
Randomized Algorithms - 2

No quiz today!

1

BLOOM FILTERS - RECAP

2

Bloom filters
•  Interface to a Bloom .ilter

– BloomFilter(int maxSize, double p);

– void bf.add(String s); // insert s

– bool bd.contains(String s);

•  // If s was added return true;

•  // else with probability at least 1-p return false;

•  // else with probability at most p return true;

– I.e., a noisy “set” where you can test
membership (and that’s it)

3

Bloom filters

0
 0
 0
 0
 0
 0
 0
 0
 0
 0

bf.add(“fred flintstone”):

0
 1
 1
 0
 0
 0
 0
 1
 0
 0

h1
 h2
 h3

bf.add(“barney rubble”):

1
 1
 1
 0
 0
 1
 0
 1
 0
 0

h1
 h2
 h3

4

Bloom filters

1
 1
 1
 0
 0
 1
 0
 1
 0
 0

bf.contains (“fred flintstone”):

1
 1
 1
 0
 0
 1
 0
 1
 0
 0

h1
 h2

bf.contains(“barney rubble”):

1
 1
 1
 0
 0
 1
 0
 1
 0
 0

h1
 h2
 h3

5

Bloom filters

bf.contains(“wilma flintstone”):

1
 1
 1
 0
 0
 1
 0
 1
 0
 0

h1
 h2
 h3

1
 1
 1
 0
 0
 1
 0
 1
 0
 0

bf.contains(“wilma flintstone”):

1
 1
 1
 0
 0
 1
 0
 1
 0
 0

h1
 h2
 h3

6

Bloom filters - recap
•  An implementation

– Allocate M bits, bit[0]…,bit[1-M]

– Pick K hash functions hash(1,2),hash(2,s),….

•  E.g: hash(i,s) = hash(s+ randomString[i])

– To add string s:

•  For i=1 to k, set bit[hash(i,s)] = 1

– To check contains(s):

•  For i=1 to k, test bit[hash(i,s)]

•  Return “true” if they’re all set; otherwise, return “false”

– M and K

•  set carefully to obtain right false positive rate

•  Sample code and sample applications…

7

THE COUNT-MIN SKETCH:
RECAP

8

Bloom Filter!Count-min sketch
•  An implementation

– Allocate a matrix CM with d rows, w columns

– Pick d hash functions h1(s),h2(s),….

– To increment counter A[s] for s by c

•  For i=1 to d, set CM[i, hash(i,s)] += c

– To retrieve value of A[s]:

•  For i=1 to d, retrieve M[i, hash(i,s)]

•  Return minimum of these values

– Similar idea as Bloom .ilter:

•  if there are d collisions, you return a value that’s too

large; otherwise, you return the correct value.

Question: what does this look like if d=1?

9

CM Sketch Structure

n  Each string is mapped to one bucket per row
n  Estimate A[j] by taking mink { CM[k,hk(j)] }
n  Errors are always over-estimates
n  Analysis: d=log 1/δ, w=2/ε è error is usually less than ε||A||1

+c

+c

+c

+c

h1(s)

hd(s)

<s, +c>

d=log 1/δ	

w = 2/ε	

from: Minos Garofalakis

i.e. with prob > 1-δ

10

CM Sketch Guarantees
n  [Cormode, Muthukrishnan’04] CM sketch guarantees

approximation error on point queries less than ε||A||1 in space
O(1/ε log 1/δ)

n  CM sketches are also accurate for skewed values---i.e.,
only a few entries s with large A[s]
–  “Finding heavy hitters”

n  Application:
–  finding counts for words x,y that frequently co-occur è

compute “semantic orientation” of words
–  some others later on

n  A disadvantage:
–  CM is harder to tune than Bloom filters

from: Minos Garofalakis

11

LOCALITY SENSITIVE HASHING
(LSH)

12

13

Wait, did he
say locality
sensitive
hash browns?

14

LSH: key ideas

•  Goal:

– map feature vector x to bit vector bx

– ensure that bx preserves “similarity”

15

Random Projections

16

Random projections

u

-u

2γ

+
+

+
+
+

+
+

+
+

-
-

-
-

-
-

-
-

-

17

Random projections

+
+

+
+
+

+
+

+
+

-
-

-
-

-
-

-
-

-

To make those
points “close” we
need to project to
a direction
orthogonal to the
line between
them

18

Random projections

-u

+
+

+
+
+

+
+

+
+

-
-

-
-

-
-

-
-

-

Any other
direction will keep
the distant points
distant.

