805 students and join teams.
– 805 students: let me know your team by 

10/9: I will approve the teams.
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Announcements: guinea pig tips 

– One student reported localization problems 
that were Iixed by setting

% export LC_ALL=C

– Try this out and let me know if there are 

problems with it: I will make it default for 
next class
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Announcements: Spark followup 

ReduceByKey is a transformation
Reduce is an action

Sounds crazy but it’s not:
– actions are eager, and return something 

(small) to the driver program
– transformations are lazy, and transform a 

(large) RDD 

3 



LEARNING AS OPTIMIZATION: 
MOTIVATION 
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Learning as optimization: warmup 

Goal: Learn the parameter θ of a binomial
Dataset: D={x1,…,xn}, xi is 0 or 1, k of them are 1

! P(D|θ)=θk(1-θ)n-k

! d/dθ  P(D|θ) = kθk-1(1-θ)n-k   + θk(n-k)(1-θ)n-k-1 
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Learning as optimization: warmup 

Goal: Learn the parameter θ of a binomial
Dataset: D={x1,…,xn}, xi is 0 or 1, k of them are 1

= 0

θ= 0
θ= 1

k- kθ – nθ + kθ = 0
è nθ  = k
è θ  = k/n
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Learning as optimization: general 
procedure 
•  Goal: Learn parameter θ (or weight vector w)
•  Dataset: D={(x1,y1)…,(xn , yn)} 
•  Write down loss function: how well w Iits the 

data D as a function of w
– Common choice:  log Pr(D|w) 

•  Maximize by differentiating
– Then gradient descent: repeatedly take a 

small step in the direction of the gradient
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Learning as optimization: general procedure 
for SGD (stochastic gradient descent) 

•  Big-data problem: we don’t want to load all the 
data D into memory, and the gradient depends on 
all the data

•  Solution: 
–  pick a small subset of examples B<<D
–  approximate the gradient using them

•  “on average” this is the right direction
–  take a step in that direction
–  repeat….

•  Math: Iind gradient of w for a single example, not a 
dataset

B = one 
example is 
a very 
popular 
choice 
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SGD vs streaming 

•  Streaming: 
–  pass through the data once
–  hold model + one example in memory
–  update model for each example

•  Stochastic gradient:
–  pass through the data multiple times

•  stream through a disk Iile 
repeatedly

–  hold model + B examples in memory
–  update model via gradient step

B = one example is 
a very popular 
choice 
 
its simple J 
 
sometimes its 
cheaper to evaluate 
100 examples at 
once than one 
example 100 times 
L 
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Logistic Regression 
vs Rocchio 
•  Rocchio looks like: 

•  Two classes, y=+1 or y=-1:
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f (d) = argmaxy v(d) ⋅v(y)

f (d) = sign [v(d) ⋅v(+1)]−[v(d) ⋅v(−1)]( )
= sign v(d) ⋅[v(+1)− v(−1)]( )

f (x) = sign(x ⋅w) w = v(+1) - v(-1)
x = v(d)



Logistic Regression 
vs Naïve Bayes 

•  Naïve Bayes for two classes can also be 
written as:

•  Since we can’t differentiate sign(x), a 
convenient variant is a logistic 
function: 
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f (x) = sign(x ⋅w)

σ (x) = 1
1+ e−x



Efficient Logistic Regression 
with Stochastic Gradient 

Descent 
William Cohen
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Learning as optimization for logistic regression 

•  Goal: Learn the parameter w of the 
classiIier

•  Probability of a single example P(y|x,w) 
would be


•  Or with logs:
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p 
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Again: Logistic regression 

•  Start with Rocchio-like 
linear classiIier:

•  Replace sign(...) with 
something differentiable: 
–  Also scale from 0-1 not 

-1 to +1

•  DeIine a loss function:

•  Differentiate….

