Randomized Algorithms

William Cohen

Outline

- Randomized methods: today
 - -SGD with the hash trick (recap)
 - -Bloom filters
- Later:
 - count-min sketches
 - locality sensitive hashing

THE HASHTRICK: A REVIEW

Hash Trick - Insights

- Save memory: don't store hash keys
- Allow collisions
 - even though it distorts your data some
- Let the learner (downstream) take up the slack

Learning as optimization for regularized logistic regression

• Algorithm:

$$w^j = w^j + \lambda(y - p)x^j - \lambda 2\mu w^j$$

- Initialize arrays W, A of size R and set k=0
- For each iteration t=1,...T
 - For each example (\mathbf{x}_i, y_i)
 - Let V be hash table so that V[h] =j:hash(j)%R == h
 - $p_i = ...; k++$

• For each hash value *h: V[h]*>0:

»
$$W[h] *= (1 - \lambda 2\mu)^{k-A[j]}$$

$$W[h] = W[h] + \lambda(y_i - p^i)V[h]$$

$$A[h] = k$$

Learning as optimization for regularized logistic regression

- Initialize arrays W, A of size R and set k=0
- For each iteration t=1,...T
 - For each example (\mathbf{x}_i, y_i)
 - k++; let V be a new array of size R; let tmp=0
 - For each *j*: $x_i^j > 0$: $V[hash(j)\%R] += x_i^j$
 - Let *ip=0*
 - For each *h: V[h]>0:*
 - $-W[h] *= (1 \lambda 2\mu)^{k-A[h]}$
 - -ip+=V/h/*W/h/
 - -A[h] = k
 - p = 1/(1 + exp(-ip))
 - For each *h*: *V*[*h*]>0:
 - $-W[h] = W[h] + \lambda(y_i p^i)V[h]$

$$w^{j} = w^{j} + \lambda(y - p)x^{j} - \lambda 2\mu w^{j}$$

$$V[h] = \sum_{j:hash(j)\%R==h} x_i^j$$

regularize W[h]'s

$$p \equiv \frac{1}{1 + e^{-\mathbf{V} \cdot \mathbf{w}}}$$

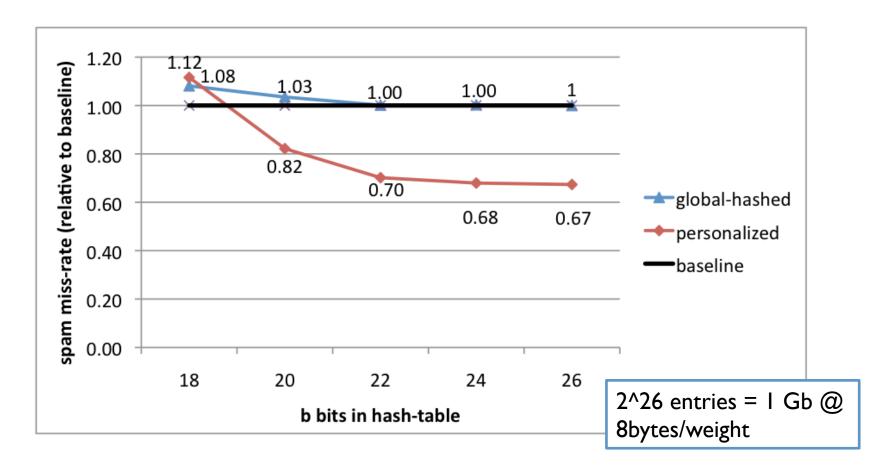


Figure 2. The decrease of uncaught spam over the baseline classifier averaged over all users. The classification threshold was chosen to keep the not-spam misclassification fixed at 1%. The hashed global classifier (global-hashed) converges relatively soon, showing that the distortion error ϵ_d vanishes. The personalized classifier results in an average improvement of up to 30%.

Data Sets	#Train	#Test	#Labels	
RCV1	781,265	23,149	2	
Dmoz L2	4,466,703	138,146	575	
Dmoz L3	4,460,273	137,924	7,100	

Table 1: Text data sets. #X denotes the number of observations in X.

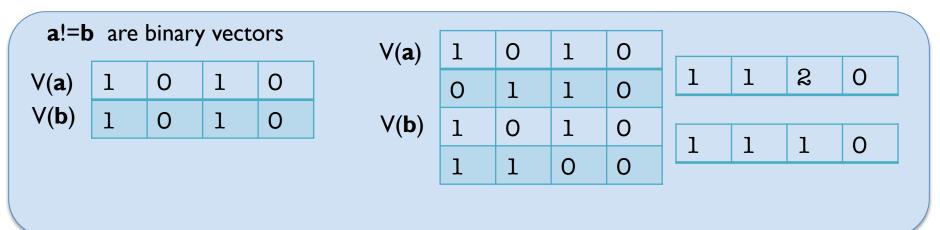
	HLF (2 ²⁸)		HLF (2 ²⁴)		HF		no hash	U base	P base	
	error	mem	error	mem	error	mem	mem	error	error	
L2	30.12	2G	30.71	0.125G	31.28	2.25G (2 ¹⁹)	7.85G	99.83	85.05	
L3	52.10	2G	53.36	0.125G	51.47	1.73G (2 ¹⁵)	96.95G	99.99	86.83	

Table 5: Misclassification and memory footprint of hashing and baseline methods on DMOZ. HLF: joint hashing of labels and features. HF: hash features only. no hash: direct model (not implemented as too large, hence only memory estimates—we have 1,832,704 unique words). U base: baseline of uniform classifier. P base: baseline of majority vote. mem: memory used for the model. Note: the memory footprint in HLF is essentially independent of the number of classes used.

