No quiz today!

Randomized Algorithms - 2

BLOOM FILTERS - RECAP

(o)

)

Bloom filters Bt

* Interface to a Bloom filter
— BloomFilter(int maxSize, double p);
—void bf.add(String s); // insert s

—bool bd.contains(String s);
» // If s was added return true;
* // else with probability at least 7-p return false;
 // else with probability at most p return true;

—l.e., a noisy “set” where you can test
membership (and that’s it)

(o)

ecion
Bloom filters -

bf.add(“fred flintstone™):

T

o 1 1 O O O O 1 0 O

bf.add(“barney rubble”™):

AN

11 1 0 O 1 0 1 0 O

)

Bloom filters et

bf.contains (“‘fred flintstone”):

Vi

11 1 0 o0 1 0 1 0 O

bf.contains(“barney rubble”™):

SEMAN

11 1 0 O 1 0 1 0 O

)

Bloom filters i

bf.contains(“wilma flintstone”):

/\ h3

11 1 0 O 1 0 1 0 O

bf.contains(“wilma flintstone”):

/\\
1 1.1 0 0 1 0 1 0

0

)

Bloom filters - recap R

* Animplementation
— Allocate M bits, bit[0]...,bit|1-M]
— Pick K hash functions hash(1,2),hash(2,s),....
 E.g: hash(i,s) = hash(s+ randomString]|i])
— To add string s:
* Fori=1 to k, set bit|hash(i,s)] =1
— To check contains(s):
* Fori=1 to K, test bit[hash(i,s)]|
* Return “true” if they're all set; otherwise, return “false”

— Mand K

* set carefully to obtain right false positive rate
* Sample code and sample applications...

THE COUNT-MIN SKETCH:
RECAP

(o)

(o)

Bloom Filter> Count-min sketch *=*

* An implementation
— Allocate a matrix CM with d rows, w columns
— Pick d hash functions h,(s),h,(s),....
—To increment counter A/s/for sby ¢
* For i=1to d, set CM[i, hash(i,s)] +=c
—To retrieve value of A/s/.
* For i=1 to d, retrieve M/i, hash(i,s)]
* Return minimum of these values

— Similar idea as Bloom filter:

* if there are d collisions, you return a value that’s too
large; otherwise, you return the correct value.

Question: what does this look like if d=17?

- from: Minos Garofalakis
CM Sketch Structure éﬁmmlﬂ?

2 x4
h,(s) €
g o
— “iC 1l
<:E;1 4-(::> e~ (Eg
Y
:::::::-_§‘\~\;ic: N
\\\\\\\\\‘ ESB
]
hy(s) —~—_c
w = 2/¢

Each string is mapped to one bucket per row

Estimate A[j] by taking min, { CM[k,h,(j)] }

Errors are always over-estimates i.e. with prob > 1-8
Analysis: d=log 1/d, w=2/¢ =» error is usually less than ¢||A||

0 YaHoO!

RESEARCH

- from: Minos Garofalakis

CM Sketch Guarantees @

#1&"ﬂ'¢

m [Cormode, Muthukrishnan’04] CM sketch guarantees
approximation error on point queries less than ¢||A||, in space
O(1/e log 1/0)

m CM sketches are also accurate for skewed values---i.e.,
only a few entries s with large A[s]/

- “Finding heavy hitters”
m Application:

— finding counts for words x,y that frequently co-occur =
compute “semantic orientation” of words

— some others later on

m A disadvantage:
— CM is harder to tune than Bloom filters

1 YAaHoO!

RESEARCH

LOCALITY SENSITIVE HASHING
(LSH)

(o)

AHOO!

RESEARCH

14

Wait, did he
say locality
sensitive

hash brown

?

YaHoO!

RESEARCH

LSH: key ideas

* Goal:
—map feature vector x to bit vector bx
—ensure that bx preserves “similarity”

1016

Random Projections

Random projections

(o)

f o fed Segiey
Random projections it

To make those
points “close’” we
need to project to
a direction
orthogonal to the
line between

them

)

Random projections =

R Any other

direction will keep
the distant points
distant.

So if | pick a random r
and r.x and r.x’ are
closer than y then
probably x and x’ were
close to start with.

(o)

LSH: key ideas Hat

* Goal:
— map feature vector x to bit vector bx
— ensure that bx preserves “similarity”
* Basicidea: use random projections of X

— Repeat many times:

* Pick a random hyperplane r by picking random weights
for each feature (say from a Gaussian)

* Compute the inner product of r with x

* Record ifxis “close to” r (r.x>=0)
— the next bit in bx

* Theory says that is X’ and x have small cosine distance
then bx and bx’ will have small Hamming distance

20

[Slides: Ben van Durme]

[Slides: Ben van Durme]

22

[Slides: Ben van Durme]

A o\ A AN vy - v

[Slides: Ben van Durme]

_BEs |

(...................................

