RECAP: THE COURSE SO FAR...



First Lecture - Review

e Admin stuff

* Review - Why to scale, how to count and
what to count

* How: O(...)



Why to scale: c. 2001 (Banko & Brill, ACL 2001)
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Task: distinguish pairs of easily-confused
words (“affect” vs “effect”) in context



Numbers (Jeff Dean says) Everyone
Should Know

L1 cache reference 0.5 ns
Branch mispredict 5 ns
L2 cache reference 7 ns
Mutex lock/unlock 100 ns
Main memory reference 100 ns
Compress 1K bytes with Zippy 10,000 ns
Send 2K bytes over 1 Gbps network 20,000 ns
Read 1 MB sequentially from memory 250,000 ns
Round trip within same datacenter 500,000 ns
Disk seek 10,000,000 ns
Read 1 MB sequentially from network 10,000,000 ns
Read 1 MB sequentially from disk 30,000,000 ns

Send packet CA->Netherlands->CA 150,000,000 ns



Update: Colin Scott, UCB

file:/ / /Users/wcohen/Documents/code/interactive latencies/
interactive latency.html

This isn’t on the web but is
available thru GitHub




What’s Happening with Hardware?

* Clock speed: stuck at 3Ghz for ~ 10 years
* Net bandwidth doubles ~ 2 years

* Disk bandwidth doubles ~ 2 years

* SSD bandwidth doubles ~ 3 years

* Disk seek speed doubles ~ 10 years

* SSD latency nearly saturated



Price USD / MB

Historical Cost of Computer Memory and Storage
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Numbers (Jeff Dean says) Everyone
Should Know

L1 cache reference 0.5 ns
Branch mispredict 5 ns
L2 cache reference 7 ns
Mutex lock/unlock 100 ns
Main memory reference 100 ns
Compress 1K bytes with Zippy 10,000 ns
Send 2K bytes over 1 Gbps network 20,000 ns
Read 1 MB sequentially from memory 250,000 ns
Round trip within same datacenter 500,000 ns
Disk seek 10,000,000 ns
Read 1 MB sequentially from network 10,000,000 ns
Read 1 MB sequentially from disk 30,000,000 ns

Send packet CA->Netherlands->CA 150,000,000 ns



A typical CPU (not to scale)

K8 core in the AMD Athlon 64

- Main Memory CPU
Hard disk pF—| -- 8 GB
(1Tb) 128x bigger
. - Other
CPUs
L2 Unified
1 MB 16-way
A A A A
16x bigger
L2 ITLB L2 DTLB
512 entries 512 entries
4-way 4-wav
I I 256x bigger
4 Y + Y
L1 Instruction Cache L1ITLB L1DTLB | L1 Data Cache
64KB 2-way 4 KB 4/2 MB 4 KB a2 MB 1 | 64KB 2-way 2 ports
32 entries| 8 entries | |32 entries|8 entries
full assoc |full assoc| |full assoc full assoc
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A typical CPU (not to scale)

K8 core in the AMD Athlon 64

16x bigger
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A typical CPU (not to scale)

- Main Memory (
Hard disk [F—| <«-sas
(1T 9) 128x bigger
-
L2 Unified
1 MB 16-way
| i A
L2ITLB L2 DTLB
512 entries 512 entries
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K8 core in the AMD Athlon 64

LbX bigger

L1 Data Cache
64KB 2-way 2 ports
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Numbers (Jeff Dean says) Everyone
Should Know

L1 cache reference

Branch mispredict

L2 cache reference

Mutex lock/unlock

Main memory reference

Compress 1K bytes with Zippy

Send 2K bytes over 1 Gbps network
Read 1 MB sequentially from memory
Round trip within same datacenter
Disk seek

Read 1 MB sequentially from network
Read 1 MB sequentially from disk
Send packet CA->Netherlands->CA
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What do we count?

Compilers don’t warn Jeff Dean. Jeff Dean warns
compilers.

* Memory access/instructions are
qualitatively different from disk access

* Seeks are gqualitatively different from
sequential reads on disk

* Cache, disk fetches, etc work best when
you stream through data sequentially

* Best case for data processing: stream
through the data once in sequential order,
as it’s found on disk.

