
Course overview: 10-605/805

William Cohen

1

ADMINISTRIVIA

2

Who/Where/When
•  OfEice Hours:

– Still TBA for all of us, check the wiki
•  Course assistant: Dorothy Holland-Minkley (dEh@cs)
•  Wiki: google://”cohen CMU”àteaching à

–  http://curtis.ml.cmu.edu/w/courses/index.php/
Machine_Learning_with_Large_Datasets_10-605_in_Fall_2016

–  this should point to everything else: Piazza, Autolab, ….

•  Instructor:
– William W. Cohen

•  TAs:
– Bhuwan Dhingra; Yuxing Zhang; Xu Lanxiao
– Tzu-Ming Kuo; Chenran Li; Yulan Huang
– Karandeep Johar; Jingyuan Liu

3

How Many
•  This room holds 150
•  There are 330 signed up + waitlisted
•  I hope the waitlist clears but I can’t promise

– It always has before

•  It’s coming back next fall (I’m on leave spring)
•  Materials will be on-line

4

Who/Where/When
•  William W. Cohen

– 1990-mid 1990’s: AT&T Bell Labs (working on ILP
and scalable propositional rule-learning algorithms)

– Mid 1990’s—2000: AT&T Research (text
classiEication, data integration, knowledge-as-text,
information extraction)

– 2000-2002: Whizbang! Labs (info extraction from
Web)

– 2002-2008, 2010-now: CMU (IE, biotext, social
networks, learning in graphs, info extraction from
Web, scalable Eirst-order learning)

•  2008-2009: Visiting Scientist at Google

5

TAs

6

TA – Bhuwan Dhingra (GHC 6227)

I am a second year PhD student in
LTI working with Prof William
Cohen and Prof Russ
Salakhutdinov. My research
focuses on deep learning for
natural language processing, and I
have been involved in a variety of
different projects. Outside work I
enjoy hiking and traveling. I’ve
been told I am a calm person, so
don’t hesitate with any of your
questions!

7

Karandeep Johar–	MS in CS

I am a second year Masters
student in the Computer
Science Department ,
School of Computer
Science

I’m interested in scaling
machine learning
algorithms for large
datasets and solving
problems that arise when
we try and apply them in
real world contexts.

8

Lanxiao Xu	–	MLD

I'm a second year Masters student in MLD,
School of Computer Science.

I took this course last year and was very
interested in building machine learning models
in large scale context.

The contents of this course is very closely
related to how people apply ML techniques in
practice. You will learn a lof of awesome
things such as Hadoop, Spark and Pig, which
are constantly used in industry.

9

Tzu-Ming Kuo– MCDS in LTI

I'm a second year Masters student in LTI, School of
Computer Science.

I'm interested in applying Machine Learning to
solve various problems. This summer I interned at
LinkedIn data science team, augmenting LinkedIn
Economic Graph. Many topics I learnt in this
course was really helpful and crucial to my intern
project!

10

Chenran Li

Second year MIIS student.

Took 10-605 last year and enjoyed it a lot.

Interned at Google this summer and caught a
lot of Psyducks there.

11

Jingyuan Liu

I'm a second year master student from MIIS
program, LTI.

Took 10605 a year ago, super fun experience!

RA in Petuum Team, implemented scalable machine
learning algorithms with Parameter Server.

Intern in LinkedIn Data Science Team, data
extraction and clean with MapReduce (sclading),
scalable regression model.

12

Yuxing Zhang	–	MS in MLD

I'm a second year master student in
machine learning department.

I'm interested in working on large
scale machine learning systems. I
took 605 last year and found it a very
interesting and useful course.

13

Yulan Huang – MIIS in LTI

I'm a second year Masters student in LTI, School of
Computer Science.

I'm interested in applying machine learning
techniques to real world problems. I took 605 last
year and enjoyed it a lot. You will have a deeper
understanding about both machine learning
algorithms and machine learning in distributed
systems.

