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ADMINISTRIVIA
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Who/Where/When
•  OfEice Hours:  

– Still TBA for all of us, check the wiki
•  Course assistant:  Dorothy Holland-Minkley (dEh@cs)
•  Wiki:  google://”cohen CMU”àteaching à

–  http://curtis.ml.cmu.edu/w/courses/index.php/
Machine_Learning_with_Large_Datasets_10-605_in_Fall_2016  

–  this should point to everything else: Piazza, Autolab, ….

•  Instructor:
– William W.  Cohen

•  TAs:  
– Bhuwan Dhingra; Yuxing Zhang; Xu Lanxiao
– Tzu-Ming Kuo; Chenran Li; Yulan Huang
– Karandeep Johar; Jingyuan Liu
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How Many
•  This room holds 150
•  There are 330 signed up + waitlisted
•  I hope the waitlist clears but I can’t promise

– It always has before

•  It’s coming back next fall (I’m on leave spring)
•  Materials will be on-line
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Who/Where/When
•  William W.  Cohen

– 1990-mid 1990’s:  AT&T Bell Labs (working on ILP 
and scalable propositional rule-learning algorithms)

– Mid 1990’s—2000:  AT&T Research (text 
classiEication, data integration,  knowledge-as-text,  
information extraction)

– 2000-2002:  Whizbang! Labs (info extraction from 
Web)

– 2002-2008, 2010-now:  CMU (IE, biotext, social 
networks, learning in graphs, info extraction from 
Web, scalable Eirst-order learning)

•  2008-2009:  Visiting Scientist at Google
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TAs
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TA – Bhuwan Dhingra (GHC 6227)

I am a second year PhD student in 
LTI working with Prof William 
Cohen and Prof Russ 
Salakhutdinov. My research 
focuses on deep learning for 
natural language processing, and I 
have been involved in a variety of 
different projects. Outside work I 
enjoy hiking and traveling. I’ve 
been told I am a calm person, so 
don’t hesitate with any of your 
questions!
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Karandeep Johar–	MS in CS

I am a second year Masters 
student in the Computer 
Science Department , 
School of Computer 
Science 
 
I’m interested in scaling 
machine learning 
algorithms for large 
datasets and solving 
problems that arise when 
we try and apply them in 
real world contexts. 
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Lanxiao Xu	–	MLD 

I'm a second year Masters student in MLD, 
School of Computer Science.  
 
I took this course last year and was very 
interested in building machine learning models 
in large scale context.  
 
The contents of this course is very closely 
related to how people apply ML techniques in 
practice. You will learn a lof of awesome 
things such as Hadoop, Spark and Pig, which 
are constantly used in industry. 
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Tzu-Ming Kuo– MCDS in LTI

I'm a second year Masters student in LTI, School of 
Computer Science.  
 
I'm interested in applying Machine Learning to 
solve various problems.  This summer I interned at 
LinkedIn data science team, augmenting LinkedIn 
Economic Graph. Many topics I learnt in this 
course was really helpful and crucial to my intern 
project! 

10 



Chenran Li

Second year MIIS student. 
 
Took 10-605 last year and enjoyed it a lot. 
 
Interned at Google this summer and caught a 
lot of Psyducks there. 
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Jingyuan Liu

I'm a second year master student from MIIS 
program, LTI. 
 
Took 10605 a year ago, super fun experience! 
 
RA in Petuum Team, implemented scalable machine 
learning algorithms with Parameter Server. 
 
Intern in LinkedIn Data Science Team, data 
extraction and clean with MapReduce (sclading), 
scalable regression model.   
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Yuxing Zhang	–	MS in MLD 

I'm a second year master student in 
machine learning department. 
 
I'm interested in working on large 
scale machine learning systems. I 
took 605 last year and found it a very 
interesting and useful course. 
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Yulan Huang – MIIS in LTI

I'm a second year Masters student in LTI, School of 
Computer Science.  
 
