

No quiz today!

Randomized Algorithms - 2

BLOOM FILTERS - RECAP

- Interface to a Bloom filter
 - BloomFilter(int maxSize, double p);
 - void bf.add(String s); // insert s
 - bool bd.contains(String s);
 - // If s was added return true;
 - // else with probability at least 1-p return false;
 - // else with probability at most p return true;
 - I.e., a noisy "set" where you can test membership (and that's it)

bf.add("fred flintstone"):

bf.add("barney rubble"):

bf.contains ("fred flintstone"):

bf.contains("barney rubble"):

bf.contains("wilma flintstone"):

bf.contains("wilma flintstone"):

Bloom filters - recap

- An implementation
 - Allocate M bits, bit[0]...,bit[1-M]
 - Pick K hash functions hash(1,2),hash(2,s),....
 - E.g: hash(i,s) = hash(s+ randomString[i])
 - To add string s:
 - For i=1 to k, set bit[hash(i,s)] = 1
 - To check contains(s):
 - For i=1 to k, test bit[hash(i,s)]
 - Return "true" if they're all set; otherwise, return "false"
 - M and K
 - set carefully to obtain right false positive rate
- Sample code and sample applications...

THE COUNT-MIN SKETCH: RECAP

Bloom Filter -> Count-min sketch

- An implementation
 - Allocate a matrix CM with d rows, w columns
 - Pick d hash functions $h_1(s), h_2(s),...$
 - To increment counter A[s] for s by c
 - For i=1 to d, set CM[i, hash(i,s)] += c
 - To retrieve value of A[s]:
 - For i=1 to d, retrieve M[i, hash(i,s)]
 - Return minimum of these values
 - Similar idea as Bloom filter:
 - if there are *d* collisions, you return a value that's too large; otherwise, you return the correct value.

Question: what does this look like if d=1?

CM Sketch Structure

- Each string is mapped to one bucket per row
- Estimate A[j] by taking $\min_{k} \{ CM[k,h_{k}(j)] \}$
- Errors are always over-estimates i.e. with prob > $1-\delta$
- Analysis: $d=\log 1/\delta$, $w=2/\epsilon \rightarrow error$ is usually less than $\epsilon ||A||_1$

CM Sketch Guarantees

- [Cormode, Muthukrishnan' 04] CM sketch guarantees approximation error on point queries less than ε||A||₁ in space O(1/ε log 1/δ)
- CM sketches are also accurate for skewed values---i.e.,
 only a few entries s with large A[s]
 - "Finding heavy hitters"
- Application:
 - finding counts for words x,y that frequently co-occur →
 compute "semantic orientation" of words
 - some others later on
- A disadvantage:
 - CM is harder to tune than Bloom filters

LOCALITY SENSITIVE HASHING (LSH)

Wait, did he say locality sensitive hash browns?

LSH: key ideas

- Goal:
 - map feature vector x to bit vector bx
 - ensure that bx preserves "similarity"

Random Projections

Random projections

Random projections

To make those points "close" we need to project to a direction orthogonal to the line between them

Random projections

close to start with.

19

LSH: key ideas

- Goal:
 - map feature vector x to bit vector bx
 - ensure that bx preserves "similarity"
- Basic idea: use random projections of x
 - Repeat many times:
 - Pick a random hyperplane r by picking random weights for each feature (say from a Gaussian)
 - Compute the inner product of r with x
 - Record if x is "close to" $r(r.x \ge 0)$
 - the next bit in bx
 - Theory says that is x' and x have small cosine distance then bx and bx' will have small Hamming distance

[Slides: Ben van Durme]

[Slides: Ben van Durme]

[Slides: Ben van Durme]

[Slides: Ben van Durme]

$$\cos(\theta) pprox \cos(rac{h}{b}\pi)$$
[Slides: Ben van Durme] $\frac{1}{6}\pi$)
$$= \cos(rac{h}{b}\pi)$$

[Slides: Ben van Durme]

LSH applications

- Compact storage of data
 - and we can still compute similarities
- LSH also gives very fast approximations:
 - approx nearest neighbor method
 - just look at other items with **bx'=bx**
 - also very fast nearest-neighbor methods for Hamming distance
 - very fast clustering
 - cluster = all things with same **bx** vector

Online Generation of Locality Sensitive Hash Signatures

Benjamin Van Durme and Ashwin Lall

DENISON UNIVERSITY

LSH algorithm

- Naïve algorithm:
 - Initialization:
 - For i=1 to outputBits:
 - For each feature f:» Draw r(f,i) ~ Normal(0,1)
 - -Given an instance x
 - For i=1 to outputBits:

```
LSH[i] = sum(\mathbf{x}[f]*r[i,f]) for f with non-zero weight in \mathbf{x}) > 0 ? 1 : 0
```