14

What/How
I kind of like language tasks, especially for this task:
– The data (usually) makes sense
– The models (usually) make sense
– The models (usually) are complex, so

•  More data actually helps
•  Learning simple models vs complex ones is sometimes

computationally different

15

What/How
•  Programming Language:

–  Java and Hadoop
– Python (more than last year)

•  Resources:
– Your desktop/laptop (to start)

•  You’ll need approximately 0.5Tb space.
– Opencloud hadoop cluster:

•  104 worker nodes, with 8 cores, 16 GB RAM, 4 1TB.
•  30 worker nodes, with 8 cores, 16 GB RAM, 250Gb+

– Amazon Elastic Cloud
•  Amazon EC2 [http://aws.amazon.com/ec2/]
•  Allocation: $50 worth of time per student

16

What/How: 10-605
•  Lecture course for MS and advanced undergrads
•  60% assignments (6/7)

– Mostly biweekly programming assignments
•  Not a lot of lines of code, but it will take you time to get

them right
– You can drop one, but some are cumulative

•  15% midterm
•  20% Einal
•  5% class participation & quizzes

17

What/How: 10-605 805
•  Project course for PhDs and MS students

– MS students, send me your cv for permission to
enroll

•  40% assignments (4/7)
•  15% midterm
•  40% project (no Einal)

– open-ended, self-directed project
–  Einal deliverable is a conference-length paper

•  5% class participation & quizzes

18

What/How: 10-605 students working on a
project with an 10-805 student
•  Lecture course for MS and advance undergrads
•  50% assignments (5/7)

–  Biweekly programming assignments
•  Not a lot of lines of code, but it will take you time to get them

right
–  You can drop one, but some are very cumulative

•  15% midterm
•  30% project (no Einal)
•  5% class participation & quizzes

•  There will be some match-making we do but it’s up to the
805 students to decide how much help they want/need.

19

What/How: 10-605 students working on a
project with an 10-805 student
•  Lecture course for MS and advance undergrads
•  50% assignments (5/7)

–  Biweekly programming assignments
•  Not a lot of lines of code, but it will take you time to get them

right
–  You can drop one, but some are very cumulative

•  15% midterm
•  30% project (no Einal)
•  5% class participation & quizzes

•  There will be some match-making we do but it’s up to the
805 students to decide how much help they want/need.

20

Quizzes and class participation
•  You should keep up with lectures
•  The 5% is to keep you honest
•  I’ve tried two things:

– Piazza polls (so sign in for Piazza with your
andrew account)

– QnA quizzes

•  All of these will close w/in 24 hours
•  What matters most is IF you do them
•  There is one for today so check the wiki!

21

What/How: 10-805 and 11-805
•  Projects

– 2012: everyone did projects and 5 HWs
• Guest lectures from industry, experts

– 2013: projects were optional
• not everyone wanted to do projects in
•  I wanted to give more programming depth

– 2014: nobody did projects
•  I had too many students

– Spring/fall 2015, fall 2016
• 805/605 split

22

What/How: cheating vs working together
•  I have a long and explicit policy

–  stolen from Roni Rosenfeld - read the web page
–  tl;dr: transmit information like they did in the stone

age, brain-to-brain, and document it
– do not copy anything digitally
– exceptions (eg projects) will be explicitly stated

– everybody involved will fail by default
– every infraction always gets reported up to the

OfEice of Academic Integrity, the head of your
program, the dean of your school, ….

23

What/How: 601 co-req
•  You should have as a prereq or co-req one of the

MLD’s intro ML courses: 10-401, 10-601, 10-701,
10-715

•  Lectures are designed to complement that
material
– computational aspects vs informational aspects

•  If it’s a co-req you need permission
– via email to wcohen+coreq@gmail.com
– we’re gonna check

24

BIG DATA HISTORY: FROM THE DAWN OF
TIME TO THE PRESENT

25

Big ML c. 1993 (Cohen, “Efficient…Rule Learning”, IJCAI 1993)

$ ripper ../tdata/talks
Final hypothesis is:
talk_announcement :- WORDS ~ talk, WORDS ~ Subject_talk (54/1).
talk_announcement :- WORDS ~ '2d416' (26/3).
talk_announcement :- WORDS ~ system, WORDS ~ 'To_1126@research' (4/0).
talk_announcement :- WORDS ~ mh, WORDS ~ time (5/1).
talk_announcement :- WORDS ~ talk, WORDS ~ used (3/0).
talk_announcement :- WORDS ~ presentations (2/1).
default non_talk_announcement (390/1).