MOTIVATING BLOOM FILTERS

- Hash each feature multiple times with different hash functions
- Now, each w has k chances to not collide with another useful w'
- An easy way to get multiple hash functions
 - Generate some random strings $s_1,...,s_L$
 - Let the k-th hash function for w be the ordinary hash of concatenation $w \cdot s_k$

$$V[h] = \sum_{k \text{ } j:hash(j \cdot s_k)\% R = h} x_i^{j}$$



- An easy way to get multiple hash functions
 - Generate some random strings $s_1,...,s_L$
 - Let the k-th hash function for w be the ordinary hash of concatenation $w \cdot s_k$

$$V[h] = \sum_{k} \sum_{j:hash(j \cdot s_k)\%R=h} x_i^{j}$$

Why would this work?

$$V[h] = \sum_{k} \sum_{j:hash(j \cdot s_k)\%R=h} x_i^j$$

- Claim: with 100,000 features and 100,000,000 buckets:
 - $-k=1 \rightarrow Pr(any feature duplication) \approx 1$
 - $-k=2 \rightarrow Pr(any feature duplication) \approx 0.4$
 - -k=3 → Pr(any feature duplication) ≈0.01

Hash Trick - Insights

- Save memory: don't store hash keys
- Allow collisions
 - even though it distorts your data some
- Let the learner (downstream) take up the slack

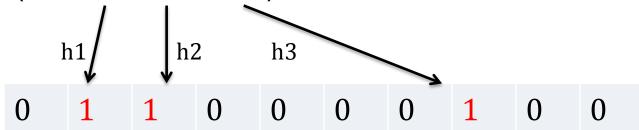
Here's another famous trick that exploits these insights....

BLOOM FILTERS

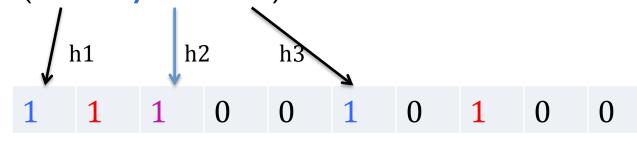
- Interface to a Bloom filter
 - BloomFilter(int maxSize, double p);
 - void bf.add(String s); // insert s
 - bool bd.contains(String s);
 - // If s was added return true;
 - // else with probability at least 1-p return false;
 - // else with probability at most p return true;
 - I.e., a noisy "set" where you can test membership (and that's it)

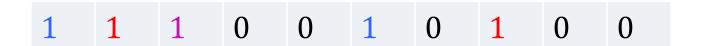
- An implementation
 - Allocate M bits, bit[0]...,bit[1-M]
 - Pick K hash functions hash(1,2),hash(2,s),....
 - E.g: hash(i,s) = hash(s+ randomString[i])
 - To add string s:
 - For i=1 to k, set bit[hash(i,s)] = 1
 - To check contains(s):
 - For i=1 to k, test bit[hash(i,s)]
 - Return "true" if they're all set; otherwise, return "false"
 - We'll discuss how to set M and K soon, but for now:
 - Let M = 1.5*maxSize // less than two bits per item!
 - Let K = 2*log(1/p) // about right with this M

bf.add("fred flintstone"):

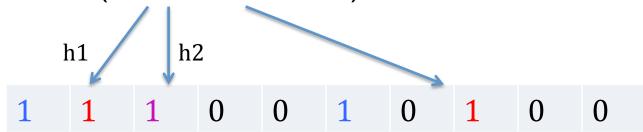


bf.add("barney rubble"):

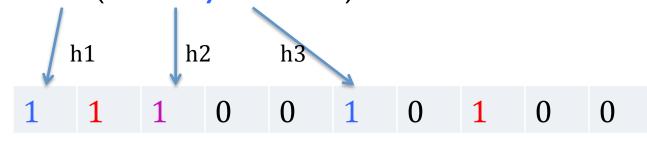


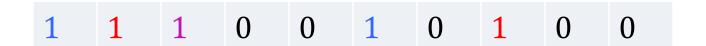


bf.contains ("fred flintstone"):

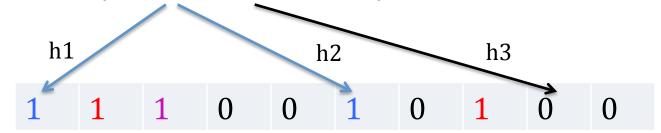


bf.contains("barney rubble"):

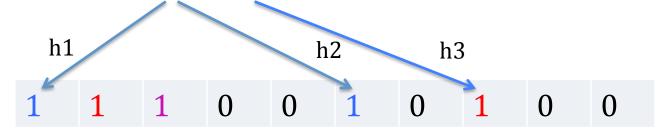




bf.contains("wilma flintstone"):



bf.contains("wilma flintstone"):



Bloom filters: analysis

- Analysis (*m* bits, *k* hashers):
 - Assume hash(i,s) is a random function
 - Look at Pr(bit j is unset after n add's):

$$\left(1 - \frac{1}{m}\right)^{kn}$$

 $- \dots$ and Pr(collision) = Pr(not all k bits set)

$$f(m,n,k) = \left(1 - \left[1 - \frac{1}{m}\right]^{kn}\right)^k \approx \left(1 - e^{-kn/m}\right)^k$$

- fix *m* and *n* and minimize *k*:

$$k = \frac{m}{n} \ln 2 \approx 0.7 \frac{m}{n}$$

Bloom filters
$$\left(1-\left[1-\frac{1}{m}\right]^{kn}\right)^k \approx \left(1-e^{-kn/m}\right)^k$$