ŷ = sign(x ⋅w)

ŷ =σ (x ⋅w) = p

σ (s) = 1
1+ e−s

L(w | y,x) =
logσ (w ⋅x) y =1

log(1−σ (w ⋅x)) y = 0

#
$
%

&%

= log σ (w ⋅x)y (1−σ (w ⋅x))1−y( )
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Magically, when we differentiate, we end up with 
something very simple and elegant…..

p =σ (x ⋅w)

∂
∂w

L(w | y,x) = (y− p)x

∂
∂w j L(w | y,x) = (y− p)x

j

The update for gradient descent is just:
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Logistic regression has a 
sparse update 
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Key computational point:  
•  if xj=0 then the gradient of wj is zero
•  so when processing an example you 

only need to update weights for the 
non-zero features of an example.

An observation: sparsity! 
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Learning as optimization for logistic 
regression 
•  The algorithm:

-- do this in random order 
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Another observation 

•  Consider averaging the gradient over 
all the examples D={(x1,y1)…,(xn , yn)} 

•  This will overIit badly with sparse features
– Consider any word that appears only in positive 

examples!
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Learning as optimization for logistic 
regression 
•  Goal: Learn the parameter θ of a 

classiIier
–  Which classiIier?
–  We’ve seen y = sign(x . w) but sign is 

not continuous…
–  Convenient alternative: replace sign 

with the logistic function 

•  Practical problem:  this overIits badly with sparse features
–  e.g., if wj is only in positive examples, its gradient is always positive !
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REGULARIZED LOGISTIC 
REGRESSION 
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Regularized logistic regression 
•  Replace LCL


•  with LCL + penalty for 

large weights, eg

•  So:

•  becomes:
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Regularized logistic regression 
•  Replace LCL


•  with LCL + penalty for large 

weights, eg

•  So the update for wj becomes:

•  Or
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Learning as optimization for logistic 
regression 
•  Algorithm:

-- do this in random order 
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Learning as optimization for 
regularized logistic regression 
•  Algorithm:

Time goes from O(nT) to O(mVT) 
where 
•  n = number of non-zero entries,  
•  m = number of examples 
•  V = number of features  
•  T = number of passes over data 
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This change is very important for large 
datasets 
•  We’ve lost the ability to 

do sparse updates
•  This makes learning much 

much more expensive
– 2*106 examples
– 2*108 non-zero entries
– 2*106 + features
– 10,000x slower (!)

Time goes from O(nT) to O(mVT) 
where 
•  n = number of non-zero entries,  
•  m = number of examples 
•  V = number of features  
•  T = number of passes over data 
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SPARSE UPDATES FOR REGULARIZED 
LOGISTIC REGRESSION 
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Learning as optimization for 
regularized logistic regression 
•  Final algorithm:
•  Initialize hashtable W
•  For each iteration t=1,…T
– For each example (xi,yi)
• pi = …
• For each feature W[j]

– W[j] = W[j]  - λ2µW[j]
– If xi

j>0 then
» W[j] =  W[j]  + λ(yi - pi)xj
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Learning as optimization for 
regularized logistic regression 
•  Final algorithm:
•  Initialize hashtable W
•  For each iteration t=1,…T
– For each example (xi,yi)
• pi = …
• For each feature W[j]

– W[j]   *= (1  - λ2µ)
– If xi

j>0 then
» W[j] =  W[j]  + λ(yi - pi)xj
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Learning as optimization for 
regularized logistic regression 
•  Final algorithm:
•  Initialize hashtable W
•  For each iteration t=1,…T
– For each example (xi,yi)
• pi = …
• For each feature W[j]

– If xi
j>0 then

» W[j]   *= (1  - λ2µ)A
» W[j] =  W[j]  + λ(yi - pi)xj

A is number of 
examples seen since the 
last time we did an 
x>0 update on W[j] 
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Learning as optimization for 
regularized logistic regression 
•  Final algorithm:
•  Initialize hashtables W, A   and set k=0
•  For each iteration t=1,…T
– For each example (xi,yi)
• pi = … ; k++
• For each feature W[j]