15



Other lessons -?

—ncoding Your Data

« CPUs are fast, memory/bandwidth are precious, ergo...
— Variable-length encodings
— Compression
— Compact in-memory representations

« Compression very importan{ aspect of many systems
— Inverted index posting list formats
— storage systems for persistent data  * but not important
enough for this class’s
assignments.... 16



What to count

random access, RAM 100 ns
read 1 Mb sequentially - RAM 250,000 ns 2,500
random access, disk (seek) 10,000,000 ns 100,000 1
read 1Mb sequentially - net 10,000,000 ns
read 1Mb sequentially - disk 30,000,000 ns 3
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First lecture: review

e Admin stuff

* Review - Why to scale, how to count and
what to count

* What sort of computations do we want to do
in (large-scale) machine learning programs?

— Probability

18



PROBABILITY AND SCALABILITY:
LEARNING AND COUNTING

19



Big ML c. 2001 (Banko & Brill, “Scaling to Very Very Large...”, ACL
2001)
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Task: distinguish pairs of easily-confused words

(“affect” vs “effect”) in context
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Why More Data Helps: A Demo

e Data:

— All 5-grams that appear >= 40 times in a corpus of
1M English books

* approx 80B words
* 5-grams: 30Gb compressed, 250-300Gb uncompressed

 Hach 5-gram contains frequency distribution over
years

— Wrote code to compute
* Pr(A,B,C,D,E | C=affect or C=effect)

* Pr(any subset of A,...,E | any other fixed values of A,
...,E with C=affect V effect)

— Demo:

 /Users/wcohen/Documents/code/pyhack/bigml
* eg: python ngram-query.py data/aeffect-train.txt _ _B effect _ _

21



Why More Data Helps

 Data:

— bAll 15(—grams that appear >= 40 times in a corpus of 1M English
ooks

* approx 80B words

* 5-grams: 30Gb compressed, 250-300Gb uncompressed

« Each 5-gram contains frequency distribution over years
— Wrote code to compute

* Pr(A,B,C,D,E | C=affect or C=effect)

* Pr(any subset of A,...,E|any other fixed values of A,...,E with
C=affect V effect)

* Observations [from playing with data]:
— Mostly effect not affect
— Most common word before affect is not
— After not effect most common word is a

22



The Joint Distribution

Example: Boolean variables A,

B, C
Recipe for making a joint distribution of A B c Prob
M variables: 0 0 0 0.30
0 0 1 0.05
1. Make a truth table listing all 0 1 0 0.10
combinations of values of your 0 1 1 0.05
variables (if there are M Boolean 1 0 0 0.05
variables then the table will have 2M 1 0 1 0.10
TOWS). 1 1 0 0.25
2. For each combination of values, say 1 ) ) 010
how probable it is.

3. If you subscribe to the axioms of
probability, those numbers must sum
to 1.

23



Some of the Joint Distribution
-_-_--ﬂ

effect 0.00036
is the effect of a 0.00034
: The effect of this 0.00034
to this effect ; “ 0.00034
be the effect of the
not the effect of any 0.00024
does not atfect the general  0.00020
does not affect the question 0.00020

any manner affect the principle 0.00018



An experiment: how useful is the
brute-force joint classifier?

 Extracted all atfect/effect 5-grams from an old
Reuters corpus

—about 20k documents

—about 723 n-grams, 661 distinct

— Financial news, not novels or textbooks
* Tried to predict center word with:

— Pr(C| A=a,B=b,D=d,E=e)

—then P(C| A,B,D)

—then P(C|B,D)

—then P(C| B)

—then P(C)

)
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EXAMPLES

—“The cumulative _ of the” = effect (1.0)
—“Go into _ on January” - effect (1.0)
—“From cumulative _ of accounting” not
present in train data
* Nor is ““From cumulative _of ”
* But “_ cumulative _ of _” = etfect (1.0)
—“Would not _ Finance Minister” not

present
* But “_not_ _ _” - affect (0.9625)



Performance summary

P(C| A,B,D,E)

3% error

P(C|A,B,D)

(
P(C|B,D)
P(C|B)
(©)

Millions of Words

Figure 1. Learning Curves for Confusion Set
Disambiguation
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gl \Is this a useful density estimate?