- Analysis:
 - Plug optimal k=m/n*ln(2) back into Pr(collision):

$$f(m,n) = p = (1 - e^{-(m/n \ln 2)n/m})^{(m/n \ln 2)}$$

- Now we can fix any two of p, n, m and solve for the 3^{rd} : E.g., the value for *m* in terms of *n* and *p*:

$$m = -\frac{n \ln p}{(\ln 2)^2}.$$

- Interface to a Bloom filter
 - BloomFilter(int maxSize /* n */, double p);
 - void bf.add(String s); // insert s
 - bool bd.contains(String s);
 - // If s was added return true;
 - // else with probability at least 1-p return false;
 - // else with probability at most p return true;
 - I.e., a noisy "set" where you can test membership (and that's it)

Bloom filters: demo

- An example application
 - Finding items in "sharded" data
 - Easy if you know the sharding rule
 - Harder if you don't (like Google n-grams)

```
furter:google_ngram wcohen$ ls -alh *2gram* | tail
-rw-rw-rw- 1 13527
                                   264M Sep 17
                                                2011 googlebooks-eng-all-2gram-20090715-90.csv.zip
                    lpoperator
                    _lpoperator
                                                2011 googlebooks-eng-all-2gram-20090715-91.csv.zip
          1 13527
                                   264M Sep 17
-rw-rw-rw-
                    _lpoperator
          1 13527
                                   264M Sep 17
                                                2011 googlebooks-eng-all-2gram-20090715-92.csv.zip
-rw-rw-rw-
          1 13527
                    _lpoperator
                                   264M Sep 17
                                                2011 googlebooks-eng-all-2gram-20090715-93.csv.zip
-rw-rw-rw-
           1 13527
                    _lpoperator
                                   264M Sep 17
                                                2011 googlebooks-eng-all-2gram-20090715-94.csv.zip
-rw-rw-rw-
                                  263M Sep 17
           1 13527
                    _lpoperator
                                                2011 googlebooks-eng-all-2gram-20090715-95.csv.zip
-rw-rw-rw-
          1 13527
                    lpoperator
                                   264M Sep 17
                                                2011 googlebooks-eng-all-2gram-20090715-96.csv.zip
-rw-rw-rw-
                                                2011 googlebooks-eng-all-2gram-20090715-97.csv.zip
          1 13527
                    lpoperator
                                   264M Sep 17
-rw-rw-rw-
                                                2011 googlebooks-eng-all-2gram-20090715-98.csv.zip
           1 13527
                    _lpoperator
                                   264M Sep 17
-rw-rw-rw-
           1 13527
                    _lpoperator
                                   264M Sep 17
                                                2011 googlebooks-eng-all-2gram-20090715-99.csv.zip
-rw-rw-rw-
```

- An example application
 - Finding items in "sharded" data
 - Easy if you know the sharding rule
 - Harder if you don't (like Google n-grams)
- Simple idea:
 - Build a BF of the contents of each shard
 - To look for key, load in the BF's one by one, and search only the shards that probably contain key
 - Analysis: you won't miss anything, you might look in some extra shards
 - You'll hit O(1) extra shards if you set p=1/#shards

- An example application
 - discarding singleton features from a classifier
- Scan through data once and check each w:
 - if bf1.contains(w): bf2.add(w)
 - else bf1.add(w)
- Now:
 - $-bf1.contains(w) \Leftrightarrow w appears >= once$
 - $-bf2.contains(w) \Leftrightarrow w appears >= 2x$
- Then train, ignoring words not in bf2

- An example application
 - discarding rare features from a classifier
 - seldom hurts much, can speed up experiments
- Scan through data once and check each w:
 - if bf1.contains(w):
 - if bf2.contains(w): bf3.add(w)
 - else bf2.add(w)
 - else bf1.add(w)
- Now:
 - bf2.contains(w) \Leftrightarrow w appears $\ge 2x$
 - bf3.contains(w) \Leftrightarrow w appears $\ge 3x$
- Then train, ignoring words not in bf3

THE COUNT-MIN SKETCH

- Hash each feature multiple times with different hash functions
- Now, each w has k chances to not collide with another useful w'
- Get multiple hash functions as in Bloom filters
- Part Bloom filter, part hash kernel
 - but predates either, called "count-min sketch" -- Cormode and Muthukrishnan

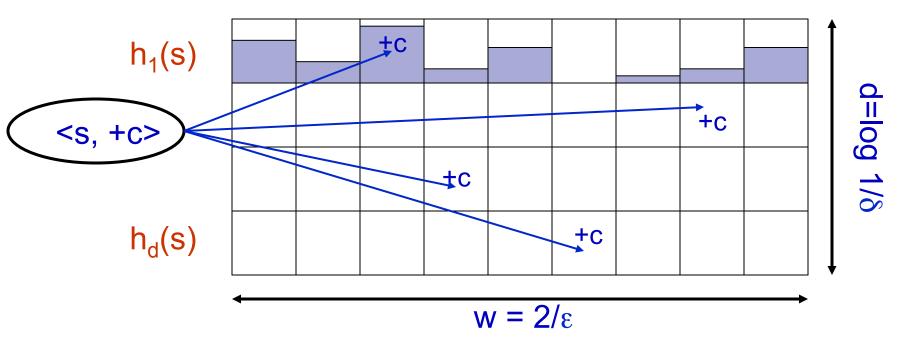
- An implementation
 - Allocate M bits, bit[0]...,bit[1-M]
 - Pick K hash functions hash(1,2),hash(2,s),....
 - E.g: hash(i,s) = hash(s+ randomString[i])
 - To add string s:
 - For i=1 to k, set bit[hash(i,s)] = 1
 - To check contains(s):
 - For i=1 to k, test bit[hash(i,s)]
 - Return "true" if they're all set; otherwise, return "false"
 - We'll discuss how to set M and K soon, but for now:
 - Let M = 1.5*maxSize // less than two bits per item!
 - Let K = 2*log(1/p) // about right with this M