26

27

More on this paper
Algorithm

•  Phase 1: build rules
–  Discrete greedy search:
–  Starting with empty rule set, add conditions greedily

•  Phase 2: prune rules
–  starting with phase 1 output, remove conditions

talk_announcement :- WORDS ~ talk, WORDS ~ Subject_talk, WORDS ~ p_comma.
talk_announcement :- WORDS ~ '2d416', WORDS ~ be.
talk_announcement :- WORDS ~ show, WORDS ~ talk (7/0).
talk_announcement :- WORDS ~ mh, WORDS ~ time, WORDS ~ research (4/0).
talk_announcement :- WORDS ~ system, WORDS ~ 'To_1126@research' (3/0).
talk_announcement :- WORDS ~ '2d416', WORDS ~ memory (3/0).
talk_announcement :- WORDS ~ interfaces, WORDS ~ From_p_exclaim_point (2/0).
talk_announcement :- WORDS ~ presentations, WORDS ~ From_att (2/0).
default non_talk_announcement .

28

More on this paper
Algorithm

•  Phase 1: build rules
–  Discrete greedy search:
–  Starting with empty rule set, add conditions greedily

•  Phase 2: prune rules
–  starting with phase 1 output, remove conditions, greedily

talk_announcement :- WORDS ~ talk, WORDS ~ Subject_talk, WORDS ~ p_comma (54/0).
talk_announcement :- WORDS ~ '2d416', WORDS ~ be (19/0).
talk_announcement :- WORDS ~ show, WORDS ~ talk (7/0).
talk_announcement :- WORDS ~ mh, WORDS ~ time, WORDS ~ research (4/0).
talk_announcement :- WORDS ~ system, WORDS ~ 'To_1126@research' (3/0).
talk_announcement :- WORDS ~ '2d416', WORDS ~ memory (3/0).
talk_announcement :- WORDS ~ interfaces, WORDS ~ From_p_exclaim_point (2/0).
talk_announcement :- WORDS ~ presentations, WORDS ~ From_att (2/0).
default non_talk_announcement .

29

More on this paper
Algorithm

•  Phase 1: build rules
–  Discrete greedy search:
–  Starting with empty rule set, add conditions greedily

•  Phase 2: prune rules
–  starting with phase 1 output, remove conditions, greedily

talk_announcement :- WORDS ~ talk, WORDS ~ Subject_talk (54/1).
talk_announcement :- WORDS ~ '2d416' (26/3).
talk_announcement :- WORDS ~ system, WORDS ~ 'To_1126@research' (4/0).
talk_announcement :- WORDS ~ mh, WORDS ~ time (5/1).
talk_announcement :- WORDS ~ talk, WORDS ~ used (3/0).
talk_announcement :- WORDS ~ presentations (2/1).
default non_talk_announcement (390/1).

30

More on this paper
Algorithm

•  Fit the POS,NEG example
•  While POS isn’t empty:

–  Let R be “if True è pos”
–  While NEG isn’t empty:

•  Pick the “best” [i] condition c of
the form “xi=True” or “xi=false”

•  Add c to the LHS of R
•  Remove examples that don’t

satisfy c from NEG
•  Add R to the rule set [ii]
•  Remove examples that satisfy R from

POS
•  Prune the rule set:

–  …

Analysis

[i] “Best” is wrt some statistics on c’s coverage of POS,NEG

[ii] R is now of the form “if xi1=_ and xi2=_ and … è pos”

•  The total number of iterations of
L1 is the number of conditions in
the rule set – call it m

•  Picking the “best” condition
requires looking at all examples
– say there are n of these

•  Time is at least m*n
•  The problem:

–  When there are noisy
positive examples the
algorithm builds rules that
cover just 1-2 of them

–  So with huge noisy datasets
you build huge rulesets

L1

quadratic

cubic!

31

Related
paper from
1995…

32

So in mid 1990’s…..
•  Experimental datasets were small
•  Many commonly used algorithms were

asymptotically “slow”

•  Not many people really cared

33

Big ML c. 2001 (Banko & Brill, “Scaling to Very Very Large…”, ACL 2001)

Task: distinguish pairs of easily-confused words
(“affect” vs “effect”) in context

34

Big ML c. 2001 (Banko & Brill, “Scaling to Very Very Large…”, ACL 2001)

35

Why More Data Helps: A Demo
•  Data:

– All 5-grams that appear >= 40 times in a corpus of
1M English books

•  approx 80B words
•  5-grams: 30Gb compressed, 250-300Gb uncompressed
•  Each 5-gram contains frequency distribution over years