5% error

~ 5% error

15% error
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What Have We Learned?

* Counting’s not enough -?
* Counting goes a long way with big data -?

 Big data can sometimes be made small
— For a specific task, like this one
— It's all in the data preparation -?

 Often density estimation is more important than
classification

* Counts are a good? density estimator

28



Density Estimation

* Our Joint Distribution learner is our first
example of something called Density
Estimation

* A Density Estimator learns a mapping from
a set of attributes values to a Probability

Input ‘ 3
Attributes - » Probability

29



Density Estimation

* Compare it against the two other major

kinds of models:

Input
Attributes

Input
Attributes

Input
Attributes

Prediction of

VVYVYVY

categorical output or class

One of a few discrete values

» Probability

Prediction of

VVYyVYYVYY

real-valued output

e

30



Density Estimation = Classification

Input - —

Attributes : Predlctl.on of

« > categorical output

One of y1, ...., yk
Input A
Attributes » P(x,y)
Class >
To classify x A

Binary case:
predict POS
it P(x)>0.5

N\
1. Use your estimator to compute P(x,y1), ...., P(x,yk)
2. Return the class y* with the highest predicted probability

N AN

N AN
Ideally is correct with P(x,y*) = P(x,y*)/(P(x,y1) + .... + P(x,yk))

31



Classification vs Density Estimation

Classification Density Estimation

32



Classification vs density
estimation

33



PROBABILITY AND SCALABILITY:
NAIVE BAYES

Second most scalable learning method in the world?

34



Performance ...

1

P(C|A,B,D,E) 101

P(C|A,B,D) 157 6
P(C|B,D) 163 13
P(C | B) 244 78
P(C) 58 31

* Is this good performance?
 I[f we care about recall, what should we do?

35



Naive Density Estimation

What's an alternative to the joint distribution?

The naive model generalizes strongly:

Assume that each attribute is distributed
independently of any of the other attributes.

36



Using the Naive Distribution

* Once you have a Naive Distribution you can easily
compute any row of the joint distribution.

* Suppose A, B, C and D are independently
distributed. What is P(A N ~B N C N ~D)?

37



Using the Naive Distribution

* Once you have a Naive Distribution you can easily
compute any row of the joint distribution.

* Suppose A, B, C and D are independently
distributed. What is P(A* ~B * C* ~D)?

P(A) P(~B) P(C) P(~D)

38



Naive Distribution General Case

* Suppose X, X,,...,X4 are independently distributed.

Pr(X, =x,..., X, =x,)=Pr(X, =x,) ... Pr(X, =x)

e So if we have a Naive Distribution we can
construct any row of the implied Joint Distribution
on demand.

e How do we learn this?

39



Learning a Naive Density

Estimator
P(X, =x)= #records with X, = x, MLE
#records
#recordswith X. =x. +
P(X, =x,)= d Bk Dirichlet (MAP)

#records+ m

Another trivial learning algorithm!

40



Is this an interesting learning algorithm? n,

* For n-grams, what is IA’(C=effect | A=will)?

* Injoint: IA’(C=effect | A=will) = 0.38

+ In naive: P(C=effect | A=will) = P(C=effect) = #[C=effect]/
#totalNgrams = 0.94 (!)

* What is P(C=effect | B=no)?
* Injoint: P(C=effect | B=no) = 0.999
* Innaive: P(C=effect | B=no) = P(C=effect) = 0.94

C
C

41



Can we make this interesting? Yes!

* Key ideas:
— Pick the class variable Y
— Instead of estimating P(X,...,X,,Y) = P(X)*...*P(X)*Y,
estimate P(X,,...,. X, | Y) =P(X; | Y)*...*P(X,]Y)
— Or, assume P(X, | Y)=Pr(X, | X;,..., X 1,Xi41,--- X, Y)

— Or, that X is conditionally independent of every X, j!=i,
given Y.

