
Randomized Algorithms - 2 

No quiz today! 
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BLOOM FILTERS - RECAP 

2 



Bloom filters 
•  Interface to a Bloom .ilter

– BloomFilter(int maxSize, double p);
– void bf.add(String s); // insert s
– bool bd.contains(String s);

•  // If s was added return true;
•  // else with probability at least 1-p return false;
•  // else with probability at most p return true;

– I.e., a noisy “set” where you can test 
membership (and that’s it)
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Bloom filters 

0 0 0 0 0 0 0 0 0 0

bf.add(“fred flintstone”): 

0 1 1 0 0 0 0 1 0 0

h1 h2 h3

bf.add(“barney rubble”): 

1 1 1 0 0 1 0 1 0 0

h1 h2 h3
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Bloom filters 

1 1 1 0 0 1 0 1 0 0

bf.contains (“fred flintstone”): 

1 1 1 0 0 1 0 1 0 0

h1 h2

bf.contains(“barney rubble”): 

1 1 1 0 0 1 0 1 0 0

h1 h2 h3
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Bloom filters 

bf.contains(“wilma flintstone”): 

1 1 1 0 0 1 0 1 0 0

h1 h2 h3

1 1 1 0 0 1 0 1 0 0

bf.contains(“wilma flintstone”): 

1 1 1 0 0 1 0 1 0 0

h1 h2 h3
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Bloom filters - recap 
•  An implementation

– Allocate M bits, bit[0]…,bit[1-M]
– Pick K hash functions hash(1,2),hash(2,s),….

•  E.g: hash(i,s) = hash(s+ randomString[i])
– To add string s:

•  For i=1 to k, set bit[hash(i,s)] = 1
– To check contains(s):

•  For i=1 to k, test bit[hash(i,s)]
•  Return “true” if they’re all set; otherwise, return “false”

– M and K 
•  set carefully to obtain right false positive rate

•  Sample code and sample applications…
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THE COUNT-MIN SKETCH: 
RECAP 
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Bloom Filter!Count-min sketch 
•  An implementation

– Allocate a matrix CM with d rows, w columns
– Pick d  hash functions h1(s),h2(s),….
– To increment counter A[s] for s by c

•  For i=1 to d, set CM[i,  hash(i,s)] += c
– To retrieve value of A[s]:

•  For i=1 to d, retrieve M[i, hash(i,s)]
•  Return minimum of these values

– Similar idea as Bloom .ilter:
•  if there are d collisions, you return a value that’s too 

large; otherwise, you return the correct value.

Question: what does this look like if d=1?
9 



CM Sketch Structure 

n  Each string is mapped to one bucket per row 
n  Estimate A[j] by taking mink { CM[k,hk(j)] } 
n  Errors are always over-estimates 
n  Analysis: d=log 1/δ, w=2/ε è error is usually less than ε||A||1 

+c 

+c 

+c 

+c 

h1(s) 

hd(s) 

<s, +c> 

d=log 1/δ	

w = 2/ε	

from: Minos Garofalakis 
 

i.e. with prob > 1-δ 
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CM Sketch Guarantees 
n  [Cormode, Muthukrishnan’04]   CM sketch guarantees 

approximation error on point queries less than ε||A||1 in space 
O(1/ε log 1/δ) 

n  CM sketches are also accurate for skewed values---i.e., 
only a few entries s with large A[s]  
–  “Finding heavy hitters” 

n  Application:  
–  finding counts for words x,y that frequently co-occur è 

compute “semantic orientation” of words 
–  some others later on 

n  A disadvantage: 
–  CM is harder to tune than Bloom filters 

from: Minos Garofalakis 
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LOCALITY SENSITIVE HASHING 
(LSH) 
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Wait, did he 
say locality 
sensitive 
hash browns? 
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LSH: key ideas 

•  Goal: 
– map feature vector x to bit vector bx
– ensure that bx preserves “similarity”
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Random Projections 
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Random projections 
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Random projections 
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To make those 
points “close” we 
need to project to 
a direction 
orthogonal to the 
line between 
them 
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Random projections 
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Any other 
direction will keep 
the distant points 
distant. 