– If xi
j>0 then

» W[j]   *= (1  - λ2µ)k-A[j]
» W[j] =  W[j]  + λ(yi - pi)xj
» A[j] = k

k-A[j] is number of 
examples seen since the 
last time we did an 
x>0 update on W[j] 
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Learning as optimization for 
regularized logistic regression 
•  Final algorithm:
•  Initialize hashtables W, A   and set k=0
•  For each iteration t=1,…T
– For each example (xi,yi)
• pi = … ; k++
• For each feature W[j]

– If xi
j>0 then

» W[j]   *= (1  - λ2µ)k-A[j]
» W[j] =  W[j]  + λ(yi - pi)xj
» A[j] = k

•  k = “clock” reading 
•  A[j] = clock reading last 

time feature j was 
“active” 

•  we implement the 
“weight decay” update 
using a “lazy” strategy: 
weights are decayed in 
one shot when a feature 
is “active” 
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Learning as optimization for 
regularized logistic regression 

•  Final algorithm:
•  Initialize hashtables W, A   and set k=0
•  For each iteration t=1,…T
– For each example (xi,yi)
• pi = … ; k++
• For each feature W[j]

– If xi
j>0 then

» W[j]   *= (1  - λ2µ)k-A[j]
» W[j] =  W[j]  + λ(yi - pi)xj
» A[j] = k

Time goes from O(nT) to O(mVT) 
where 
•  n = number of non-zero entries,  
•  m = number of examples 
•  V = number of features  
•  T = number of passes over data 

Memory use doubles. 
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Comments 
•  What’s happened here:
– Our update involves a sparse part and a dense part
•  Sparse: empirical loss on this example
•  Dense: regularization loss – not affected by the example

– We remove the dense part of the update
•  Old example update:

–  for each feature { do something example-independent}
–  For each active feature { do something example-dependent}

•  New example update:
–  For each active feature :

»  {simulate the prior example-independent updates}
»  {do something example-dependent}
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Comments 

•  Same trick can be applied in other contexts
– Other regularizers (eg L1, …)
– Conjugate gradient (Langford)
– FTRL (Follow the regularized leader)
– Voted perceptron averaging
– …?
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BOUNDED-MEMORY LOGISTIC 
REGRESSION 
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Question 

•  In text classiIication most words are
a.  rare
b.  not correlated with any class
c.  given low weights in the LR classiIier
d.  unlikely to affect classiIication
e.  not very interesting
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Question 

•  In text classiIication most bigrams are
a.  rare
b.  not correlated with any class
c.  given low weights in the LR classiIier
d.  unlikely to affect classiIication
e.  not very interesting
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Question 

•  Most of the weights in a classiIier are
– important
– not important
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How can we exploit this? 
•  One idea: combine uncommon words together randomly
•  Examples:

–  replace all occurrances of “humanitarianism” or “biopsy” with 
“humanitarianismOrBiopsy”

–  replace all occurrances of “schizoid” or “duchy” with 
“schizoidOrDuchy”

–  replace all occurrances of “gynecologist” or “constrictor” with 
“gynecologistOrConstrictor”

–  …
•  For Naïve Bayes this breaks independence assumptions

–  it’s not obviously a problem for logistic regression, though
•  I could combine

–  two low-weight words (won’t matter much)
–  a low-weight and a high-weight word (won’t matter much)
–  two high-weight words (not very likely to happen)

•  How much of this can I get away with?
–  certainly a little
–  is it enough to make a difference?  how much memory does it save?
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How can we exploit this? 
•  Another observation: 
–  the values in my hash table are weights
–  the keys in my hash table are strings for the feature 

names
• We need them to avoid collisions

•  But maybe we don’t care about collisions?
– Allowing “schizoid” & “duchy” to collide is 

equivalent to replacing all occurrences of “schizoid” 
or “duchy” with “schizoidOrDuchy”
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Learning as optimization for 
regularized logistic regression 

•  Algorithm:
•  Initialize hashtables W, A   and set k=0
•  For each iteration t=1,…T
– For each example (xi,yi)
• pi = … ; k++
• For each feature j: xi

j>0:
» W[j]   *= (1  - λ2µ)k-A[j]
» W[j] =  W[j]  + λ(yi - pi)xj

» A[j] = k
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Learning as optimization for 
regularized logistic regression 