I'm interested in applying machine learning 
techniques to real world problems. I took 605 last 
year and enjoyed it a lot. You will have a deeper 
understanding about both machine learning 
algorithms and machine learning  in distributed 
systems. 
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What/How
I kind of like language tasks, especially for this task:
– The data (usually) makes sense
– The models (usually) make sense
– The models (usually) are complex,  so 

•  More data actually helps
•  Learning simple models vs complex ones is sometimes 

computationally different
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What/How
•  Programming Language:  

–  Java and Hadoop
– Python (more than last year)

•  Resources:
– Your desktop/laptop (to start)

•  You’ll need approximately 0.5Tb space.
– Opencloud hadoop cluster: 

•  104 worker nodes, with 8 cores, 16 GB RAM, 4 1TB.
•  30 worker nodes, with 8 cores, 16 GB RAM,  250Gb+

– Amazon Elastic Cloud 
•  Amazon EC2 [http://aws.amazon.com/ec2/]
•  Allocation: $50 worth of time per student
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What/How: 10-605
•  Lecture course for MS and advanced undergrads
•  60% assignments (6/7)

– Mostly biweekly programming assignments
•  Not a lot of lines of code, but it will take you time to get 

them right
– You can drop one, but some are cumulative

•  15% midterm
•  20% Einal
•  5% class participation & quizzes
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What/How: 10-605 805
•  Project course for PhDs and MS students

– MS students, send me your cv for permission to 
enroll

•  40% assignments (4/7)
•  15% midterm
•  40% project (no Einal)

– open-ended, self-directed project
–  Einal deliverable is a conference-length paper

•  5% class participation & quizzes

18 



What/How: 10-605 students working on a 
project with an 10-805 student
•  Lecture course for MS and advance undergrads
•  50% assignments (5/7)

–  Biweekly programming assignments
•  Not a lot of lines of code, but it will take you time to get them 

right
–  You can drop one, but some are very cumulative

•  15% midterm
•  30% project (no Einal)
•  5% class participation & quizzes

•  There will be some match-making we do but it’s up to the 
805 students to decide how much help they want/need.
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Quizzes and class participation
•  You should keep up with lectures
•  The 5% is to keep you honest
•  I’ve tried two things:

– Piazza polls (so sign in for Piazza with your 
andrew account)

– QnA quizzes

•  All of these will close w/in 24 hours
•  What matters most is IF you do them 
•  There is one for today so check the wiki!
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What/How: 10-805 and 11-805
•  Projects

– 2012: everyone did projects and 5 HWs
• Guest lectures from industry, experts

– 2013: projects were optional
• not everyone wanted to do projects in
•  I wanted to give more programming depth

– 2014: nobody did projects
•  I had too many students

– Spring/fall 2015, fall 2016
• 805/605 split
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What/How: cheating vs working together
•  I have a long and explicit policy

–  stolen from Roni Rosenfeld - read the web page
–  tl;dr: transmit information like they did in the stone 

age, brain-to-brain, and document it
– do not copy anything digitally
– exceptions (eg projects) will be explicitly stated

– everybody involved will fail by default
– every infraction always gets reported up to the 

OfEice of Academic Integrity, the head of your 
program, the dean of your school, ….
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What/How: 601 co-req
•  You should have as a prereq or co-req one of the 

MLD’s intro ML courses: 10-401, 10-601, 10-701, 
10-715

•  Lectures are designed to complement  that 
material
– computational aspects vs informational aspects

•  If it’s a co-req you need permission
– via email to wcohen+coreq@gmail.com
– we’re gonna check
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BIG DATA HISTORY: FROM THE DAWN OF 
TIME TO THE PRESENT
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Big ML c. 1993 (Cohen, “Efficient…Rule Learning”,  IJCAI 1993) 

$ ripper ../tdata/talks 
Final hypothesis is: 
talk_announcement :- WORDS ~ talk, WORDS ~ Subject_talk (54/1). 
talk_announcement :- WORDS ~ '2d416' (26/3). 
talk_announcement :- WORDS ~ system, WORDS ~ 'To_1126@research' (4/0). 
talk_announcement :- WORDS ~ mh, WORDS ~ time (5/1). 
talk_announcement :- WORDS ~ talk, WORDS ~ used (3/0). 
talk_announcement :- WORDS ~ presentations (2/1). 
default non_talk_announcement (390/1). 
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More on this paper
Algorithm

•  Phase 1: build rules
–  Discrete greedy search:
–  Starting with empty rule set, add conditions greedily