So if I pick a random r 
and r.x and r.x’ are 
closer than γ then 
probably x and x’ were 
close to start with.	
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LSH: key ideas 
•  Goal: 

– map feature vector x to bit vector bx
– ensure that bx preserves “similarity”

•  Basic idea: use random projections of x
– Repeat many times:

•  Pick a random hyperplane r by picking random weights 
for each feature (say from a Gaussian)

•  Compute the inner product of r with x
•  Record if x is “close to” r (r.x>=0)

–   the next bit in bx
•  Theory says that is x’ and x have small cosine distance 

then bx and bx’ will have small Hamming distance
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[Slides: Ben van Durme] 
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[Slides: Ben van Durme] 
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[Slides: Ben van Durme] 
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[Slides: Ben van Durme] 

24 



[Slides: Ben van Durme] 
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[Slides: Ben van Durme] 
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LSH applications 

•  Compact storage of data
– and we can still compute similarities

•  LSH also gives very fast approximations:
– approx nearest neighbor method

•  just look at other items with bx’=bx
•  also very fast nearest-neighbor methods for 

Hamming distance
– very fast clustering

•  cluster = all things with same bx vector
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LSH algorithm 
•  Naïve algorithm:

– Initialization:
• For i=1 to outputBits:

– For each feature f:
» Draw r(f,i) ~ Normal(0,1)

– Given an instance x
• For i=1 to outputBits:

LSH[i] = 
    sum(x[f]*r[i,f] for f with non-zero weight in x) > 0 ? 
1 : 0

• Return the bit-vector LSH
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LSH algorithm 

•  But: storing the k classiBiers is expensive in 
high dimensions
– For each of 256 bits, a dense vector of 

weights for every feature in the vocabulary
•  Storing seeds and random number generators:

– Possible but somewhat fragile

30 



LSH: “pooling” (van Durme) 

•  Better algorithm:
–  Initialization:

•  Create a pool:
–  Pick a random seed s
–  For i=1 to poolSize:

»  Draw pool[i] ~ Normal(0,1)
•  For i=1 to outputBits:

–  Devise a random hash function hash(i,f): 
»  E.g.: hash(i,f) = hashcode(f) XOR randomBitString[i]

– Given an instance x
•  For i=1 to outputBits:

LSH[i] = sum(
      x[f] * pool[hash(i,f) % poolSize] for f in x) > 0 ? 1 : 0

•  Return the bit-vector LSH
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LSH: key ideas: pooling 

•  Advantages:
– with pooling, this is a compact re-encoding 

of the data
•  you don’t need to store the r’s, just the pool
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Locality Sensitive Hashing (LSH) in 
an On-line Setting 
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LSH: key ideas: online computation 

•  Common task: distributional clustering
– for a word w, x(w) is sparse vector of words 

that co-occur with w
– cluster the w’s

35 



36 



37 



Experiment 

•  Corpus: 700M+ tokens, 1.1M distinct bigrams
•  For each, build a feature vector of words that 

co-occur near it, using on-line LSH
•  Check results with 50,000 actual vectors
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Experiment 
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Locality Sensitive Hashing (LSH) and 
Pooling Random Values 
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LSH algorithm 
•  Naïve algorithm:

– Initialization:
• For i=1 to outputBits:

– For each feature f:
» Draw r(f,i) ~ Normal(0,1)

– Given an instance x
• For i=1 to outputBits:

LSH[i] = 
    sum(x[f]*r[i,f] for f with non-zero weight in x) > 0 ? 
1 : 0

• Return the bit-vector LSH
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LSH algorithm 

•  But: storing the k classiBiers is expensive in 
high dimensions
– For each of 256 bits, a dense vector of 

weights for every feature in the vocabulary
•  Storing seeds and random number generators:

– Possible but somewhat fragile
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LSH: “pooling” (van Durme) 

•  Better algorithm:
–  Initialization:

•  Create a pool:
–  Pick a random seed s
–  For i=1 to poolSize:

»  Draw pool[i] ~ Normal(0,1)
•  For i=1 to outputBits:

–  Devise a random hash function hash(i,f): 
»  E.g.: hash(i,f) = hashcode(f) XOR randomBitString[i]

– Given an instance x
•  For i=1 to outputBits:

LSH[i] = sum(
      x[f] * pool[hash(i,f) % poolSize] for f in x) > 0 ? 1 : 0

•  Return the bit-vector LSH
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LSH: key ideas: pooling 

•  Advantages:
– with pooling, this is a compact re-encoding 

of the data
•  you don’t need to store the r’s, just the pool
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Locality Sensitive Hashing (LSH) in 
an On-line Setting 
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LSH: key ideas: online computation 

•  Common task: distributional clustering
– for a word w, x(w) is sparse vector of words 

that co-occur with w
– cluster the w’s

48 



49 



50 



Experiment 

•  Corpus: 700M+ tokens, 1.1M distinct bigrams
•  For each, build a feature vector of words that 

co-occur near it, using on-line LSH
•  Check results with 50,000 actual vectors
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Experiment 
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Points to review 
•  APIs for:

–  Bloom .ilters, CM sketch, LSH
•  Key applications of:

– Very compact noisy sets
– Ef.icient counters accurate for large counts
– Fast approximate cosine distance

•  Key ideas:
– Uses of hashing that allow collisions
– Random projection
– Multiple hashes to control Pr(collision)
– Pooling to compress a lot of random draws
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