•  Algorithm:
•  Initialize arrays W, A  of size R and set k=0
•  For each iteration t=1,…T
– For each example (xi,yi)
•  Let V be hash table so that 
• pi = … ; k++
• For each hash value h: V[h]>0:

» W[h]   *= (1  - λ2µ)k-A[j]
» W[h] =  W[h]  + λ(yi - pi)V[h]

» A[h] = k

V[h]= xi
j

j:hash(xi
j )%R=h
∑
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Learning as optimization for 
regularized logistic regression 

•  Algorithm:
•  Initialize arrays W, A  of size R and set k=0
•  For each iteration t=1,…T
– For each example (xi,yi)
•  Let V be hash table so that 
• pi = … ; k++

€ 

V[h] = xi
j

j:hash( j )%R ==h
∑

??? 

p ≡ 1
1+ e−V⋅w
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IMPLEMENTATION DETAILS 
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Fixes and optimizations 

•  This is the basic idea but
– we need to apply “weight decay” to features 

in an example before we compute the 
prediction
– we need to apply “weight decay” before we 

save the learned classiIier
– my suggestion:
•  an abstraction for a  logistic regression classiIier
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A possible SGD implementation 
class SGDLogistic Regression {
    /** Predict using current weights **/

double predict(Map features);
    /** Apply weight decay to a single feature and record when in A[ ]**/

void regularize(string feature, int currentK);
/** Regularize all features then save to disk **/

    void save(string IileName,int currentK);
    /** Load a saved classiZier **/
    static SGDClassiIier load(String IileName);

/** Train on one example **/
    void train1(Map features, double trueLabel, int k) {

     // regularize each feature
          // predict and apply update       
   }
}
// main ‘train’ program assumes a stream of randomly-ordered examples and 

outputs classiIier to disk; main ‘test’ program prints predictions for each 
test case in input.
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A possible SGD implementation 
class SGDLogistic Regression {

…
}
// main ‘train’ program assumes a stream of randomly-ordered 

examples and outputs classiIier to disk; main ‘test’ program prints 
predictions for each test case in input.


<100 lines (in python)


Other mains:
•  A “shufIler:”

–  stream thru a training Iile T times and output instances
–  output is randomly ordered, as much as possible, given a buffer 

of size B
•  Something to collect predictions + true labels and produce error 

rates, etc.
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A possible SGD implementation 
•  Parameter settings:
– W[j]   *= (1  - λ2µ)k-A[j]

– W[j] =  W[j]  + λ(yi - pi)xj

•  I didn’t tune especially but used
– µ=0.1
– λ=η* E-2  where E is “epoch”, η=½
•  epoch: number of times you’ve iterated over the 

dataset, starting at E=1
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ICML 2009 
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An interesting example 
•  Spam Iiltering for Yahoo mail
– Lots of examples and lots of users
– Two options:
•  one Iilter for everyone—but users disagree
•  one Iilter for each user—but some users are lazy 

and don’t label anything
– Third option:
•  classify (msg,user) pairs
•  features of message i are words wi,1,…,wi,ki
•  feature of user is his/her id u
•  features of pair are: wi,1,…,wi,ki and u"wi,1,…,u"wi,ki 
•  based on an idea by Hal Daumé
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An example 
•  E.g., this email to wcohen

•  features:
–  dear, madam, sir,…. investment, broker,…, wcohen�dear, 

wcohen�madam, wcohen,…,
•  idea: the learner will Iigure out how to personalize 

my spam Iilter by using the wcohen�X features
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An example 

Compute personalized features and multiple hashes on-the-fly: 
a great opportunity to use several processors and speed up i/o 
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Experiments 

•  3.2M emails
•  40M tokens
•  430k users
•  16T unique features – after personalization
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An example 

2^26 entries = 1 Gb @ 
8bytes/weight 
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