– Wrote code to compute
•  Pr(A,B,C,D,E|C=affect or C=effect)
•  Pr(any subset of A,…,E|any other Eixed values of A,…,E

with C=affect V effect)
– Demo:

•  /Users/wcohen/Documents/code/pyhack/bigml
•  eg: python ngram-query.py data/aeffect-train.txt _ _B effect _ _

36

Why More Data Helps
•  Data:

–  All 5-grams that appear >= 40 times in a corpus of 1M English
books

•  approx 80B words
•  5-grams: 30Gb compressed, 250-300Gb uncompressed
•  Each 5-gram contains frequency distribution over years

–  Wrote code to compute
•  Pr(A,B,C,D,E|C=affect or C=effect)
•  Pr(any subset of A,…,E|any other Eixed values of A,…,E with

C=affect V effect)
•  Observations [from playing with data]:

–  Mostly effect not affect
–  Most common word before affect is not
–  After not effect most common word is a
–  …

37

38

39

http://xkcd.com/ngram-charts/

40

Big ML c. 2001 (Banko & Brill, “Scaling to Very Very Large…”, ACL 2001)

Task: distinguish pairs of easily-confused words
(“affect” vs “effect”) in context

41

So in 2001…..
•  We’re learning:

–  “there’s no data like more data”
– For many tasks, there’s no real substitute

for using lots of data

42

…and in 2009
Eugene Wigner’s article “The Unreasonable Effectiveness of Mathematics in
the Natural Sciences” examines why so much of physics can be neatly
explained with simple mathematical formulas such as f = ma or e = mc2.
Meanwhile, sciences that involve human beings rather than elementary
particles have proven more resistant to elegant mathematics. Economists
suffer from physics envy over their inability to neatly model human
behavior. An informal, incomplete grammar of the English language runs
over 1,700 pages.

Perhaps when it comes to natural language processing and related fields,
we’re doomed to complex theories that will never have the elegance of
physics equations. But if that’s so, we should stop acting as if our goal is to
author extremely elegant theories, and instead embrace complexity and
make use of the best ally we have: the unreasonable effectiveness of data.

Norvig, Pereira, Halevy, “The Unreasonable Effectiveness of Data”, 2009
43

…and in 2012

Dec 2011

44

…and in 2013

45

…and in 2014

46

Bengio, Foundations & Trends, 2009

47

naïve vs
clever
optimization

1M vs
10M

examples

2.5M examples
for “pretraining”

48

Today….
•  Commonly used deep learning datasets:

– Images:
•  ImageNet: 20k+ categories, 14M+ images
• MS COCO: 91 categories, 2.5M labels, 328k images

– Reading comprehension:
•  Children’s book test: 600k + context/query pairs
•  CNN/Daily mail: ~300k docs, 1.2M cloze questions

– Other:
•  Ubuntu dialog: 7M+ utterances, 1M+ dialogs
• …

49

REVIEW: ASYMPTOTIC COMPLEXITY

50

How do we use very large amounts of data?
•  Working with big data is not about

–  code optimization
–  learning details of todays hardware/software:

•  GraphLab, Hadoop, Spark, parallel hardware, ….
•  Working with big data is about

– Understanding the cost of what you want to do
– Understanding what the tools that are available offer
– Understanding how much can be accomplished with

linear or nearly-linear operations (e.g., sorting, …)
– Understanding how to organize your computations

so that they effectively use whatever’s fast
– Understanding how to test/debug/verify with large

data

*

* according to William
51

Asymptotic Analysis: Basic Principles

)()(,:, iff))(()(00 ngkxfnnnkngOnf ⋅≤>∀∃∈

)()(,:, iff))(()(00 ngkxfnnnkngnf ⋅≥>∀∃Ω∈

Usually we only care about positive f(n), g(n), n here…

52

Asymptotic Analysis: Basic Principles

)()(,:, iff))(()(00 ngkxfnnnkngOnf ⋅≤>∀∃=

)()(,:, iff))(()(00 ngkxfnnnkngnf ⋅≥>∀∃Ω=

Less pedantically:

Some useful rules:

)O()(434 nnnO =+

)O()1273(434 nnnO =+

)loglog4log 4 nO(n) O() nO(=⋅=

Only highest-order terms matter

Leading constants don’t matter

Degree of something in a log doesn’t matter

53

Back to rule pruning….

