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Outline

 Randomized methods: today
—SGD with the hash trick (recap)
—Bloom filters

* Later:
—count-min sketches

—locality sensitive hashing



THE HASH TRICK:A REVIEW



Hash Trick - Insights

* Save memory: don’t store hash keys

* Allow collisions
—even though it distorts your data some

* Let the learner (downstream) take up the
slack



Learning as optimization for

regularized logistic regression

* Algorithm: w! = w! + Ny — p)x? — N2puw’
* Initialize arrays W, A of size R and set k=0

 For each iteration t=1,...T

— For each example (x,y,)
 Let V be hash table so that V[h] — E xij

*p;= ...; k++ jhash( j)%R ==
* For each hash value h: V/h[>0:
» WIh] *= (1 - A2u)k-All
» Wih]= W[h] + A(y;- p)V[h]
»Alh] =k



Learning as optimization for

regularized logistic regression

 Initialize arrays W, A of size R and set k=0
 For each iteration t=1,...T
— For each example (x,,5,)
* k++;let Vbe a new array of size R; let tmp=0
 For each j: x/>0: V[hash(j)%R] +=x/

* Let ip=0 Vihl= Y x
* For each h: V[h]>0: jihash( j)%R==h
— W[h] *= (1 - A2p)i regularize W[h]’s
— ip+=V[h]*W/[h]
—A[h] =k |
 p=1/(1+exp(-ip)) P

* For each h: V[h]>0:
— Wlhj= W[h] + A(y; - p')V[h]
w! =w! + Ny — p)z? — N2pw?
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Figure 2. The decrease of uncaught spam over the baseline clas-
sifier averaged over all users. The classification threshold was
chosen to keep the not-spam misclassification fixed at 1%.
The hashed global classifier (global-hashed) converges relatively
soon, showing that the distortion error €4 vanishes. The personal-
ized classifier results in an average improvement of up to 30%.



Data Sets #Train #Test #Labels
RCV1 781,265 23,149 2

Dmoz L2 4466,703 138,146 575
Dmoz L3 4460273 137924 7,100

Table 1: Text data sets. #X denotes the number of observations in X.

HLF (2°%) HLF (2*%) HF no hash | U base | P base
eIrror mem eITror mem error mem mem CITror error
L2 30.12 2G |[30.71 0.125G | 3128 225G (2'%) 785G | 99.83 | 8505
L3 5210 2G |[5336 0.125G | 5147 173G (2%) | 9695G | 99.99 | 86.83

Table 5: Misclassification and memory footprint of hashing and baseline methods on DMOZ. HLF:
joint hashing of labels and features. HF: hash features only. no hash: direct model (not implemented
as too large, hence only memory estimates —we have 1,832,704 unique words). U base: baseline of
uniform classifier. P base: baseline of majority vote. mem: memory used for the model. Note: the
memory footprint in HLF is essentially independent of the number of classes used.



MOTIVATING BLOOM FILTERS



A variant of feature hashing

* Hash each feature multiple times with
different hash functions

* Now, each whas kchances to not collide
with another useful w’

* An easy way to get multiple hash functions
—Generate some random strings s,,...,S;

— Let the k-th hash function for wbe the
ordinary hash of concatenation wes,

ViRl=Y Yy X

k j:hash(j-s;)%R=h



A variant of feature hashing

/a!=b are binary vectors
V(a)
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* An easy way to get multiple hash functions
—Generate some random strings s,,...,S;

— Let the k-th hash function for wbe the
ordinary hash of concatenation wes,

ViRl=Y Yy X

k j:hash(j-s;)%R=h



A variant of feature hashing

 Why would this work?

VIh]= E E xij

k j:hash(js,)%R=h

e Claim: with 100,000 features and 100,000,000
buckets:

k=1 =>»Pr(any feature duplication) =1
k=2 =>»Pr(any feature duplication) =0.4

k=3 =» Pr(any feature duplication) =0.01



Hash Trick - Insights

* Save memory: don't store hash keys
* Allow collisions
—even though it distorts your data some

* Let the learner (downstream) take up the
slack

* Here’s another famous trick that exploits these
insights....



