
RECAP: THE COURSE SO FAR… 
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First Lecture - Review 

•  Admin stuff 
•  Review – Why to scale, how to count and 

what to count 
•  How: O(…) 
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Why to scale: c. 2001 (Banko & Brill, ACL 2001) 

Task: distinguish pairs of easily-confused 
words (“affect” vs “effect”) in context 
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Numbers (Jeff Dean says) Everyone 
Should Know 
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Update: Colin Scott, UCB 

file:///Users/wcohen/Documents/code/interactive_latencies/
interactive_latency.html  

This isn’t on the web but is 
available thru GitHub 
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What’s Happening with Hardware? 

•  Clock speed: stuck at 3Ghz for ~ 10 years 
•  Net bandwidth doubles ~ 2 years 
•  Disk bandwidth doubles ~ 2 years 
•  SSD bandwidth doubles ~ 3 years 
•  Disk seek speed doubles ~ 10 years 
•  SSD latency nearly saturated 
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Numbers (Jeff Dean says) Everyone 
Should Know 
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A typical CPU (not to scale) 
K8 core in the AMD Athlon 64 
CPU 

16x bigger 

256x bigger 

Hard disk 
(1Tb) 128x bigger 
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A typical CPU (not to scale) 
K8 core in the AMD Athlon 64 
CPU 

16x bigger 

256x bigger 

Hard disk 
(1Tb) 128x bigger 
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A typical disk 
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Numbers (Jeff Dean says) Everyone 
Should Know 

 

~= 100,000x 

40x 
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What do we count? 

•  Compilers don’t warn Jeff Dean.  Jeff Dean warns 
compilers. 

•  …. 

•  Memory access/instructions are 
qualitatively different from disk access 

•  Seeks are qualitatively different from 
sequential reads on disk 

•  Cache, disk fetches, etc work best when 
you stream through data sequentially 

•  Best case for data processing: stream 
through the data once in sequential order, 
as it’s found on disk. 
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Other lessons -? 

* but not important 
enough for this class’s 
assignments…. 

* 

16 



What to count 
Operation ~ Time x/100ns x/10M ns 

random access, RAM 100 ns 1 

read 1 Mb sequentially – RAM 250,000 ns 2,500 

random access, disk (seek) 10,000,000 ns 100,000 1 

read 1Mb sequentially  - net 10,000,000 ns 1 

read 1Mb sequentially  - disk 30,000,000 ns 3 
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First lecture: review 

•  Admin stuff 
•  Review – Why to scale, how to count and 

what to count 

•  What sort of computations do we want to do 
in (large-scale) machine learning programs? 
– Probability 
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PROBABILITY AND SCALABILITY: 
LEARNING AND COUNTING 
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Big ML c. 2001 (Banko & Brill, “Scaling to Very Very Large…”, ACL 
2001) 

Task: distinguish pairs of easily-confused words 
(“affect” vs “effect”) in context 
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Why More Data Helps: A Demo 
•  Data: 

– All 5-grams that appear >= 40 times in a corpus of 
1M English books 

•  approx 80B words 
•  5-grams: 30Gb compressed, 250-300Gb uncompressed 
•  Each 5-gram contains frequency distribution over 

years 
– Wrote code to compute  

•  Pr(A,B,C,D,E|C=affect or C=effect)  
•  Pr(any subset of A,…,E|any other fixed values of A,

…,E with C=affect V effect) 
– Demo: 

•  /Users/wcohen/Documents/code/pyhack/bigml 
•  eg: python ngram-query.py data/aeffect-train.txt _ _B effect _ _ 
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Why More Data Helps 
•  Data: 

–  All 5-grams that appear >= 40 times in a corpus of 1M English 
books 

•  approx 80B words 
•  5-grams: 30Gb compressed, 250-300Gb uncompressed 
•  Each 5-gram contains frequency distribution over years 

–  Wrote code to compute  
•  Pr(A,B,C,D,E|C=affect or C=effect)  
•  Pr(any subset of A,…,E|any other fixed values of A,…,E with 

C=affect V effect) 
•  Observations [from playing with data]: 

–  Mostly effect not affect 
–  Most common word before affect is not 
–  After not effect most common word is a   
–  … 
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The Joint Distribution 

Recipe for making a joint distribution of 
M variables: 

 
1.  Make a truth table listing all 

combinations of values of your 
variables (if there are M Boolean 
variables then the table will have 2M 

rows). 
2.  For each combination of values, say 

how probable it is. 
3.  If you subscribe to the axioms of 

probability, those numbers must sum 
to 1. 