Bloom Filter Count-min sketch

- An implementation
 - Allocate a matrix *CM* with *d* rows, *w* columns
 - Pick d hash functions $h_1(s), h_2(s),...$
 - To increment counter A/s for s by c
 - For i=1 to d, set CM[i, hash(i,s)] += c
 - To retrieve value of A[s]:
 - For i=1 to d, retrieve M[i, hash(i,s)]
 - Return minimum of these values
 - Similar idea as Bloom filter:
 - if there are *d* collisions, you return a value that's too large; otherwise, you return the correct value.

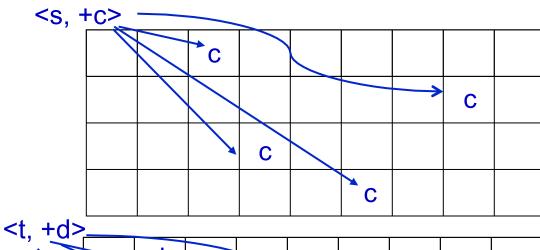
Question: what does this look like if d=1?

CM Sketch Structure

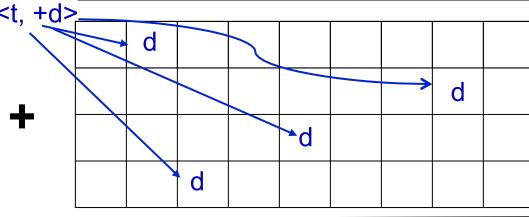


- Each string is mapped to one bucket per row
- Estimate A[j] by taking min_k { CM[k,h_k(j)] }
- Errors are always over-estimates i.e. with prob > 1- δ
- Analysis: d=log $1/\delta$, w= $2/\epsilon$ → error is usually less than $\epsilon ||A||_1$

from: Minos Garofalakis



You can find the sum of two sketches by doing elementwise summation



 Also, you can compute a weighted sum of MC sketches

	d	С					
						c+d	
			C	d			
		р			С		

Same result as adding <s,+c> and then <t,+d> to an empty sketch

CM Sketch Guarantees

- [Cormode, Muthukrishnan' 04] CM sketch guarantees approximation error on point queries less than ε||A||₁ in space O(1/ε log 1/δ)
 - Probability of more error is less than $1-\delta$
- This is sometimes enough:
 - Estimating a multinomial: if A[s] = Pr(s|...) then $||A||_1 = 1$
 - Multiclass classification: if $A_x[s] = Pr(x \text{ in class } s)$ then $||A_x||_1$ is probably small, since most x's will be in only a few classes

CM Sketch Guarantees

- [Cormode, Muthukrishnan' 04] CM sketch guarantees approximation error on point queries less than ε||A||₁ in space O(1/ε log 1/δ)
- CM sketches are also accurate for skewed values---i.e.,
 only a few entries s with large A[s]

Lemma 1 (Cormode and Muthukrishnan [6], Eqn 5.1) Let y be an vector, and let \tilde{y}_i be the estimate given by a count-min sketch of width w and depth d for y_i . Let the k largest components of y be $y_{\sigma_1}, \ldots, y_{\sigma_k}$, and let $t_k = \sum_{k' > k} y_{\sigma_1}$ be the weight of the "tail" of y. If $w \geq \frac{1}{3k}$, $w > \frac{e}{\eta}$ and $d \geq \ln \frac{3}{2} \ln \frac{1}{\delta}$, then $\tilde{y}_i \leq y_i + \eta t_k$ with probability at least 1- δ .

Theorem 3 (Cormode and Muthukrishnan [6], Theorem 5.1) Let y represent a Zipf-like distribution with parameter z. Then with probability at least 1- δ , y can be approximated to within error η by a count-min sketch of width $O(\eta^{-\min(1,1/z)})$ and depth $O(\ln \frac{1}{\delta})$.

An Application of a Count-Min Sketch

- Problem: find the semantic orientation of a work (positive or negative) using a large corpus.
- Idea:
 - positive words co-occur more frequently than expected near positive words; likewise for negative words
 - so pick a few pos/neg seeds and compute

pmi
$$(x; y) \equiv \log \frac{p(x, y)}{p(x)p(y)}$$

$$SO(w) = \sum_{p \in Pos} PMI(p, w) - \sum_{n \in Neg} PMI(n, w)$$

An Application of a Count-Min Sketch

pmi
$$(x;y) \equiv \log \frac{p(x,y)}{p(x)p(y)}$$

$$SO(w) = \sum_{p \in Pos} PMI(p, w) - \sum_{n \in Neg} PMI(n, w)$$

Example: Turney, 2002 used two seeds, "excellent" and "poor"

$$SO(phrase) = log_2(\frac{hits(phrase\ NEAR\ 'excellent')hits('excellent')}{hits(phrase\ NEAR\ 'poor')hits('excellent')})$$

In general, SO(w) can be written in terms of logs of products of counters for w, with and without seeds

An Application of a Count-Min Sketch

 Use 2B counters, 5 hash functions, "near" means a 7-word window, GigaWord (10 Gb) and GigaWord + Web news 50 Gb)

Data	Exact	CM-CU	CMM-CU	LCU-WS
GW	74.2	74.0	65.3	72.9
GWB50	81.2	80.9	74.9	78.3

Table 2: Evaluating Semantic Orientation on accuracy metric using several sketches of 2 billion counters against exact. Bold and italic numbers denote no statistically significant difference.