CACACAT At

Hamming Distance := h =

Signature Length := b

>

1
6\

cos(f) ~ cos

[Slides: Ben van Durm

— COS

(
(

D= D>

)

)

32 bit signatures 256 bit signatures

(«D) (D)
e
£ os —= £
S = S
2 o0 == 2
(] ’ (]
E —— E
a -0.5 — a
o = o
< <
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 04 0.6 0.8 1.0
True Cosine True Cosine

LCheapJ {Accurate J

[Slides: Ben van Durme]

26

1016
LSH applications e

* Compact storage of data
—and we can still compute similarities

* LSH also gives very fast approximations:
—approx nearest neighbor method

* just look at other items with bx'=bx

* also very fast nearest-neighbor methods for
Hamming distance

—very fast clustering

* cluster = all things with same bx vector

27

Online Generation of Locality
Sensitive Hash Signatures

Benjamin Van Durme and Ashwin Lall

human language technology

eeeeeee f excellence DENISON
7 JOHNS HOPKINS UNIVERSITY

UNTIVER RS SITY

28

)

LSH algorithm e

* Naive algorithm:
— Initialization:

* For i=1 to outputBits:
— For each feature £

» Draw r(f,i) ~ Normal(0,1)
— Given an instance x

* For i=1 to outputBits:
LSH[i] =

sum(x[f]*r[i,f] for fwith non-zero weightinx) > 07
1:0

e Return the bit-vector LSH

29

1016
LSH algorithm e

* But: storing the k classifiersis expensive in
high dimensions

—For each of 256 bits, a dense vector of
weights for every feature in the vocabulary

* Storing seeds and random number generators:
—Possible but somewhat fragile

30

)

LSH:‘““pooling’ (van Durme) M

* Better algorithm:
— Initialization:

* Create a pool:
— Pick arandom seed s
— For i=1 to poolSize:
» Draw pool[i] ~ Normal(0,1)

* For i=1 to outputBits:
— Devise a random hash function hash(i,f):
» E.g.: hash(i,f) = hashcode(f) XOR randomBitString|i]

— (Given an instance x

* For i=1 to outputBits:
LSHJi] = sum(
x[f] * pool[hash(i,f) % poolSize] for finx) >071:0
* Return the bit-vector LSH

31

The Pooling Trick

O

32

)

LSH: key ideas: pooling e

* Advantages:

—with pooling, this is a compact re-encoding
of the data

* you don’t need to store the r’s, just the pool

33

Locality Sensitive Hashing (LSH) i,ézom%
an On-line Setting

34

(o)

LSH: key ideas: online computatioi”

 Common task: distributional clustering

—for a word w, x(w) is sparse vector of words
that co-occur with w

—cluster the w's

35

v € R¢

T ~ N(Ovl)d

. [1 ifv-7 >0,
hi(v) = { 0 otherwise.
if v = Ejﬁj

then v - T, — Zj’Uj i

Online h”it (’17) p— {

1016

Break into local products

1 if Eﬁ-’&’j .1 > 0,
0 otherwise.

Algorithm 1 STREAMING LSH ALGORITHM 620165

Parameters: @%}%
m : size of pool
d : number of bits (size of resultant signature)
s : arandom seed
hi, ..., hq : hash functions mapping (s, f;) to {0,...,m—1}
INITIALIZATION:

1: Initialize floating point array P[0, ..., m — 1]

2: Initialize H, a hashtable mapping words to floating point

arrays of size d
3: fori:=0...m—1do

4: PJi| := random sample from N (0, 1), using s as seed
ONLINE:

1: for each word w in the stream do

2: for each feature f; associated with w do

3: forj:=1...ddo

4: H{w][j] := H[w][j] + P[h;(s, f)]

SIGNATURECOMPUTATION:

1: for eachw € H do

2: for::=1...ddo

3: if H[w][] > O then
4: Sw][i] :=1

5: else

6:

S[w][i] := 0

37

1016
Experiment S

* Corpus: 700M+ tokens, 1.1M distinct bigrams

 For each, build a feature vector of words that
co-occur near it, using on-line LSH

 Check results with 50,000 actual vectors

38

Absolute Error

Experiment

et~
o o O

©
n

O
N

S
o

4Ty,

39

Closest based on true cosine

P
pr-
-

/ London & \

Milan g7, Madrid g4, Stockholm g6, Manila g5, Moscow,95]

0> 0s 0> 0 0
Prague;, Vienna,;, suburban;, synchronism;, Copenhagens

/ London \

Milan g7, Madrid g4, Stockholm g, Manila g5, Moscow g5
ASHERq, Champaiena, MANSA, NOBLEQ, comer

Prague;, Vienna,, suburban;, synchronism;, Copenhagens

"";":" 0 “S" c156 ‘.‘..H‘:" A
Prague;2, Stockholmi2, Frankfurt 4, Madrid;4, Manilajq 7
kStockholmzo, Milanss, Madridoy, Taipeios, Frankfurtas J

Closest based on 32 bit 'sig.’s

~
)

[Cheapj .