Example: Boolean variables A, 
B, C 

A B C Prob 
0 0 0 0.30 

0 0 1 0.05 

0 1 0 0.10 

0 1 1 0.05 

1 0 0 0.05 

1 0 1 0.10 

1 1 0 0.25 

1 1 1 0.10 

 
 
 

A 

B 

C 0.05 
0.25 

0.10 0.05 0.05 

0.10 

0.10 
0.30 
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Some of the Joint Distribution 

A B C D E  p 

is the effect of the 0.00036 

is the  effect of a 0.00034 

. The effect of this 0.00034 

to this effect : “ 0.00034 

be the effect of the … 

… … … … … 

not the effect of any 0.00024 

… … … … … 

does not affect the general 0.00020 

does not affect the question 0.00020 

any manner affect the principle 0.00018 
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An experiment: how useful is the 
brute-force joint classifier? 

•  Extracted all affect/effect 5-grams from an old 
Reuters corpus 
– about 20k documents 
– about 723 n-grams, 661 distinct 
– Financial news, not novels or textbooks 

•  Tried to predict center word with: 
– Pr(C|A=a,B=b,D=d,E=e) 
– then P(C|A,B,D) 
– then P(C|B,D) 
– then P(C|B) 
– then P(C) 
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EXAMPLES 

– “The cumulative _ of the” à effect (1.0) 
– “Go into _ on January” à effect (1.0) 
– “From cumulative _ of accounting” not 

present in train data 
• Nor is ““From cumulative _ of _” 
• But “_ cumulative _ of _” à effect (1.0) 

– “Would not _ Finance Minister” not 
present 
• But “_ not _ _ _” à affect (0.9625) 
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Performance summary 

Pattern Used Errors 

P(C|A,B,D,E) 101 1 

P(C|A,B,D) 157 6 

P(C|B,D) 163 13 

P(C|B) 244 78 

P(C) 58 31 

Is this a useful density estimate? 

5% error 

3% error 

15% error 

5% error 
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What Have We Learned? 

•  Counting’s not enough -? 
•  Counting goes a long way with big data -? 

•  Big data can sometimes be made small 
– For a specific task, like this one 
– It’s all in the data preparation -? 

•  Often density estimation is more important than 
classification 

•  Counts are a good? density estimator 
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Density Estimation 

•  Our Joint Distribution learner is our first 
example of something called Density 
Estimation 

•  A Density Estimator learns a mapping from 
a set of attributes values to a Probability 

Density 
Estimator 

Probability 
Input 
Attributes 
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Density Estimation 

•  Compare it against the two other major 
kinds of models: 

 
Regressor 
 

Prediction of 
real-valued output 

Input 
Attributes 

Density 
Estimator 

Probability 
Input 
Attributes 

 
Classifier 
 

Prediction of 
categorical output or class 

Input 
Attributes 

One of a few discrete values 
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Density Estimation ! Classification 

Density 
Estimator 

P(x,y) 
Input  
Attributes 

 
Classifier 
 

Prediction of 
categorical output 

Input 
Attributes 
x 

One of y1, …., yk 

Class 

To classify x  
1.  Use your estimator to compute P(x,y1), …., P(x,yk) 
2.  Return the class y* with the highest predicted probability 

Ideally is correct with P(x,y*)  =  P(x,y*)/(P(x,y1) + …. + P(x,yk)) 

^ ^ 

^ ^ ^ ^ 

^ 

Binary case: 
predict POS 
if P(x)>0.5 ^ 
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Classification vs Density Estimation 

Classification Density Estimation 
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Classification vs density 
estimation 
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PROBABILITY AND SCALABILITY: 
NAÏVE BAYES 

Second most scalable learning method in the world? 
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Performance … 

Pattern Used Errors 

P(C|A,B,D,E) 101 1 

P(C|A,B,D) 157 6 

P(C|B,D) 163 13 

P(C|B) 244 78 

P(C) 58 31 

•  Is this good performance? 
•  If we care about recall, what should we do? 
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Naïve Density Estimation 

What’s an alternative to the joint distribution? 

 

 

The naïve model generalizes strongly: 

Assume that each attribute is distributed 
independently of any of the other attributes. 
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Using the Naïve Distribution 

•  Once you have a Naïve Distribution you can easily 
compute any row of the joint distribution. 

•  Suppose A, B, C and D are independently 
distributed. What is P(A ^ ~B ^ C ^ ~D)? 
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Using the Naïve Distribution 

•  Once you have a Naïve Distribution you can easily 
compute any row of the joint distribution. 

•  Suppose A, B, C and D are independently 
distributed. What is P(A ^ ~B ^ C ^ ~D)? 