•  Phase 2: prune rules
–  starting with phase 1 output, remove conditions

talk_announcement :- WORDS ~ talk, WORDS ~ Subject_talk, WORDS ~ p_comma. 
talk_announcement :- WORDS ~ '2d416', WORDS ~ be. 
talk_announcement :- WORDS ~ show, WORDS ~ talk (7/0). 
talk_announcement :- WORDS ~ mh, WORDS ~ time, WORDS ~ research (4/0). 
talk_announcement :- WORDS ~ system, WORDS ~ 'To_1126@research' (3/0). 
talk_announcement :- WORDS ~ '2d416', WORDS ~ memory (3/0). 
talk_announcement :- WORDS ~ interfaces, WORDS ~ From_p_exclaim_point (2/0). 
talk_announcement :- WORDS ~ presentations, WORDS ~ From_att (2/0). 
default non_talk_announcement . 
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More on this paper
Algorithm

•  Phase 1: build rules
–  Discrete greedy search:
–  Starting with empty rule set, add conditions greedily

•  Phase 2: prune rules
–  starting with phase 1 output, remove conditions, greedily

talk_announcement :- WORDS ~ talk, WORDS ~ Subject_talk, WORDS ~ p_comma (54/0). 
talk_announcement :- WORDS ~ '2d416', WORDS ~ be  (19/0). 
talk_announcement :- WORDS ~ show, WORDS ~ talk (7/0). 
talk_announcement :- WORDS ~ mh, WORDS ~ time, WORDS ~ research (4/0). 
talk_announcement :- WORDS ~ system, WORDS ~ 'To_1126@research' (3/0). 
talk_announcement :- WORDS ~ '2d416', WORDS ~ memory (3/0). 
talk_announcement :- WORDS ~ interfaces, WORDS ~ From_p_exclaim_point (2/0). 
talk_announcement :- WORDS ~ presentations, WORDS ~ From_att (2/0). 
default non_talk_announcement . 
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More on this paper
Algorithm

•  Phase 1: build rules
–  Discrete greedy search:
–  Starting with empty rule set, add conditions greedily

•  Phase 2: prune rules
–  starting with phase 1 output, remove conditions, greedily

talk_announcement :- WORDS ~ talk, WORDS ~ Subject_talk (54/1). 
talk_announcement :- WORDS ~ '2d416' (26/3). 
talk_announcement :- WORDS ~ system, WORDS ~ 'To_1126@research' (4/0). 
talk_announcement :- WORDS ~ mh, WORDS ~ time (5/1). 
talk_announcement :- WORDS ~ talk, WORDS ~ used (3/0). 
talk_announcement :- WORDS ~ presentations (2/1). 
default non_talk_announcement (390/1). 
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More on this paper
Algorithm

•  Fit the POS,NEG example
•  While POS isn’t empty:

–  Let R be “if True è pos”
–  While NEG isn’t empty:

•  Pick the “best” [i] condition c of 
the form “xi=True” or “xi=false”

•  Add c to the LHS of R
•  Remove examples that don’t 

satisfy c from NEG
•  Add R to the rule set [ii]
•  Remove examples that satisfy R from 

POS
•  Prune the rule set:

–  …

Analysis

[i] “Best” is wrt some statistics on c’s coverage of POS,NEG 

[ii] R is now of the form “if xi1=_ and xi2=_ and … è  pos” 

•  The total number of iterations of 
L1 is the number of conditions in 
the rule set – call it m

•  Picking the “best” condition 
requires looking at all examples 
– say there are n of these

•  Time is at least m*n
•  The problem:

–  When there are noisy 
positive examples the 
algorithm builds rules that 
cover just 1-2 of them

–  So with huge noisy datasets 
you build huge rulesets

L1 

quadratic 

cubic! 
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Related 
paper from  
1995… 
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So in mid 1990’s…..
•  Experimental datasets were small
•  Many commonly used algorithms were 

asymptotically “slow”

•  Not many people really cared
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Big ML c. 2001 (Banko & Brill, “Scaling to Very Very Large…”, ACL 2001) 

Task: distinguish pairs of easily-confused words 
(“affect” vs “effect”) in context 
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Big ML c. 2001 (Banko & Brill, “Scaling to Very Very Large…”, ACL 2001) 
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Why More Data Helps: A Demo
•  Data:

– All 5-grams that appear >= 40 times in a corpus of 
1M English books

•  approx 80B words
•  5-grams: 30Gb compressed, 250-300Gb uncompressed
•  Each 5-gram contains frequency distribution over years