An Application of a Count-Min Sketch

CM-CU: CM with "conservative update" - for $\leq j$, + $c \geq$ increment counters just enough to make the new estimate for j grow by c

Data	Exact	CM-CU	CMM-CU	LCU-WS
GW	74.2	74.0	65.3	72.9
GWB50	81.2	80.9	74.9	78.3

Table 2: Evaluating Semantic Orientation on accuracy metric using several sketches of 2 billion counters against exact. Bold and italic numbers denote no statistically significant difference.

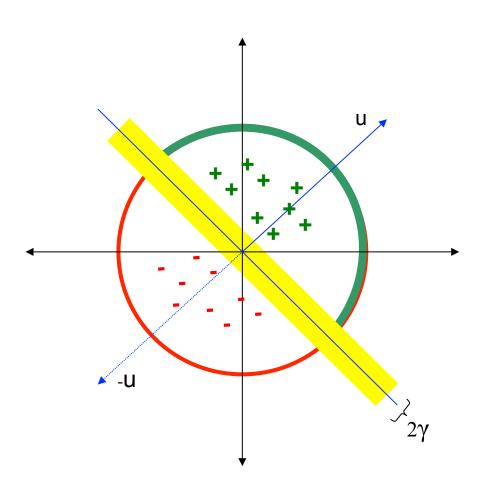
LOCALITY SENSITIVE HASHING (LSH)

LSH: key ideas

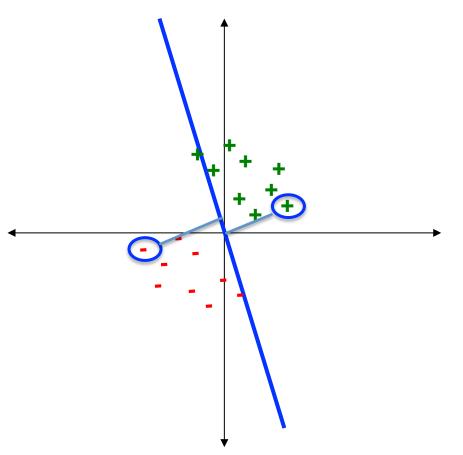
- Goal:
 - map feature vector **x** to bit vector **bx**
 - ensure that bx preserves "similarity"

Random Projections

Random projections

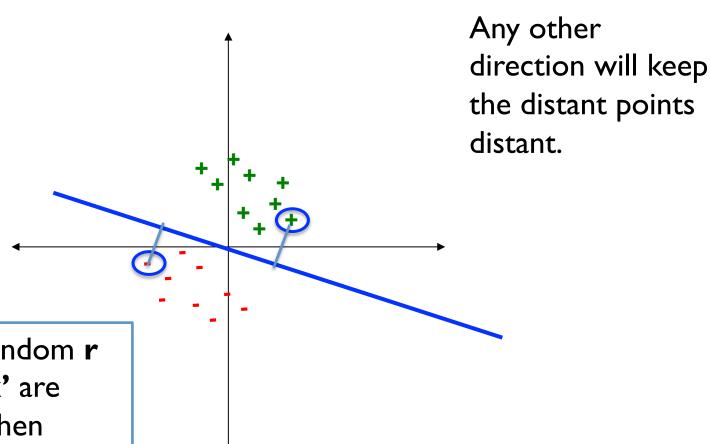


Random projections



To make those points "close" we need to project to a direction orthogonal to the line between them

Random projections



So if I pick a random **r** and **r.x** and **r.x**' are closer than γ then probably **x** and **x**' were close to start with.