 
 P(A) P(~B) P(C) P(~D) 
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Naïve Distribution General Case 

•  Suppose X1,X2,…,Xd are independently distributed. 

•  So if we have a Naïve Distribution we can 
construct any row of the implied Joint Distribution 
on demand. 

• How do we learn this? 

)Pr(...)Pr(),...,Pr( 1111 dddd xXxXxXxX =⋅⋅====
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Learning a Naïve Density 
Estimator 

Another trivial learning algorithm! 

MLE 

Dirichlet (MAP) 

records#
 with records#)( ii

ii
xXxXP =

==

m
mqxXxXP ii

ii +

+=
==

records#
 with records#)(
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Is this an interesting learning algorithm? 

•  For n-grams, what is P(C=effect|A=will)? 
•  In joint: P(C=effect|A=will) = 0.38 
•  In naïve: P(C=effect|A=will) = P(C=effect) = #[C=effect]/

#totalNgrams = 0.94 (!) 

•  What is P(C=effect|B=no)? 
•  In joint: P(C=effect|B=no) = 0.999 
•  In naïve: P(C=effect|B=no) = P(C=effect) = 0.94 

^ 

^ 

^ ^ 

^ 

^ 

^ ^ 

No 
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Can we make this interesting? Yes! 

•  Key ideas: 
–  Pick the class variable Y 
–  Instead of estimating P(X1,…,Xn,Y) = P(X1)*…*P(Xn)*Y, 

estimate P(X1,…,Xn|Y) = P(X1|Y)*…*P(Xn|Y) 
–  Or, assume P(Xi|Y)=Pr(Xi|X1,…,Xi-1,Xi+1,…Xn,Y)  
–  Or, that Xi is conditionally independent of every Xj, j!=i, 

given Y. 

–  How to estimate? 

MLE or MAP 
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The Naïve Bayes classifier – v1 

•  Dataset: each example has 
– A unique id id 

•  Why? For debugging the feature extractor 

– d attributes X1,…,Xd 
•  Each Xi takes a discrete value in dom(Xi) 

– One class label Y in dom(Y) 
•  You have a train dataset and a test dataset 
•  Assume:  

–  the dataset doesn’t fit in memory 
–  the model does  stream through it 
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The Naïve Bayes classifier – v0 
•  You have a train dataset and a test dataset 
•  Initialize an “event counter” (hashtable) C 
•  For each example id, y, x1,….,xd in train: 

– C(“Y=ANY”) ++;   C(“Y=y”) ++ 
–  For j in 1..d: 

•  C(“Y=y ^ Xj=xj”) ++ 
•  For each example id, y, x1,….,xd in test: 

–  For each y’ in dom(Y): 
•  Compute Pr(y’,x1,….,xd) =  

–  Return the best y’ 

)'Pr()'|Pr(
1

yYyYxX
d

j
jj =⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
==∏

=

)'Pr(
)'Pr(

)',Pr(

1

yY
yY

yYxXd

j

jj =⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

=

==
= ∏

=

44 



The Naïve Bayes classifier – v0 
•  You have a train dataset and a test dataset 
•  Initialize an “event counter” (hashtable) C 
•  For each example id, y, x1,….,xd in train: 

– C(“Y=ANY”) ++;   C(“Y=y”) ++ 
–  For j in 1..d: 

•  C(“Y=y ^ Xj=xj”) ++ 
•  For each example id, y, x1,….,xd in test: 

–  For each y’ in dom(Y): 
•  Compute Pr(y’,x1,….,xd) =  

–  Return the best y’ 
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The Naïve Bayes classifier – v0 
•  You have a train dataset and a test dataset 
•  Initialize an “event counter” (hashtable) C 
•  For each example id, y, x1,….,xd in train: 

– C(“Y=ANY”) ++;   C(“Y=y”) ++ 
–  For j in 1..d: 

•  C(“Y=y ^ Xj=xj”) ++ 
•  For each example id, y, x1,….,xd in test: 

–  For each y’ in dom(Y): 
•  Compute Pr(y’,x1,….,xd) =  

–  Return the best y’ 
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The Naïve Bayes classifier – v1 
•  You have a train dataset and a test dataset 
•  Initialize an “event counter” (hashtable) C 
•  For each example id, y, x1,….,xd in train: 

– C(“Y=ANY”) ++;   C(“Y=y”) ++ 
–  For j in 1..d: 

•  C(“Y=y ^ Xj=xj”) ++ 
•  For each example id, y, x1,….,xd in test: 