– Wrote code to compute 
•  Pr(A,B,C,D,E|C=affect or C=effect) 
•  Pr(any subset of A,…,E|any other Eixed values of A,…,E 

with C=affect V effect)
– Demo:

•  /Users/wcohen/Documents/code/pyhack/bigml
•  eg: python ngram-query.py data/aeffect-train.txt _ _B effect _ _
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Why More Data Helps
•  Data:

–  All 5-grams that appear >= 40 times in a corpus of 1M English 
books

•  approx 80B words
•  5-grams: 30Gb compressed, 250-300Gb uncompressed
•  Each 5-gram contains frequency distribution over years

–  Wrote code to compute 
•  Pr(A,B,C,D,E|C=affect or C=effect) 
•  Pr(any subset of A,…,E|any other Eixed values of A,…,E with 

C=affect V effect)
•  Observations [from playing with data]:

–  Mostly effect not affect
–  Most common word before affect is not
–  After not effect most common word is a  
–  …
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http://xkcd.com/ngram-charts/  
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Big ML c. 2001 (Banko & Brill, “Scaling to Very Very Large…”, ACL 2001) 

Task: distinguish pairs of easily-confused words 
(“affect” vs “effect”) in context 
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So in 2001…..
•  We’re learning:

–  “there’s no data like more data”
– For many tasks, there’s no real substitute 

for using lots of data
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…and in 2009
Eugene Wigner’s article “The Unreasonable Effectiveness of Mathematics in 
the Natural Sciences” examines why so much of physics can be neatly 
explained with simple mathematical formulas such as f = ma or e = mc2. 
Meanwhile, sciences that involve human beings rather than elementary 
particles have proven more resistant to elegant mathematics.  Economists 
suffer from physics envy over their inability to neatly model human 
behavior.  An informal, incomplete grammar of the English language runs 
over 1,700 pages.  
 
Perhaps when it comes to natural language processing and related fields, 
we’re doomed to complex theories that will never have the elegance of 
physics equations. But if that’s so, we should stop acting as if our goal is to 
author extremely elegant theories, and instead embrace complexity and 
make use of the best ally we have:  the unreasonable effectiveness of data. 

Norvig, Pereira, Halevy, “The Unreasonable Effectiveness of Data”, 2009 
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…and in 2012

Dec 2011 
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…and in 2013
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…and in 2014
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Bengio, Foundations & Trends, 2009
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naïve vs 
clever 
optimization 

1M vs 
10M

examples

2.5M examples 
for “pretraining”
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Today….
•  Commonly used deep learning datasets:

– Images:
•  ImageNet: 20k+ categories, 14M+ images
• MS COCO: 91 categories, 2.5M labels, 328k images

– Reading comprehension:
•  Children’s book test: 600k + context/query pairs
•  CNN/Daily mail: ~300k docs, 1.2M cloze questions

– Other:
•  Ubuntu dialog: 7M+ utterances, 1M+ dialogs
• …
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REVIEW: ASYMPTOTIC COMPLEXITY
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How do we use very large amounts of data?
•  Working with big data is not about 

–  code optimization
–  learning details of todays hardware/software:

•  GraphLab, Hadoop, Spark, parallel hardware, ….
•  Working with big data is about 

– Understanding the cost of what you want to do
– Understanding what the tools that are available offer
– Understanding how much can be accomplished with 

linear or nearly-linear operations (e.g., sorting, …)
– Understanding how to organize your computations 

so that they effectively use whatever’s fast
– Understanding how to test/debug/verify with large 

data

*

* according to William 
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Asymptotic Analysis: Basic Principles

)()(,:,  iff  ))(()( 00 ngkxfnnnkngOnf ⋅≤>∀∃∈

)()(,:,  iff  ))(()( 00 ngkxfnnnkngnf ⋅≥>∀∃Ω∈

Usually we only care about positive f(n), g(n), n here… 
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Asymptotic Analysis: Basic Principles

)()(,:,  iff  ))(()( 00 ngkxfnnnkngOnf ⋅≤>∀∃=

)()(,:,  iff  ))(()( 00 ngkxfnnnkngnf ⋅≥>∀∃Ω=

Less pedantically: 

Some useful rules: 

)O(   )( 434 nnnO =+

)O(   )1273( 434 nnnO =+

)loglog4log 4 nO(n) O()  nO( =⋅=

Only highest-order terms matter 

Leading constants don’t matter 

Degree of something in a log doesn’t matter 
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Back to rule pruning….