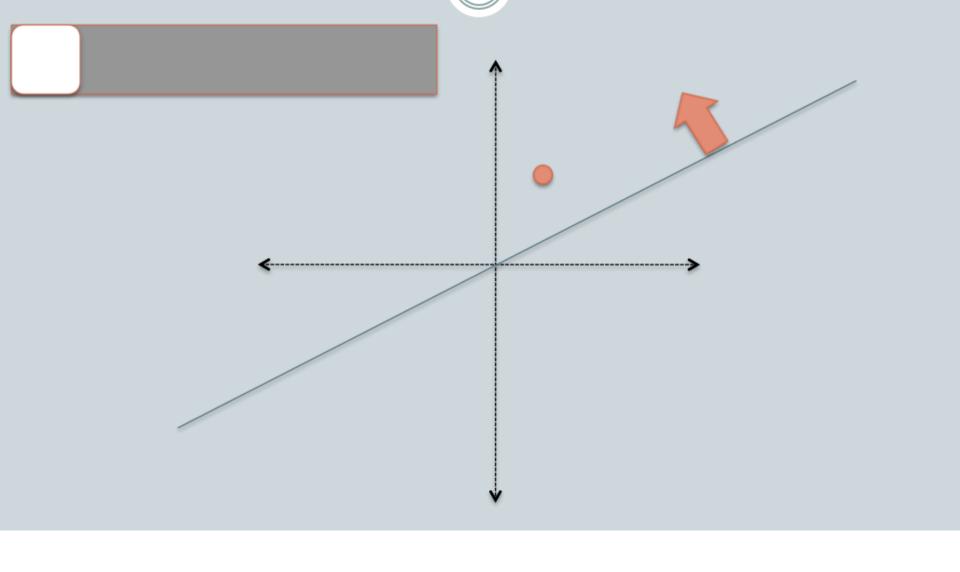
LSH: key ideas

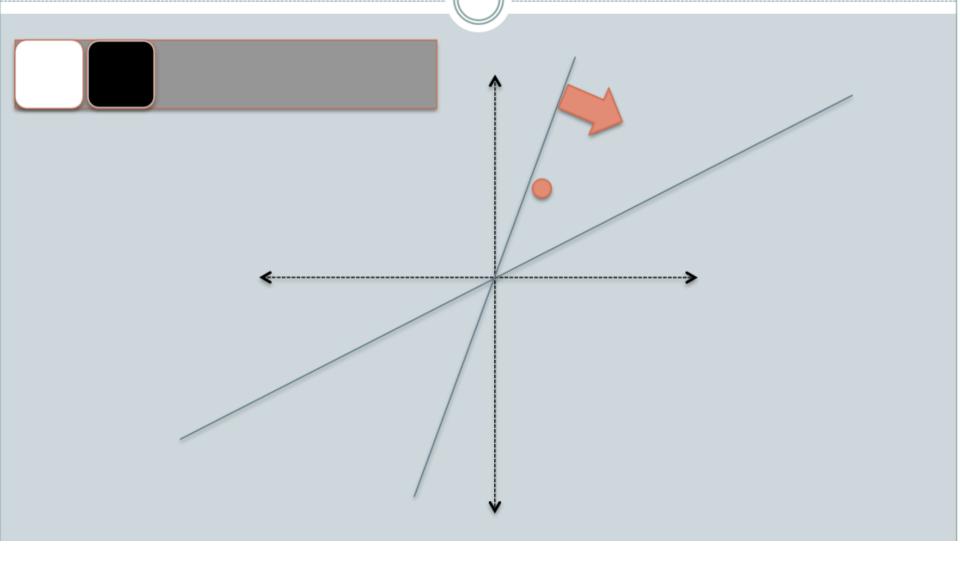
- Goal:
 - map feature vector x to bit vector bx
 - ensure that bx preserves "similarity"
- Basic idea: use *random projections* of **x**
 - Repeat many times:
 - Pick a random hyperplane r by picking random weights for each feature (say from a Gaussian)
 - Compute the inner product of r with x
 - Record if x is "close to" $r(r.x \ge 0)$
 - the next bit in bx
 - Theory says that is x' and x have small cosine distance then bx and bx' will have small Hamming distance

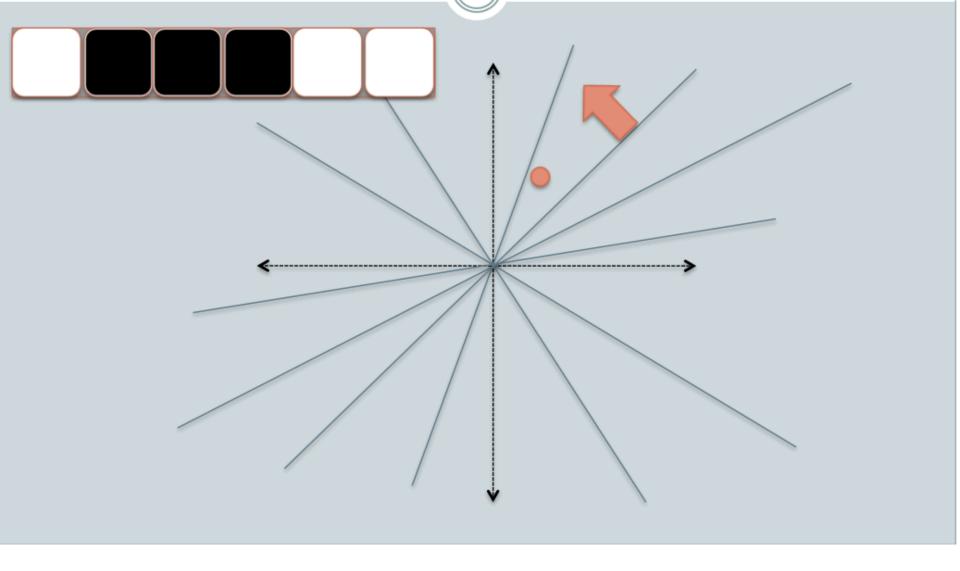
Online Generation of Locality Sensitive Hash Signatures