BLOOM FILTERS



Bloom filters

* Interface to a Bloom filter
— BloomFilter(int maxSize, double p);
—void bf.add(String s); // insert s

—bool bd.contains(String s);
» // If s was added return true;
* // else with probability at least 7-p return false;
 // else with probability at most p return true;

—l.e., a noisy “set” where you can test
membership (and that’s it)



Bloom filters

* Animplementation
— Allocate M bits, bit[0]...,bit|1-M]
— Pick K hash functions hash(1,2),hash(2,s),....
 E.g: hash(i,s) = hash(s+ randomString]|i])
— To add string s:
* Fori=1 to k, set bit|hash(i,s)] =1
— To check contains(s):
* Fori=1 to K, test bit[hash(i,s)]|
* Return “true” if they're all set; otherwise, return “false”
— We'll discuss how to set M and K soon, but for now:

* Let M = 1.5"maxSize //less than two bits per item!
* LetK=2*log(1/p) //aboutright with this M



Bloom filters

bf.add(“fred flintstone™):

T

o 1 1 O O O O 1 0 O

bf.add(“barney rubble”™):

AN

11 1 0 O 1 0 1 O



Bloom filters

bf.contains (“‘fred flintstone”):

Vi

11 1 0 o0 1 0 1 0 O

bf.contains(“barney rubble”™):

SEMAN

11 1 0 O 1 0 1 O



Bloom filters

bf.contains(“wilma flintstone”):

/\ h3

11 1 0 O 1 0 1 0 O

bf.contains(“wilma flintstone”):

/\\
11 1 0 O 1 0 1 O

0



Bloom filters: analysis

* Analysis (m bits, khashers):
— Assume hash(i,s) is a random function 1\ kn
— Look at Pr(bitj is unset after nadd’s): (1 — —)
m

— ...and Pr(collision) = Pr(not all kbits set)

1 kn\ & y
f(m)n,k) - (1 — |:1 - —‘ ) ~ (1 . e—kn/*m)
I

— ....fix mand n and minimize k:
1l 1l
k= —In2~0.7—

n T



1 kn\ * . k
— - ~ P 'n/m
Bloom filters (1 [1 m] ) (1 =)

* Analysis:
— Plug optimal k=m/n*In(2) back into Pr(collision):

)+ o= (1 c-nmamim)ieed

— Now we can fix any two of p, n, m and solve for the 3¢
E.g., the value for min terms of nand p:

nlnp
(In2)2%

n = -



Bloom filters

 Interface to a Bloom filter
— BloomFilter(int maxSize /* n */, double p);
—void bf.add(String s); // insert s

—bool bd.contains(String s);
» // If s was added return true;
 // else with probability at least 1-p return false;
 // else with probability at most p return true;

—l.e., a noisy “set” where you can test
membership (and that’s it)



Bloom filters: demo



Bloom filters

* An example application

— Finding items in “sharded” data
* Easy if you know the sharding rule
* Harder if you don’t (like Google n-grams)

furter:google_ngram wcohen$ 1s —alh *x2gramx | tail
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Bloom filters

* An example application

— Finding items in “sharded” data
* Easy if you know the sharding rule
* Harder if you don’t (like Google n-grams)
e Simple idea:
— Build a BF of the contents of each shard

— To look for key, load in the BF’s one by one, and
search only the shards that probably contain key

— Analysis: you won't miss anything, you might look in
some extra shards

— You'll hit O(1) extra shards if you set p=1/#shards



Bloom filters

* An example application
— discarding singleton features from a classifier

* Scan through data once and check each w~
—if bfl.contains(w): bf2.add(w)
—else bfl.add(w)

* Now:
— bfl.contains(w) < w appears >= once
— bf2.contains(w) <& w appears >= 2Xx

* Then train, ignoring words not in bf2



Bloom filters

* An example application
— discarding rare features from a classifier
— seldom hurts much, can speed up experiments
* Scan through data once and check each w:
— if bfl.contains(w):
* if bf2.contains(w): bf3.add(w)
* else bf2.add(w)
— else bfl.add(w)
* Now:
— bf2.contains(w) <> w appears >= 2X
— bf3.contains(w) & w appears >= 3x
* Then train, ignoring words not in bf3



THE COUNT-MIN SKETCH



A variant of feature hashing

Hash each feature multiple times with
different hash functions

Now, each whas kchances to not collide with
another useful w’

Get multiple hash functions as in Bloom filters

Part Bloom filter, part hash kernel

— but predates either, called “count-min
sketch” -- Cormode and Muthukrishnan



Bloom filters

* Animplementation
— Allocate M bits, bit[0]...,bit|1-M]
— Pick K hash functions hash(1,2),hash(2,s),....
 E.g: hash(i,s) = hash(s+ randomString]|i])
— To add string s:
* Fori=1 to k, set bit|hash(i,s)] =1
— To check contains(s):
* Fori=1 to K, test bit[hash(i,s)]|
* Return “true” if they're all set; otherwise, return “false”
— We'll discuss how to set M and K soon, but for now:

* Let M = 1.5"maxSize //less than two bits per item!
* LetK=2*log(1/p) //aboutright with this M



Bloom Filter-> Count-min sketch

* An implementation
— Allocate a matrix CM with d rows, w columns
— Pick d hash functions h,(s),h,(s),....
—To increment counter A/s/for sby ¢
* For i=1to d, set CM[i, hash(i,s)] +=c
—To retrieve value of A/s/.
* For i=1 to d, retrieve M/i, hash(i,s)]
* Return minimum of these values

— Similar idea as Bloom filter:

* if there are d collisions, you return a value that’s too
large; otherwise, you return the correct value.