— How to estimate?

MLE or MAP

42



The Naive Bayes classifier - v1

* Dataset: each example has
— A unique id 1d
* Why? For debugging the feature extractor

— d attributes X;,..., X,
* Each X; takes a discrete value in dom(X)

— One class label Y in dom(Y)
* You have a train dataset and a test dataset
e Assume:

— the dataset doesn’t fit in memory

— the model does stream through it

43



The Naive Bayes classifier - vO

* You have a train dataset and a test dataset
* Initialize an “event counter” (hashtable) C
* For each example id, y, x4,....,x; in train:
— C("Y=ANY") ++;, C("Y=y") ++
— Forjin 1..d:
o C(“Y=y A X=x") ++
* For each example id, y, x;,....,x,; in test:
— For each vy’ in dom(Y): d
« Compute Pr(y’,xy,....,x;) = (HPr(Xj =x,|Y = y')]Pr(Y =y')

4 Pr(X; =x,,Y=)") .
(H Pr(Y = ") )Pr(y_y)

— Return the best y’

44



The Naive Bayes classifier - vO

* You have a train dataset and a test dataset
* Initialize an “event counter” (hashtable) C
* For each example id, y, x4,....,x; in train:
— C("Y=ANY") ++;, C("Y=y") ++
— Forjin 1..d:
o C(“Y=y A X=x") ++
* For each example id, y, x;,....,x,; in test:
— For each vy’ in dom(Y): d
« Compute Pr(y’,xy,....,x;) = (HPr(Xj =x,|Y = y')]Pr(Y =y')

_(TTEW =X AY=0)) =)
- H C(Y =" C(Y = ANY)

— Return the best y’

45



The Naive Bayes classifier - vO

* You have a train dataset and a test dataset
* Initialize an “event counter” (hashtable) C
* For each example id, y, x4,....,x; in train:
— C("Y=ANY") ++;, C("Y=y") ++
— Forjin 1..d:
o C(“Y=y A X=x") ++
* For each example id, y, x;,....,x,; in test:
— For each vy’ in dom(Y): d
* Compute Pr(y’,xy,....,x;) = (HPr(Xj =x,|Y = y')]Pr(Y =y')

]=

_ ﬁC(XJ =X, AY=))\ C(¥=)"
= C(Y=y" C(Y = ANY) This may overtfit, so ...

— Return the best y’

46



The Naive Bayes classifier - v1

* You have a train dataset and a test dataset
* Initialize an “event counter” (hashtable) C
* For each example id, y, x4,....,x; in train:
— C("Y=ANY") ++;, C("Y=y") ++
— Forjin 1..d:
o C(“Y=y A X=x") ++
* For each example id, y, x;,....,x,; in test:
— For each vy’ in dom(Y): d
* Compute Pr(y’,xy,....,x;) = (HPr(Xj =x,|Y = y')]Pr(Y =y')
L
CY =y)+mq, where:

C =ANY)+m o domY) |

~ ﬁC(Xj =X, AY =y)+mgq,
CY=y)+m

j=1

mq,=1
— Return the best y’

This may underflow, so ...
47



The Naive Bayes classifier - v1

* You have a train dataset and a test dataset
* Initialize an “event counter” (hashtable) C
* For each example id, y, x4,....,x; in train:

— C("Y=ANY") ++;, C("Y=y") ++

— Forjin 1..d:
* C("Y=y N X=x") ++ where:
* For each example id, y, x;,....,x,; in test: g;=1/dom(X)) |
— For each y" in dom(Y): q,=1/1dom(Y)]|

mq,=1
« Compute log Pr(y’,xy,....,x,) =

CX,=x,AY=)")+mg, CY =y)+mgq,
= Elog +log
- CY=y")+m C(Y =ANY)+m

— Return the best y’
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The Naive Bayes classifier - v2