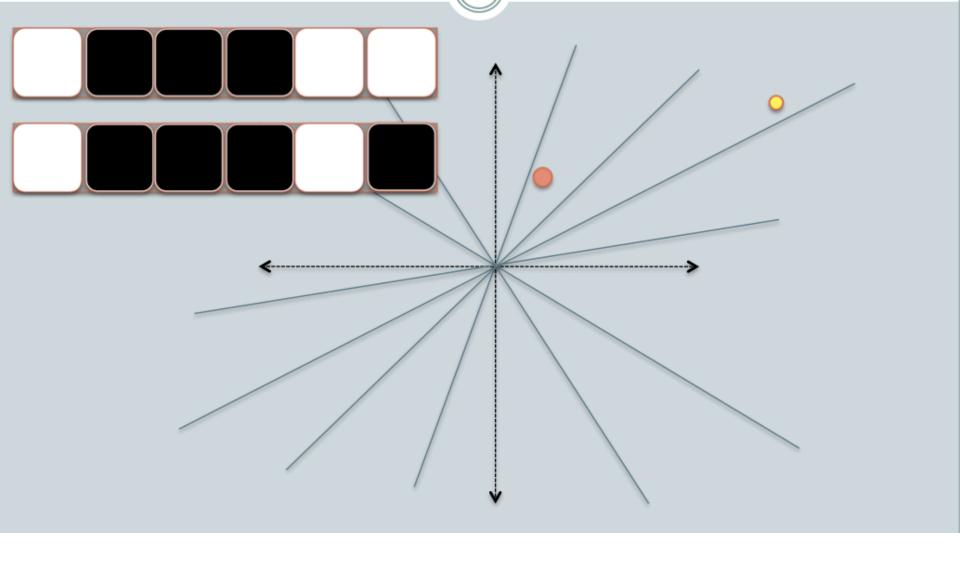
Benjamin Van Durme and Ashwin Lall

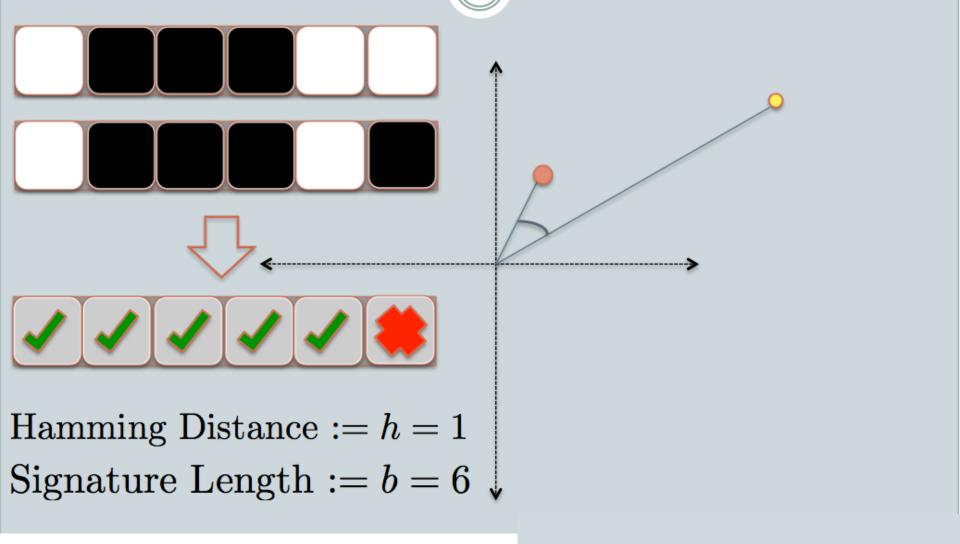
DENISON UNIVERSITY





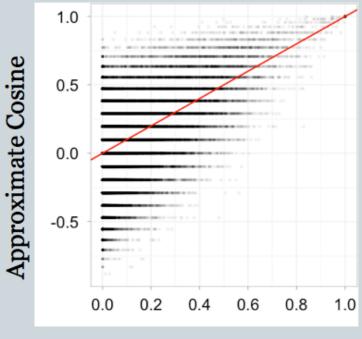






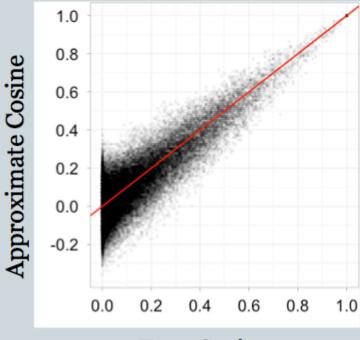
$$\cos(\theta) \approx \cos(\frac{h}{b}\pi)$$
$$= \cos(\frac{1}{6}\pi)$$

32 bit signatures



True Cosine

256 bit signatures



True Cosine

Accurate

LSH applications

- Compact storage of data
 - and we can still compute similarities
- LSH also gives very fast approximations:
 - approx nearest neighbor method
 - just look at other items with **bx'=bx**
 - also very fast nearest-neighbor methods for Hamming distance
 - very fast clustering
 - cluster = all things with same **bx** vector

Locality Sensitive Hashing (LSH) and Pooling Random Values

LSH algorithm

- Naïve algorithm:
 - Initialization:
 - For i=1 to outputBits:
 - For each feature *f*:» Draw r(f,i) ~ Normal(0,1)
 - -Given an instance x
 - For i=1 to outputBits:

```
LSH[i] = sum(\mathbf{x}[f]*r[i,f]) for f with non-zero weight in \mathbf{x}) > 0 ? 1 : 0
```

Return the bit-vector LSH

LSH algorithm

- But: storing the *k classifiers* is expensive in high dimensions
 - -For each of 256 bits, a dense vector of weights for every feature in the vocabulary
- Storing seeds and random number generators:
 - -Possible but somewhat fragile

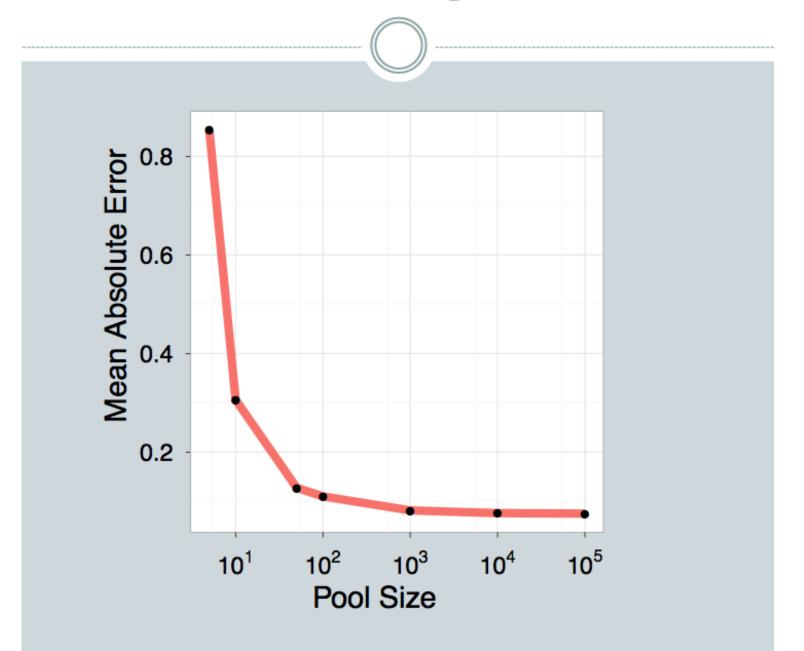
LSH: "pooling" (van Durme)