–  For each y’ in dom(Y): 
•  Compute Pr(y’,x1,….,xd) =  

–  Return the best y’ 
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This may underflow, so … 
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The Naïve Bayes classifier – v1 
•  You have a train dataset and a test dataset 
•  Initialize an “event counter” (hashtable) C 
•  For each example id, y, x1,….,xd in train: 

– C(“Y=ANY”) ++;   C(“Y=y”) ++ 
–  For j in 1..d: 

•  C(“Y=y ^ Xj=xj”) ++ 
•  For each example id, y, x1,….,xd in test: 

–  For each y’ in dom(Y): 
•  Compute log Pr(y’,x1,….,xd) =  

–  Return the best y’ 
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where: 
qj = 1/|dom(Xj)| 
qy = 1/|dom(Y)| 
mqx=1 
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The Naïve Bayes classifier – v2 
•  For text documents, what features do you use? 
•  One common choice: 

– X1 = first word in the document 
– X2 = second word in the document 
– X3 = third … 
– X4 = … 
– … 

•  But: Pr(X13=hockey|Y=sports) is probably not 
that different from Pr(X11=hockey|Y=sports)…so 
instead of treating them as different variables, 
treat them as different copies of the same 
variable 
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The Naïve Bayes classifier – v1 
•  You have a train dataset and a test dataset 
•  Initialize an “event counter” (hashtable) C 
•  For each example id, y, x1,….,xd in train: 

– C(“Y=ANY”) ++;   C(“Y=y”) ++ 
–  For j in 1..d: 

•  C(“Y=y ^ Xj=xj”) ++ 
•  For each example id, y, x1,….,xd in test: 

–  For each y’ in dom(Y): 
•  Compute Pr(y’,x1,….,xd) =  

–  Return the best y’ 
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The Naïve Bayes classifier – v2 
•  You have a train dataset and a test dataset 
•  Initialize an “event counter” (hashtable) C 
•  For each example id, y, x1,….,xd in train: 

– C(“Y=ANY”) ++;   C(“Y=y”) ++ 
–  For j in 1..d: 

•  C(“Y=y ^ Xj=xj”) ++ 
•  For each example id, y, x1,….,xd in test: 

–  For each y’ in dom(Y): 
•  Compute Pr(y’,x1,….,xd) =  

–  Return the best y’ 
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The Naïve Bayes classifier – v2 
•  You have a train dataset and a test dataset 
•  Initialize an “event counter” (hashtable) C 
•  For each example id, y, x1,….,xd in train: 

– C(“Y=ANY”) ++;   C(“Y=y”) ++ 
–  For j in 1..d: 

•  C(“Y=y ^ X=xj”) ++ 
•  For each example id, y, x1,….,xd in test: 

–  For each y’ in dom(Y): 
•  Compute Pr(y’,x1,….,xd) =  

–  Return the best y’ 
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The Naïve Bayes classifier – v2 
•  You have a train dataset and a test dataset 
•  Initialize an “event counter” (hashtable) C 
•  For each example id, y, x1,….,xd in train: 

– C(“Y=ANY”) ++;   C(“Y=y”) ++ 
–  For j in 1..d: 

•  C(“Y=y ^ X=xj”) ++ 
•  For each example id, y, x1,….,xd in test: 

–  For each y’ in dom(Y): 
•  Compute log Pr(y’,x1,….,xd) =  

–  Return the best y’ 

= log
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where: 
qj = 1/|V| 
qy = 1/|dom(Y)| 
mqx=1 
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The Naïve Bayes classifier – v2 

•  You have a train dataset and a test dataset 
•  To classify documents, these might be: 

–  http://wcohen.com academic,FacultyHome William W. Cohen Research 
Professor Machine Learning Department Carnegie Mellon University 
Member of the Language Technology Institute the joint CMU-Pitt Program 
in Computational Biology the Lane Center for Computational Biology and 
the Center for Bioimage Informatics Director of the Undergraduate Minor in 
Machine Learning Bio Teaching Projects Publications recent all Software 
Datasets Talks Students Colleagues Blog Contact Info Other Stuff … 

–  http://google.com commercial Search Images Videos …. 
–  … 

•  How about for n-grams? 
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The Naïve Bayes classifier – v2 

•  You have a train dataset and a test dataset 
•  To do C-S spelling correction these might be 

–  ng1223  effect a_the b_main d_of e_the 
–  ng1224  affect a_shows b_not d_mice e_in 
–  …. 