Algorithm
•  Fit the POS,NEG exampleWhile POS isn’t empty:

–  Let R be “if True è pos”
–  While NEG isn’t empty:

•  Pick the “best” [1] condition c of the form
“xi=True” or “xi=false”

•  Add c to the LHS of R
•  Remove examples that don’t satisfy c

from NEG
•  Add R to the rule set [2]
•  Remove examples that satisfy R from POS

•  Prune the rule set:
–  For each condition c in the rule set:

•  Evaluate the accuracy of the ruleset w/o
c on heldout data

–  If removing any c improves accuracy
•  Remove c and repeat the pruning step

Analysis
•  Assume n examples
•  Assume m conditions in rule set
•  Growing rules takes time at least

Ω(m*n) if evaluating c is Ω(n)
•  When data is clean m is small,

Eitting takes linear time
•  When k% of data is noisy, m is

Ω(n*0.01*k) so growing rules
takes Ω(n2)

•  Pruning a rule set with m =
0.01*kn extra conditions is very
slow: Ω(n3) if implemented naively

[1] “Best” is wrt some statistics on c’s coverage of POS,NEG

[2] R is now of the form “if xi1=_ and xi2=_ and … è pos”

54

Empirical
analysis of
complexity:
plot run-time
on a log-log
plot and
measure the
slope (using
linear
regression)

55

Where do asymptotics break down?
•  When the constants are too big

– or n is too small
•  When we can’t predict what the program will do

– Eg, how many iterations before convergence?
Does it depend on data size or not?

– This is when you need experiments
•  When there are different types of operations with

different costs
– We need to understand what we should count

56

What do we count?

•  Compilers don’t warn Jeff Dean. Jeff Dean warns
compilers.

•  Jeff Dean builds his code before committing it, but only to
check for compiler and linker bugs.

•  Jeff Dean writes directly in binary. He then writes the
source code as a documentation for other developers.

•  Jeff Dean once shifted a bit so hard, it ended up on another
computer.

•  When Jeff Dean has an ergonomic evaluation, it is for the
protection of his keyboard.

•  gcc -O4 emails your code to Jeff Dean for a rewrite.
•  When he heard that Jeff Dean's autobiography would be

exclusive to the platform, Richard Stallman bought a
Kindle.

•  Jeff Dean puts his pants on one leg at a time, but if he had
more legs, you’d realize the algorithm is actually only
O(logn)

57

Numbers (Jeff Dean says) Everyone Should
Know�

58

Update: Colin Scott, UCB

file:///Users/wcohen/Documents/code/interactive_latencies/
interactive_latency.html

59

What’s Happening with Hardware?
•  Clock speed: stuck at 3Ghz for ~ 10 years
•  Net bandwidth doubles ~ 2 years
•  Disk bandwidth doubles ~ 2 years
•  SSD bandwidth doubles ~ 3 years
•  Disk seek speed doubles ~ 10 years
•  SSD latency nearly saturated

60

61

Numbers (Jeff Dean says) Everyone Should
Know�

62

A typical CPU (not to scale)
K8 core in the AMD Athlon 64 CPU

16x bigger

256x bigger

Hard disk
(1Tb) 128x bigger

63

A typical CPU (not to scale)
K8 core in the AMD Athlon 64 CPU

16x bigger

256x bigger

Hard disk
(1Tb) 128x bigger

64

A typical CPU (not to scale)
K8 core in the AMD Athlon 64 CPU

16x bigger

256x bigger

Hard disk
(1Tb) 128x bigger

65

A typical CPU (not to scale)
K8 core in the AMD Athlon 64 CPU

16x bigger

256x bigger

Hard disk
(1Tb) 128x bigger

66

A typical disk

67

Numbers (Jeff Dean says) Everyone Should
Know�

~= 100,000x

40x

68

What do we count?

•  Compilers don’t warn Jeff Dean. Jeff Dean warns compilers.
•  ….

•  Memory access/instructions are
qualitatively different from disk access

•  Seeks are qualitatively different from
sequential reads on disk

•  Cache, disk fetches, etc work best when you
stream through data sequentially

•  Best case for data processing: stream
through the data once in sequential order,
as it’s found on disk.

69

Other lessons -?

* but not important
enough for this class’s
assignments….

*

70

What/How
– Next lecture: probability review and Naïve

Bayes.
– Homework:

• Watch the review lecture I linked to on the wiki
– I’m not going to repeat it

71