- Better algorithm:
 - Initialization:
 - Create a pool:
 - Pick a random seed s
 - For i=1 to poolSize:
 - » Draw pool[i] ~ Normal(0,1)
 - For i=1 to outputBits:
 - Devise a random hash function hash(i,f):
 - » E.g.: hash(i,f) = hashcode(f) XOR randomBitString[i]
 - Given an instance x
 - For i=1 to outputBits:

```
LSH[i] = sum(
x[f] * pool[hash(i,f) % poolSize] for f in x) > 0 ? 1 : 0
```

Return the bit-vector LSH

The Pooling Trick



LSH: key ideas: pooling

- Advantages:
 - with pooling, this is a compact re-encoding of the data
 - you don't need to store the r's, just the pool

Locality Sensitive Hashing (LSH) in an On-line Setting

LSH: key ideas: online computation

- Common task: distributional clustering
 - for a word w, x(w) is sparse vector of words that co-occur with w
 - -cluster the w's

$$\vec{v} \in \mathbb{R}^d$$

$$\vec{r}_i \sim N(0,1)^d$$

$$h_i(\vec{v}) = \begin{cases} 1 & \text{if } \vec{v} \cdot \vec{r}_i \ge 0, \\ 0 & \text{otherwise.} \end{cases}$$

if
$$\vec{v} = \Sigma_j \vec{v}_j$$

then $\vec{v} \cdot \vec{r}_i = \Sigma_j \vec{v}_j \cdot \vec{r}_i$

Break into local products

Online
$$h_{it}(\vec{v}) = \left\{ egin{array}{ll} 1 & ext{if } \Sigma_j^t \, \vec{v}_j \cdot \vec{r}_i \geq 0, \\ 0 & ext{otherwise.} \end{array}
ight.$$

Algorithm 1 Streaming LSH Algorithm

Parameters:

```
m: size of pool
```

d: number of bits (size of resultant signature)

s: a random seed

 $h_1, ..., h_d$: hash functions mapping $\langle s, f_i \rangle$ to $\{0, ..., m-1\}$ INITIALIZATION:

1: Initialize floating point array $P[0, \ldots, m-1]$

2: Initialize H, a hashtable mapping words to floating point arrays of size d

3: **for** $i := 0 \dots m - 1$ **do**

4: P[i] := random sample from N(0, 1), using s as seed

ONLINE:

- 1: for each word w in the stream do
- 2: **for** each feature f_i associated with w **do**
- 3: **for** $j := 1 \dots d$ **do**
- 4: $H[w][j] := H[w][j] + P[h_j(s, f_i)]$

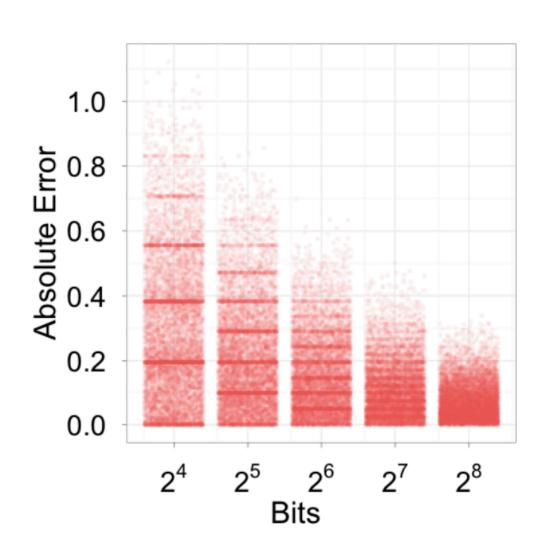
SIGNATURE COMPUTATION:

- 1: for each $w \in H$ do
- 2: **for** $i := 1 \dots d$ **do**
- 3: **if** H[w][i] > 0 **then**
- 4: S[w][i] := 1
- 5: else
- 6: S[w][i] := 0

Experiment

- Corpus: 700M+ tokens, 1.1M distinct bigrams
- For each, build a feature vector of words that co-occur near it, using on-line LSH
- Check results with 50,000 actual vectors

Experiment



Closest based on true cosine

London

Milan_{.97}, Madrid_{.96}, Stockholm_{.96}, Manila_{.95}, Moscow_{.95} ASHER₀, Champaign₀, MANS₀, NOBLE₀, come₀ Prague₁, Vienna₁, suburban₁, synchronism₁, Copenhagen₂

London

Milan_{.97}, Madrid_{.96}, Stockholm_{.96}, Manila_{.95}, Moscow_{.95}
ASHER₀, Champaign₀, MANS₀, NOBLE₀, come₀
Prague₁, Vienna₁, suburban₁, synchronism₁, Copenhagen₂
Frankfurt₄, Prague₄, Taszar₅, Brussels₆, Copenhagen₆
Prague₁₂, Stockholm₁₂, Frankfurt₁₄, Madrid₁₄, Manila₁₄
Stockholm₂₀, Milan₂₂, Madrid₂₄, Taipei₂₄, Frankfurt₂₅

Closest based on 32 bit sig.'s