* For text documents, what features do you use?
* One common choice:
— X, = first word in the document
— X, = second word in the document
— X5 = third ...
- X, = ...
* But: Pr(X,;=hockey | Y=sports) is probably not
that different from Pr(X;;=hockey | Y=sports)...so
instead of treating them as different variables,

treat them as ditferent copies of the same
variable

49



The Naive Bayes classifier - v1

* You have a train dataset and a test dataset
* Initialize an “event counter” (hashtable) C
* For each example id, y, x4,....,x; in train:
— C("Y=ANY") ++;, C("Y=y") ++
— Forjin 1..d:
o C(“Y=y A X=x") ++
* For each example id, y, x;,....,x,; in test:
— For each vy’ in dom(Y): d
* Compute Pr(y’,xy,....,x;) = (HPr(Xj =x,|Y = y')]Pr(Y =y')

4 Pr(X; =x,,Y=)") .
(H Pr(Y = ") )Pr(y_y)

— Return the best y’

50



The Naive Bayes classifier - v2

* You have a train dataset and a test dataset
* Initialize an “event counter” (hashtable) C
* For each example id, y, x4,....,x; in train:

— C("Y=ANY") ++;, C("Y=y") ++

— Forjin 1..d:

¢ C("Y=y N Xzx]) ++

* For each example id, y, x;,....,x,; in test:

— For each y" in dom(Y): ( J

« Compute Pr(y’,xy,....,x;) = HPI(X/= x|V = y')]Pr(Y =y")

]=

(TP &e=x, Y =90
_(H P = ) )Pr(Y—y)

j=1

— Return the best y’
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The Naive Bayes classifier - v2

* You have a train dataset and a test dataset
* Initialize an “event counter” (hashtable) C
* For each example id, y, x4,....,x; in train:
— C("Y=ANY") ++;, C("Y=y") ++
— Forjin 1..d:
« C("Y=y N X=x") ++
* For each example id, y, x;,....,x,; in test:
— For each vy’ in dom(Y): d
* Compute Pr(y’,xy,....,x;) = (HPI‘(X =x,|Y = y'))Pr(Y =y'")

L Pr(X=x,Y=y"
— J Pr(Y = v'
(]‘[ TR ) oY =y")

— Return the best y’
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The Naive Bayes classifier - v2

* You have a train dataset and a test dataset
* Initialize an “event counter” (hashtable) C
* For each example id, y, x4,....,x; in train:

— C("Y=ANY") ++;, C("Y=y") ++

— Forjin 1..d:
» C("Y=y N X=x") ++ where:
* For each example id, y, x;,....,x,; in test: q;=1|V|
— For each y" in dom(Y): qu==11/ | dom(Y) |
* Compute log Pr(y’,xy,....,x,) = §
o CY=y)+mgq,

C(X =x,AY = y)+mg,
= Elog . +log
- C(X=ANY AY =y)+m C(Y =ANY)+m

— Return the best y’
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The Naive Bayes classifier - v2

* You have a train dataset and a test dataset
* To classify documents, these might be:

— http://wcohen.com academic,FacultyHome William W. Cohen Research
Professor Machine Learning Department Carnegie Mellon University
Member of the Language Technology Institute the joint CMU-Pitt Program
in Computational Biology the Lane Center for Computational Biology and
the Center for Bioimage Informatics Director of the Undergraduate Minor in
Machine Learning Bio Teaching Projects Publications recent all Software
Datasets Talks Students Colleagues Blog Contact Info Other Stuff ...

— http://google.com commercial Search Images Videos ....

* How about for n-grams?

54



The Naive Bayes classifier - v2

* You have a train dataset and a test dataset

* To do C-S spelling correction these might be
— ngl223 etfect a_the b_main d_of e_the
— ngl224 affect a_shows b_not d_mice e_in

* Le., encode event X;=w with another event X=1_w

* Question: are there any differences in behavior
from using A,B,C,D ?