Locality Sensitive Hashing (LSH) ar@
Pooling Random Values

41

)

LSH algorithm e

* Naive algorithm:
— Initialization:

* For i=1 to outputBits:
— For each feature £

» Draw r(f,i) ~ Normal(0,1)
— Given an instance x

* For i=1 to outputBits:
LSH[i] =

sum(x[f]*r[i,f] for fwith non-zero weightinx) > 07
1:0

e Return the bit-vector LSH

42

1016
LSH algorithm e

* But: storing the k classifiersis expensive in
high dimensions

—For each of 256 bits, a dense vector of
weights for every feature in the vocabulary

* Storing seeds and random number generators:
—Possible but somewhat fragile

43

)

LSH:‘““pooling’ (van Durme) M

* Better algorithm:
— Initialization:

* Create a pool:
— Pick arandom seed s
— For i=1 to poolSize:
» Draw pool[i] ~ Normal(0,1)

* For i=1 to outputBits:
— Devise a random hash function hash(i,f):
» E.g.: hash(i,f) = hashcode(f) XOR randomBitString|i]

— (Given an instance x

* For i=1 to outputBits:
LSHJi] = sum(
x[f] * pool[hash(i,f) % poolSize] for finx) >071:0
* Return the bit-vector LSH

44

The Pooling Trick

O

45

)

LSH: key ideas: pooling e

* Advantages:

—with pooling, this is a compact re-encoding
of the data

* you don’t need to store the r’s, just the pool

46

Locality Sensitive Hashing (LSH) i,ézom%
an On-line Setting

47

(o)

LSH: key ideas: online computatioi”

 Common task: distributional clustering

—for a word w, x(w) is sparse vector of words
that co-occur with w

—cluster the w's

48

v € R¢

T ~ N(Ovl)d

. [1 ifv-7 >0,
hi(v) = { 0 otherwise.
if v = Ejﬁj

then v - T, — Zj’Uj i

Online h”it (’17) p— {

1016

Break into local products

1 if Eﬁ-’&’j .1 > 0,
0 otherwise.

Algorithm 1 STREAMING LSH ALGORITHM 620165

Parameters: @%}%
m : size of pool
d : number of bits (size of resultant signature)
s : arandom seed
hi, ..., hq : hash functions mapping (s, f;) to {0,...,m—1}
INITIALIZATION:

1: Initialize floating point array P[0, ..., m — 1]

2: Initialize H, a hashtable mapping words to floating point

arrays of size d
3: fori:=0...m—1do

4: PJi| := random sample from N (0, 1), using s as seed
ONLINE:

1: for each word w in the stream do

2: for each feature f; associated with w do

3: forj:=1...ddo

4: H{w][j] := H[w][j] + P[h;(s, f)]

SIGNATURECOMPUTATION:

1: for eachw € H do

2: for::=1...ddo

3: if H[w][] > O then
4: Sw][i] :=1

5: else

6:

S[w][i] := 0

50

1016
Experiment S

* Corpus: 700M+ tokens, 1.1M distinct bigrams

 For each, build a feature vector of words that
co-occur near it, using on-line LSH

 Check results with 50,000 actual vectors

51

Absolute Error

Experiment

et~
o o O

©
n

O
N

S
o

4Ty,

52

Closest based on true cosine

P
pr-
-

/ London & \

Milan g7, Madrid g4, Stockholm g6, Manila g5, Moscow,95]

0> 0s 0> 0 0
Prague;, Vienna,;, suburban;, synchronism;, Copenhagens

/ London \

Milan g7, Madrid g4, Stockholm g, Manila g5, Moscow g5
ASHERq, Champaiena, MANSA, NOBLEQ, comer

Prague;, Vienna,, suburban;, synchronism;, Copenhagens

"";":" 0 “S" c156 ‘.‘..H‘:" A
Prague;2, Stockholmi2, Frankfurt 4, Madrid;4, Manilajq 7
kStockholmzo, Milanss, Madridoy, Taipeios, Frankfurtas J

Closest based on 32 bit 'sig.’s

~
)

[Cheapj 53

Points to review

* APIs for:
— Bloom filters, CM sketch, LSH
* Key applications of:
— Very compact noisy sets
— Efficient counters accurate for large counts
— Fast approximate cosine distance
* Key ideas:
— Uses of hashing that allow collisions
— Random projection
— Multiple hashes to control Pr(collision)
— Pooling to compress a lot of random draws

1016

54