Return the bit-vector LSH

LSH algorithm

- But: storing the *k classifiers* is expensive in high dimensions
 - -For each of 256 bits, a dense vector of weights for every feature in the vocabulary
- Storing seeds and random number generators:
 - -Possible but somewhat fragile

LSH: "pooling" (van Durme)

- Better algorithm:
 - Initialization:
 - Create a pool:
 - Pick a random seed s
 - For i=1 to poolSize:» Draw pool[i] ~ Normal(0,1)
 - For i=1 to outputBits:
 - Devise a random hash function hash(i,f):» E.g.: hash(i,f) = hashcode(f) XOR randomBitString[i]
 - Given an instance x
 - For i=1 to outputBits:

```
LSH[i] = sum(
x[f] * pool[hash(i,f) % poolSize] for f in x) > 0 ? 1 : 0
```

Return the bit-vector LSH

The Pooling Trick

LSH: key ideas: pooling

- Advantages:
 - with pooling, this is a compact re-encoding of the data
 - you don't need to store the r's, just the pool

Locality Sensitive Hashing (LSH) in an On-line Setting

LSH: key ideas: online computation

- Common task: distributional clustering
 - for a word w, x(w) is sparse vector of words that co-occur with w
 - -cluster the w's

$$\vec{v} \in \mathbb{R}^d$$

$$\vec{r_i} \sim N(0,1)^d$$

$$h_i(\vec{v}) = \begin{cases} 1 & \text{if } \vec{v} \cdot \vec{r_i} \ge 0, \\ 0 & \text{otherwise.} \end{cases}$$

if
$$\vec{v} = \Sigma_j \vec{v}_j$$

then $\vec{v} \cdot \vec{r}_i = \Sigma_j \vec{v}_j \cdot \vec{r}_i$

Break into local products

Online
$$h_{it}(\vec{v}) = \begin{cases} 1 & \text{if } \Sigma_j^t \vec{v}_j \cdot \vec{r}_i \ge 0, \\ 0 & \text{otherwise.} \end{cases}$$

Algorithm 1 Streaming LSH Algorithm

Parameters:

- m: size of pool
- d: number of bits (size of resultant signature)
- s: a random seed
- $h_1, ..., h_d$: hash functions mapping $\langle s, f_i \rangle$ to $\{0, ..., m-1\}$ INITIALIZATION:
- 1: Initialize floating point array $P[0, \ldots, m-1]$
- 2: Initialize H, a hashtable mapping words to floating point arrays of size d
- 3: **for** $i := 0 \dots m 1$ **do**
- 4: P[i] := random sample from N(0, 1), using s as seed

ONLINE:

- 1: for each word w in the stream do
- 2: **for** each feature f_i associated with w **do**
- 3: **for** $j := 1 \dots d$ **do**
- 4: $H[w][j] := H[w][j] + P[h_j(s, f_i)]$

SIGNATURE COMPUTATION:

- 1: for each $w \in H$ do
- 2: **for** $i := 1 \dots d$ **do**
- 3: **if** H[w][i] > 0 **then**
- 4: S[w][i] := 1
- 5: else
- 6: S[w][i] := 0

- Corpus: 700M+ tokens, 1.1M distinct bigrams
- For each, build a feature vector of words that co-occur near it, using on-line LSH
- Check results with 50,000 actual vectors

Closest based on true cosine

London

Milan_{.97}, Madrid_{.96}, Stockholm_{.96}, Manila_{.95}, Moscow_{.95} ASHER₀, Champaign₀, MANS₀, NOBLE₀, come₀ Prague₁, Vienna₁, suburban₁, synchronism₁, Copenhagen₂

London

Milan_{.97}, Madrid_{.96}, Stockholm_{.96}, Manila_{.95}, Moscow_{.95}
ASHER₀, Champaign₀, MANS₀, NOBLE₀, come₀
Prague₁, Vienna₁, suburban₁, synchronism₁, Copenhagen₂
Frankfurt₄, Prague₄, Taszar₅, Brussels₆, Copenhagen₆
Prague₁₂, Stockholm₁₂, Frankfurt₁₄, Madrid₁₄, Manila₁₄
Stockholm₂₀, Milan₂₂, Madrid₂₄, Taipei₂₄, Frankfurt₂₅

Closest based on 32 bit sig.'s

Locality Sensitive Hashing (LSH) and Pooling Random Values

LSH algorithm

- Naïve algorithm:
 - Initialization:
 - For i=1 to outputBits:
 - For each feature f:» Draw r(f,i) ~ Normal(0,1)
 - -Given an instance x
 - For i=1 to outputBits:

```
LSH[i] = sum(\mathbf{x}[f]*r[i,f]) for f with non-zero weight in \mathbf{x}) > 0 ? 1 : 0
```