55



Assume hashtable holding all counts fits in memory

Complexity of Naive Bayes

* You have a train dataset and a test dataset Sequential reads
* Initialize an “event counter” (hashtable) C 1
 For each example id, y, x;,....,x; in train: Complexity: O(n),

_ C(” Y=ANY”) ++; C(” Y—y” Tt n=size of train

— Forjin 1..d:

» C("Y=y N X=x") ++ where:

* For each example id, y, x;,....,x,; in test: q;=1|V|

— For each vy’ in dom(Y): qu;ll/ | dom(Y) |

* Compute log Pr(y’,xy,....,x,) =

Sequential reads

El CX=x,AY=y)+mgq, CY=y)+mgq, /
= og +lo

C(X=ANY AY =y)+m gC(Y=ANY)+m

, Complexity: O( | dom(Y) |
— Return the best y *1'), n'=size of test
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Complexity of Naive Bayes

* You have a train dataset and a test dataset
e Process:

— Count events in the train dataset
* O(n), where n is total size of train
— Write the counts to disk
* O(min( |dom(X) | *|dom(Y)|, n)
* O(|V]), it V is vocabulary and dom(Y) is small
— Classity the test dataset
£ O(| V[ +n
— Worst-case memory usage:
* O(min( | dom(X) | *|dom(Y)|, n)
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Naive Bayes v2

 This is one example of a streaming classifier
— Each example is only read only once

— You can create a classifier and perform
classifications at any point

— Memory is minimal (<< O(n))
* Ideally it would be constant
* Traditionally less than O(sqrt(IN))

— Order doesn’t matter

* Nice because we may not control the order of
examples in real life

* This is a hard one to get a learning system to have!

* There are few competitive learning methods that as
stream-y as naive bayes...

58



Rocchio’s Algorithm



Motivation

* Naive Bayes is unusual as a learner:
—Only one pass through data
—Order doesn’t matter

60



Rocchio’s algorithm

* Relevance Feedback in Information Retrieval, SMART Retrieval System
Experiments in Automatic Document Processing, 1971, Prentice Hall
Inc.

61



| , |
Rocchio’s algorithm Many
variants of
these
DF (w) = #different docs w occurs in formulae
TF(w,d)=#different times w occurs indoc d | 5iongas
1) u(w,d)=0 for
]DF(W) = words not in d!/
DF(w)
u(w,d)=1log(TF(w,d)+1)log(IDF(w))
St 1 - i
u(d) = (0.t ) Sore only non st n

ol o owd) o, u(d")
T |2||u(d)||2 Pio—ci,2 la(d "I,

y deEC, y d'€D-C,
u(d) u(y) But size of u(y) is O(|ny/| )

f(d)=argmax
“Ma(d) I, Ta(y)ll, >
ul, = [Du

! 62



Rocchio results...

Joacchim 98, “ A Probabilistic Analysis of the Rocchio Algorithm...”

PrTFIDF | BAYES | TFIDF
Newsgroups 91.8 89.6 86.3
“acq” 88.9 88.5 84.5
“wheat” 93.9 94.8 90.9
“crude” 90.2 95.5 85.4
“earn” 90.5 90.9 90.6
“cbond” 91.9 90.9 87.7

Table 2: Maximum accuracy in percentages.

T 1

Variant TF and IDF formulas Rocchio’s method (w/ linear TF)
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L

(] | [ [ #1 #2 | #3 | #4 | #5 |
# of documents 21,450 @ 14,347 (13,27212,902(12,902
# of training documents 14,704 | 10,667 | 9,610 |9,603 | 9,603
# of test documents 6,746 3,680 |3,662 3,299 3,299
# of categories 135 93 92 90 10
(] System | Type [ Results reported by Il [ [ [ []
WORD (non-learning) Yang [1999] .150 310 | .290
probabilistic [Dumais et al. 1998] 752 | .815
probabilistic [Joachims 1998] 720
probabilistic [Lam et al. 1997] 443 (MFy)
ProrBaves probabilistic [Lewis 1992a] .650
Bm probabilistic [Li and Yamanishi 1999] 147
probabilistic [Li and Yamanishi 1999] 773
NB probabilistic [Yang and Liu 1999] 795
decision trees [Dumais et al. 1998] .884
C4.5 decision trees [Joachims 1998] 794
IND decision trees | [Lewis and Ringuette 1994] 670
Swap-1 decision rules [Apté et al. 1994] .805
RIPPER decision rules [Cohen and Singer 1999] .683 811 .820
SLEEPINGEXPERTS | decision rules [Cohen and Singer 1999] 753 759 827
Dr-Esc decision rules [Li and Yamanishi 1999] .820
CHARADE decision rules [Moulinier and Ganascia 1996] 738
CHARADE decision rules [Moulinier et al. 1996] '.783 (Fy)
Lisr regression [Yang 1999] 855 | .810
LLsF regression [Yang and Liu 1999] .849
BALANCEDWINNOW on-line linear [Dagan et al. 1997] 747 (M) .833 (M)