Question: what does this look like if d=17?




- from: Minos Garofalakis

CM Sketch Structure

h,(s) e
- o
/ AV+C 1
<s, +Cc> — 3
Y
\\ E
]
hy(s) fc
w = 2/¢

Each string is mapped to one bucket per row

Estimate A[j] by taking min, { CM[k,h,(j)] }

Errors are always over-estimates i.e. with prob > 1-8
Analysis: d=log 1/d, w=2/¢ =» error is usually less than ¢||A||

YaHoO!

A Quick Intro to Data Stream Algorithmics — CS262 RESEARCH



from: Minos Garofalakis

m You can find the
sum of two sketches
by doing element-
wise summation

m Also, you can
compute a weighted
sum of MC sketches

SERTEIN
N S
—>
NG :
\ C \
™
C
<t, +d> _
§§ d | —
\ \\ I
-+ N W
\ d
N
d |c
c+d
c | d
C

m Same result as
adding <s,+c> and
then <t,+d>to an
empty sketch

YaHoO!

A Quick Intro to Data Stream Algorithmics — CS262 RESEARCH



- from: Minos Garofalakis

CM Sketch Guarantees

m [Cormode, Muthukrishnan’04] CM sketch guarantees
approximation error on point queries less than ¢||A||, in space
O(1/e log 1/0)

— Probability of more error is less than 1-6

m [his is sometimes enough:
— Estimating a multinomial: if A[s] = Pr(s|...) then ||Al|, = 1

— Multiclass classification: if A [s] = Pr(x in class s) then ||A/]| IS
probably small, since most x’s will be in only a few classes

34 YaHOO!

A Quick Intro to Data Stream Algorithmics — CS262 RESEARCH



- from: Minos Garofalakis

CM Sketch Guarantees

m [Cormode, Muthukrishnan’04] CM sketch guarantees

approximation error on point queries less than ¢||A||, in space
O(1/e log 1/9)

m CM sketches are also accurate for skewed values---i.e.,
only a few entries s with large A[s]

Lemma 1 (Cormode and Muthukrishnan [6], Eqn 5.1) Let y be an vector, and let 1j; be the esti-
mate given by a count-min sketch of width w and depth d for vy;. Let the k largest components of y
be Yo, 5., Yo,, and letty, = ) ,,o . Yo, be the weight of the “tail” of y. If w > i, w > % and

d> In % In %, then y; < y; + nti with probability at least 1-9.

Theorem 3 (Cormode and Muthukrishnan [6], Theorem 5.1) Let y represent a Zipf-like distri-
bution with parameter z. Then with probability at least 1-9, y can be approximated to within error
1 by a count-min sketch of width O(n~ ™10(1,1/2)) and depth O(1n } ).

| .- HoO!
A Quick Intro to Data Stream Algorithmics — CS262 YARESEARCH



An Application of a Count-Min Sketch

* Problem: find the semantic orientation of a work
(positive or negative) using a large corpus.

 Idea:

— positive words co-occur more frequently than
expected near positive words; likewise for
negative words

— so pick a few pos/neg seeds and compute

X appears near y

—_— l o
pmi(z;y) = "-"p(l)P(y)

SO(W) = 32 cpos PMI(p, W)~ neneg PMI(n, W)




An Application of a Count-Min Sketch

X appears near y

pmi(z;y) E?g)p(:?’y)\
p(z)p(y)

SOW) = 3 cpos PMI(p, W)= cnee PMI(n, w)

Example: Turney, 2002 used two seeds, “excellent” and “poor”

hits(phrase NEAR "excellent’)hits('excellent’) )
hits(phrase NEAR 'poor')hits(’excellent’)

SO(phrase) = logs (

In general, SO(w) can be written in terms of logs of
products of counters for w, with and without seeds



An Application of a Count-Min Sketch

 Use 2B counters, 5 hash functions, “near”
means a 7-word window, GigaWord (10

Gb) and GigaWord + Web news 50 Gb)

Data | Exact CM-CU CMM-CU LCU-WS
GW 74.2 74.0 65.3 72.9
GWBS0 | 81.2 80.9 74.9 78.3

Table 2: Evaluating Semantic Orientation on accuracy metric
using several sketches of 2 billion counters against exact. Bold
and italic numbers denote no statistically significant difference.