Return the bit-vector LSH

LSH algorithm

- But: storing the *k classifiers* is expensive in high dimensions
 - -For each of 256 bits, a dense vector of weights for every feature in the vocabulary
- Storing seeds and random number generators:
 - -Possible but somewhat fragile

LSH: "pooling" (van Durme)

- Better algorithm:
 - Initialization:
 - Create a pool:
 - Pick a random seed s
 - For i=1 to poolSize:» Draw pool[i] ~ Normal(0,1)
 - For i=1 to outputBits:
 - Devise a random hash function hash(i,f):» E.g.: hash(i,f) = hashcode(f) XOR randomBitString[i]
 - Given an instance x
 - For i=1 to outputBits:

```
LSH[i] = sum(
x[f] * pool[hash(i,f) % poolSize] for f in x) > 0 ? 1 : 0
```

Return the bit-vector LSH

The Pooling Trick

LSH: key ideas: pooling

- Advantages:
 - with pooling, this is a compact re-encoding of the data
 - you don't need to store the r's, just the pool

Locality Sensitive Hashing (LSH) in an On-line Setting

LSH: key ideas: online computation

- Common task: distributional clustering
 - for a word w, x(w) is sparse vector of words that co-occur with w
 - -cluster the w's

$$\vec{v} \in \mathbb{R}^d$$

$$\vec{r}_i \sim N(0,1)^d$$

$$h_i(\vec{v}) = \begin{cases} 1 & \text{if } \vec{v} \cdot \vec{r_i} \ge 0, \\ 0 & \text{otherwise.} \end{cases}$$

if
$$\vec{v} = \Sigma_j \vec{v}_j$$

then $\vec{v} \cdot \vec{r}_i = \Sigma_j \vec{v}_j \cdot \vec{r}_i$

Break into local products

Online
$$h_{it}(\vec{v}) = \begin{cases} 1 & \text{if } \Sigma_j^t \vec{v}_j \cdot \vec{r}_i \ge 0, \\ 0 & \text{otherwise.} \end{cases}$$

Algorithm 1 Streaming LSH Algorithm

Parameters:

- m: size of pool
- d: number of bits (size of resultant signature)
- s: a random seed
- $h_1, ..., h_d$: hash functions mapping $\langle s, f_i \rangle$ to $\{0, ..., m-1\}$ INITIALIZATION:
 - 1: Initialize floating point array $P[0, \ldots, m-1]$
- 2: Initialize H, a hashtable mapping words to floating point arrays of size d
- 3: **for** $i := 0 \dots m 1$ **do**
- 4: P[i] := random sample from N(0, 1), using s as seed

ONLINE:

- 1: for each word w in the stream do
- 2: **for** each feature f_i associated with w **do**
- 3: **for** $j := 1 \dots d$ **do**
- 4: $H[w][j] := H[w][j] + P[h_j(s, f_i)]$

SIGNATURE COMPUTATION:

- 1: for each $w \in H$ do
- 2: **for** $i := 1 \dots d$ **do**
- 3: **if** H[w][i] > 0 **then**
- 4: S[w][i] := 1
- 5: else
- 6: S[w][i] := 0

- Corpus: 700M+ tokens, 1.1M distinct bigrams
- For each, build a feature vector of words that co-occur near it, using on-line LSH
- Check results with 50,000 actual vectors

Closest based on true cosine

London

Milan_{.97}, Madrid_{.96}, Stockholm_{.96}, Manila_{.95}, Moscow_{.95} ASHER₀, Champaign₀, MANS₀, NOBLE₀, come₀ Prague₁, Vienna₁, suburban₁, synchronism₁, Copenhagen₂

London

Milan_{.97}, Madrid_{.96}, Stockholm_{.96}, Manila_{.95}, Moscow_{.95} ASHER₀, Champaign₀, MANS₀, NOBLE₀, come₀ Prague₁, Vienna₁, suburban₁, synchronism₁, Copenhagen₂ Frankfurt₄, Prague₄, Taszar₅, Brussels₆, Copenhagen₆ Prague₁₂, Stockholm₁₂, Frankfurt₁₄, Madrid₁₄, Manila₁₄ Stockholm₂₀, Milan₂₂, Madrid₂₄, Taipei₂₄, Frankfurt₂₅

Closest based on 32 bit sig.'s

Points to review

- APIs for:
 - Bloom filters, CM sketch, LSH
- Key applications of:
 - Very compact noisy sets
 - Efficient counters accurate for *large* counts
 - Fast approximate cosine distance
- Key ideas:
 - Uses of hashing that allow collisions
 - Random projection
 - Multiple hashes to control Pr(collision)
 - Pooling to compress a lot of random draws