So if I pick a random r
and r.x and r.x’ are
closer than γ then
probably x and x’ were
close to start with.	
 19

LSH: key ideas
•  Goal:

– map feature vector x to bit vector bx

– ensure that bx preserves “similarity”

•  Basic idea: use random projections of x

– Repeat many times:

•  Pick a random hyperplane r by picking random weights
for each feature (say from a Gaussian)

•  Compute the inner product of r with x

•  Record if x is “close to” r (r.x>=0)

–  the next bit in bx

•  Theory says that is x’ and x have small cosine distance

then bx and bx’ will have small Hamming distance

20

[Slides: Ben van Durme]

21

[Slides: Ben van Durme]

22

[Slides: Ben van Durme]

23

[Slides: Ben van Durme]

24

[Slides: Ben van Durme]

25

[Slides: Ben van Durme]

26

LSH applications

•  Compact storage of data

– and we can still compute similarities

•  LSH also gives very fast approximations:

– approx nearest neighbor method

•  just look at other items with bx’=bx

•  also very fast nearest-neighbor methods for

Hamming distance

– very fast clustering

•  cluster = all things with same bx vector

27

28

LSH algorithm
•  Naïve algorithm:

– Initialization:

• For i=1 to outputBits:

– For each feature f:

» Draw r(f,i) ~ Normal(0,1)

– Given an instance x

• For i=1 to outputBits:

LSH[i] =

 sum(x[f]*r[i,f] for f with non-zero weight in x) > 0 ?
1 : 0

• Return the bit-vector LSH

29

LSH algorithm

•  But: storing the k classiBiers is expensive in
high dimensions

– For each of 256 bits, a dense vector of

weights for every feature in the vocabulary

•  Storing seeds and random number generators:

– Possible but somewhat fragile

30

LSH: “pooling” (van Durme)

•  Better algorithm:

–  Initialization:

•  Create a pool:

–  Pick a random seed s

–  For i=1 to poolSize:

»  Draw pool[i] ~ Normal(0,1)

•  For i=1 to outputBits:

–  Devise a random hash function hash(i,f):

»  E.g.: hash(i,f) = hashcode(f) XOR randomBitString[i]

– Given an instance x

•  For i=1 to outputBits:

LSH[i] = sum(

 x[f] * pool[hash(i,f) % poolSize] for f in x) > 0 ? 1 : 0

•  Return the bit-vector LSH

31

32

LSH: key ideas: pooling

•  Advantages:

– with pooling, this is a compact re-encoding

of the data

•  you don’t need to store the r’s, just the pool

33

Locality Sensitive Hashing (LSH) in
an On-line Setting

34

LSH: key ideas: online computation

•  Common task: distributional clustering

– for a word w, x(w) is sparse vector of words

that co-occur with w

– cluster the w’s

35

36

37

Experiment

•  Corpus: 700M+ tokens, 1.1M distinct bigrams

•  For each, build a feature vector of words that

co-occur near it, using on-line LSH

•  Check results with 50,000 actual vectors

38

Experiment

39

40

Locality Sensitive Hashing (LSH) and
Pooling Random Values

41

LSH algorithm
•  Naïve algorithm:

– Initialization:

• For i=1 to outputBits:

– For each feature f:

» Draw r(f,i) ~ Normal(0,1)

– Given an instance x

• For i=1 to outputBits:

LSH[i] =

 sum(x[f]*r[i,f] for f with non-zero weight in x) > 0 ?
1 : 0

• Return the bit-vector LSH

42

LSH algorithm

•  But: storing the k classiBiers is expensive in
high dimensions

– For each of 256 bits, a dense vector of

weights for every feature in the vocabulary

•  Storing seeds and random number generators:

– Possible but somewhat fragile

43

LSH: “pooling” (van Durme)

•  Better algorithm:

–  Initialization:

•  Create a pool:

–  Pick a random seed s

–  For i=1 to poolSize:

»  Draw pool[i] ~ Normal(0,1)

•  For i=1 to outputBits:

–  Devise a random hash function hash(i,f):

»  E.g.: hash(i,f) = hashcode(f) XOR randomBitString[i]

– Given an instance x

•  For i=1 to outputBits:

LSH[i] = sum(

 x[f] * pool[hash(i,f) % poolSize] for f in x) > 0 ? 1 : 0

•  Return the bit-vector LSH

44

45

LSH: key ideas: pooling

•  Advantages:

– with pooling, this is a compact re-encoding

of the data

•  you don’t need to store the r’s, just the pool

46

Locality Sensitive Hashing (LSH) in
an On-line Setting

47

LSH: key ideas: online computation

•  Common task: distributional clustering

– for a word w, x(w) is sparse vector of words

that co-occur with w

– cluster the w’s

48

49

50

Experiment

•  Corpus: 700M+ tokens, 1.1M distinct bigrams

•  For each, build a feature vector of words that

co-occur near it, using on-line LSH

•  Check results with 50,000 actual vectors

51

Experiment

52

53

Points to review
•  APIs for:

–  Bloom .ilters, CM sketch, LSH

•  Key applications of:

– Very compact noisy sets

– Ef.icient counters accurate for large counts

– Fast approximate cosine distance

•  Key ideas:

– Uses of hashing that allow collisions

– Random projection

– Multiple hashes to control Pr(collision)

– Pooling to compress a lot of random draws

54