•  I.e., encode event Xi=w with another event X=i_w 

•  Question: are there any differences in behavior 
from using A,B,C,D ? 
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Complexity of Naïve Bayes 
•  You have a train dataset and a test dataset 
•  Initialize an “event counter” (hashtable) C 
•  For each example id, y, x1,….,xd in train: 

– C(“Y=ANY”) ++;   C(“Y=y”) ++ 
–  For j in 1..d: 

•  C(“Y=y ^ X=xj”) ++ 
•  For each example id, y, x1,….,xd in test: 

–  For each y’ in dom(Y): 
•  Compute log Pr(y’,x1,….,xd) =  

–  Return the best y’ 

= log
C(X = x j ∧Y = y ')+mqx
C(X = ANY ∧Y = y ')+mj

∑
#

$
%%

&

'
((+ log

C(Y = y ')+mqy
C(Y = ANY )+m

where: 
qj = 1/|V| 
qy = 1/|dom(Y)| 
mqx=1 

Complexity: O(n), 
n=size of train 

Complexity: O(|dom(Y)|
*n’), n’=size of test 

Assume hashtable holding all counts fits in memory 

Sequential reads 

Sequential reads 

56 



Complexity of Naïve Bayes 

•  You have a train dataset and a test dataset 
•  Process: 

– Count events in the train dataset 
• O(n), where n is total size of train 

– Write the counts to disk 
• O(min(|dom(X)|*|dom(Y)|, n) 
• O(|V|), if V is vocabulary and dom(Y) is small 

– Classify the test dataset 
• O(|V|+n’) 

– Worst-case memory usage: 
• O(min(|dom(X)|*|dom(Y)|, n) 
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Naïve Bayes v2 
•  This is one example of a streaming classifier 

– Each example is only read only once 
– You can create a classifier and perform 

classifications at any point 
– Memory is minimal (<< O(n)) 

•  Ideally it would be constant 
•  Traditionally less than O(sqrt(N)) 

– Order doesn’t matter 
•  Nice because we may not control the order of 

examples in real life 
•  This is a hard one to get a learning system to have! 

•  There are few competitive learning methods that as 
stream-y as naïve Bayes… 
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Rocchio’s Algorithm 

59 



Motivation 

•  Naïve Bayes is unusual as a learner: 
– Only one pass through data 
– Order doesn’t matter 
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Rocchio’s algorithm 
•  Relevance Feedback in Information Retrieval, SMART Retrieval System 

Experiments in Automatic Document Processing, 1971, Prentice Hall 
Inc.  
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Rocchio’s algorithm 

DF(w) = # different docs w occurs in 
TF(w,d) = # different times w occurs in doc d

IDF(w) = |D |
DF(w)

u(w,d) = log(TF(w,d)+1) ⋅ log(IDF(w))
u(d) = u(w1,d),....,u(w|V |,d)

u(y) =α 1
|Cy |

u(d)
||u(d) ||2d∈Cy

∑ −β
1

|D−Cy |
u(d ')

||u(d ') ||2d '∈D−Cy

∑

f (d) = argmaxy
u(d)

||u(d) ||2

⋅
u(y)

||u(y) ||2

Many 
variants of 
these 
formulae 

…as long as 
u(w,d)=0 for 
words not in d! 

Store only non-zeros in 
u(d), so size is O(|d| ) 

But size of u(y) is O(|nV| ) 

u
2
= ui

2

i
∑

62 



Rocchio results… 
Joacchim ’98, “A Probabilistic Analysis of the Rocchio Algorithm…”  

Variant TF and IDF formulas Rocchio’s method (w/ linear TF) 
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Rocchio results… 
Schapire, Singer, Singhal, “Boosting and Rocchio Applied to Text Filtering”, SIGIR 98 

Reuters 21578 – all classes (not just the frequent ones) 
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A hidden agenda 
•  Part of machine learning is good grasp of theory 
•  Part of ML is a good grasp of what hacks tend to work 
•  These are not always the same 

–  Especially in big-data situations 

•  Catalog of useful tricks so far 
–  Brute-force estimation of a joint distribution 
–  Naive Bayes 
–  Stream-and-sort, request-and-answer patterns 
–  BLRT and KL-divergence (and when to use them) 
–  TF-IDF weighting – especially IDF 

•  it’s often useful even when we don’t understand why 
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One more Rocchio observation 

Rennie et al, ICML 2003, “Tackling the Poor Assumptions of Naïve Bayes 
Text Classifiers” 

NB + cascade of hacks 
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One more Rocchio observation 

Rennie et al, ICML 2003, “Tackling the Poor Assumptions of Naïve Bayes 
Text Classifiers” 

“In tests, we found the 
length normalization to 
be most useful, followed 
by the log transform…
these transforms were 
also applied to the input 
of SVM”. 
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