An Application of a Count-Min Sketch

CM-CU: CM with “conservative update” - for <
+c> increment counters just enough to make the
new estimate for j grow by ¢

|

Data | Exact CM-CU CMM-CU LCU-WS
GW 74.2 74.0 65.3 72.9
GWBS0 | 81.2 80.9 74.9 78.3

Table 2: Evaluating Semantic Orientation on accuracy metric
using several sketches of 2 billion counters against exact. Bold
and italic numbers denote no statistically significant difference.



LOCALITY SENSITIVE HASHING
(LSH)



LSH: key ideas

* Goal:
—map feature vector x to bit vector bx
—ensure that bx preserves “similarity”



Random Projections

at
- L A - -ow




Random projections




Random projections

To make those
points “close’” we
need to project to
a direction
orthogonal to the
line between

them




Random projections

So if | pick a random r
and r.x and r.x’ are
closer than y then
probably x and x’ were
close to start with.

Any other
direction will keep
the distant points
distant.



LSH: key ideas

* Goal:
— map feature vector x to bit vector bx
— ensure that bx preserves “similarity”
* Basicidea: use random projections of X

— Repeat many times:

* Pick a random hyperplane r by picking random weights
for each feature (say from a Gaussian)

* Compute the inner product of r with x

* Record ifxis “close to” r (r.x>=0)
— the next bit in bx

* Theory says that is X’ and x have small cosine distance
then bx and bx’ will have small Hamming distance



Online Generation of Locality
Sensitive Hash Signatures

Benjamin Van Durme and Ashwin Lall

human language technology
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LSH applications

* Compact storage of data
—and we can still compute similarities

* LSH also gives very fast approximations:
—approx nearest neighbor method

* just look at other items with bx'=bx

* also very fast nearest-neighbor methods for
Hamming distance

—very fast clustering

* cluster = all things with same bx vector



Locality Sensitive Hashing (LSH) and
Pooling Random Values



LSH algorithm

* Naive algorithm:
— Initialization:

* For i=1 to outputBits:
— For each feature £

» Draw r(f,i) ~ Normal(0,1)
— Given an instance x

* For i=1 to outputBits:
LSH[i] =
sum(x[f]*r[i,f] for fwith non-zero weightinx) > 07
1:0
* Return the bit-vector LSH



LSH algorithm

* But: storing the k classifiersis expensive in
high dimensions

—For each of 256 bits, a dense vector of
weights for every feature in the vocabulary

* Storing seeds and random number generators:
—Possible but somewhat fragile



LSH: “pooling” (van Durme)

* Better algorithm:
— Initialization:

* Create a pool:
— Pick arandom seed s
— For i=1 to poolSize:
» Draw pool[i] ~ Normal(0,1)

* For i=1 to outputBits:
— Devise a random hash function hash(i,f):
» E.g.: hash(i,f) = hashcode(f) XOR randomBitString|i]

— Given an instance x
* For i=1 to outputBits:
LSHJi] = sum(
x[f] * pool[hash(i,f) % poolSize] for finx) >071:0
* Return the bit-vector LSH



The Pooling Trick

O




LSH: key ideas: pooling

* Advantages:

—with pooling, this is a compact re-encoding
of the data

* you don’t need to store the r’s, just the pool



Locality Sensitive Hashing (LSH) in
an On-line Setting



LSH: key ideas: online computation

 Common task: distributional clustering

—for a word w, x(w) is sparse vector of words
that co-occur with w

—cluster the w's



v € R¢

T ~ N(Ovl)d

. [ 1 ifv-7 >0,
hi(v) = { 0 otherwise.
if v = ijl_fj

then v - T, — Zj’Uj i

Online h”it (’(7) p— {

Break into local products

1 if Eﬁ-’ﬁ’j .1 > 0,
0 otherwise.



Algorithm 1 STREAMING LSH ALGORITHM

Parameters:
m : size of pool
d : number of bits (size of resultant signature)
s : arandom seed
hi, ..., hq : hash functions mapping (s, f;) to {0,...,m—1}
INITIALIZATION:
1: Initialize floating point array P[0, ..., m — 1]
2: Initialize H, a hashtable mapping words to floating point
arrays of size d
3: fori:=0...m—1do

4:  PJi| := random sample from N (0, 1), using s as seed
ONLINE:

1: for each word w in the stream do

2:  for each feature f; associated with w do

3: forj:=1...ddo

4: H{w][j] := H[w][j] + P[h;(s, f)]

SIGNATURECOMPUTATION:

1: for eachw € H do

2: for::=1...ddo

3: if H[w][] > O then
4: Sw][i] :=1

5: else

6:

S[w][i] := 0




Experiment

* Corpus: 700M+ tokens, 1.1M distinct bigrams

 For each, build a feature vector of words that
co-occur near it, using on-line LSH

 Check results with 50,000 actual vectors
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