Wiprow-HoFF | on-line linear [Lam and Ho 1998] .822
RoccHio batch linear [Cohen and Singer 1999] .660 748 776
FINDSIM batch linear [Dumais et al. 1998] 617 | .646
RoccHio batch linear [Joachims 1998] 799
RoccHio batch linear [Lam and Ho 1998] 781
RoccHio batch linear [Li and Yamanishi 1999] 625

CLassI neural network| [Ng et al. 1997] .802
NNET neural network Yang and Liu 1999] .838
neural network [Wiener et al. 1995] .820
Gis-W example-based [Lam and Ho 1998] .860
k-NN example-based [Joachims 1998] .823
k-NN example-based [Lam and Ho 1998] 820
k-NN example-based [Yang 1999] .690 852 | .820
k-NN example-based [Yang and Liu 1999] .856
SVM [Dumais et al. 1998] .870 | .920
SvMLIGHT SVM [Joachims 1998] .864
SvMLIGHT SVM [Li Yamanishi 1999] 841
SvMmLIGHT SVM [Yang and Liu 1999] .859
ApaBoostMH committee [Schapire and Singer 2000] .860
committee [Weiss et al. 1999] .878
Bayesian net [Dumais et al. 1998] .800 | .850
Bayesian net [Lam et al. 1997] 542 (MF)

6
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Error Difference: Rocchio - AdaBoost

Rocchio results...

Schapire, Singer, Singhal, “Boosting and Rocchio Applied to Text Filtering”, SIGIR 98

20 . = o 60
- e
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. " "am = E = m . " S 0 - ] [ ] . s
0 c LI - _um - - -
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Number of Positive Examples Number of Positive Examples

Reuters 21578 - all classes (not just the frequent ones)
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A hidden agenda

* Part of machine learning is good grasp of theory
* Part of ML is a good grasp of what hacks tend to work
* These are not always the same

— Especially in big-data situations

« Catalog of useful tricks so far

— Brute-force estimation of a joint distribution
— Naive Bayes

— Stream-and-sort, request-and-answer patterns
— BLRT and KL-divergence (and when to use them)
— TF-IDF weighting - especially IDF
* it’s often useful even when we don’t understand why
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One more Rocchio observation

Rennie et al, ICML 2003, “Tackling the Poor Assumptions of Naive Bayes

Text Classifiers”

MNB | TWCNB | SVM
Industry Sector | 0.582 0.923 0.934
20 Newsgroups | 0.848 0.861 0.862
Reuters (micro) | 0.739 0.844 0.887
Reuters (macro) | 0.270 0.647 0.694

L]

NB + cascade of hacks
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One more Rocchio observation

Rennie et al, ICML 2003, “Tackling the Poor Assumptions of Naive Bayes
Text Classifiers”

e TWCNB(d, 7))

1.
2.

L

N oo

di; = log(d;; +1) (TF transform § 4.1)
d;j = d;;log il (IDF transform § 4.2)

O 2k dik

cdij = i (length norm. § 4.3 )

>k (dij)?
Zj:'!lj #c di.j +a;
zj:y;i?éc >k dijta

A

Wes = log 9(:1’

0. = (complement § 3.1)

Wep = Z"“fz-‘ - (weight normalization § 3.2)
1 'Cl

Let t = (t1,...,t,) be a test document; let ¢;
be the count of word s.

Label the document according to

[(t) = arg min E tiwe;
C
i

“In tests, we found the
length normalization to
be most useful, followed
by the log transform...
these transforms were
also applied to the input
of SVM”.
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