Algorithm
•  Fit the POS,NEG exampleWhile POS isn’t empty:

–  Let R be “if True è pos”
–  While NEG isn’t empty:

•  Pick the “best” [1] condition c of the form 
“xi=True” or “xi=false”

•  Add c to the LHS of R
•  Remove examples that don’t satisfy c 

from NEG
•  Add R to the rule set [2]
•  Remove examples that satisfy R from POS

•  Prune the rule set:
–  For each condition c in the rule set:

•  Evaluate the accuracy of the ruleset w/o 
c on heldout data

–  If removing any c improves accuracy
•  Remove c and repeat the pruning step

Analysis
•  Assume n examples
•  Assume m conditions in rule set
•  Growing rules takes time at least 

Ω(m*n)  if evaluating c is Ω(n)
•  When data is clean m is small, 

Eitting takes linear time
•  When k% of data is noisy, m is 

Ω(n*0.01*k) so growing rules 
takes Ω(n2) 

•  Pruning a rule set with m = 
0.01*kn extra conditions is very 
slow: Ω(n3) if implemented naively 

[1] “Best” is wrt some statistics on c’s coverage of POS,NEG 

[2] R is now of the form “if xi1=_ and xi2=_ and … è  pos” 
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Empirical 
analysis of 
complexity: 
plot run-time 
on a log-log 
plot and 
measure the 
slope (using 
linear 
regression) 

55 



Where do asymptotics break down?
•  When the constants are too big

– or n is too small
•  When we can’t predict what the program will do

– Eg, how many iterations before convergence? 
Does it depend on data size or not?

– This is when you need experiments
•  When there are different types of operations with 

different costs
– We need to understand what we should count
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What do we count?

•  Compilers don’t warn Jeff Dean.  Jeff Dean warns 
compilers.

•   Jeff Dean builds his code before committing it, but only to 
check for compiler and linker bugs.

•  Jeff Dean writes directly in binary. He then writes the 
source code as a documentation for other developers.

•  Jeff Dean once shifted a bit so hard, it ended up on another 
computer.

•   When Jeff Dean has an ergonomic evaluation, it is for the 
protection of his keyboard.

•  gcc -O4 emails your code to Jeff Dean for a rewrite.
•  When he heard that Jeff Dean's autobiography would be 

exclusive to the platform, Richard Stallman bought a 
Kindle.

•  Jeff Dean puts his pants on one leg at a time, but if he had 
more legs, you’d realize the algorithm is actually only 
O(logn)
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Numbers (Jeff Dean says) Everyone Should 
Know�
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Update: Colin Scott, UCB

file:///Users/wcohen/Documents/code/interactive_latencies/
interactive_latency.html  
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What’s Happening with Hardware?
•  Clock speed: stuck at 3Ghz for ~ 10 years
•  Net bandwidth doubles ~ 2 years
•  Disk bandwidth doubles ~ 2 years
•  SSD bandwidth doubles ~ 3 years
•  Disk seek speed doubles ~ 10 years
•  SSD latency nearly saturated
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Numbers (Jeff Dean says) Everyone Should 
Know�
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A typical CPU (not to scale)
K8 core in the AMD Athlon 64 CPU 

16x bigger 

256x bigger 

Hard disk 
(1Tb) 128x bigger 
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A typical CPU (not to scale)
K8 core in the AMD Athlon 64 CPU 

16x bigger 

256x bigger 

Hard disk 
(1Tb) 128x bigger 
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A typical disk
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Numbers (Jeff Dean says) Everyone Should 
Know�



~= 100,000x 

40x 
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What do we count?

•  Compilers don’t warn Jeff Dean.  Jeff Dean warns compilers.
•  ….

•  Memory access/instructions are 
qualitatively different from disk access

•  Seeks are qualitatively different from 
sequential reads on disk

•  Cache, disk fetches, etc work best when you 
stream through data sequentially

•  Best case for data processing: stream 
through the data once in sequential order, 
as it’s found on disk.
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Other lessons -?

* but not important 
enough for this class’s 
assignments…. 

* 
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What/How
– Next lecture: probability review and Naïve 

Bayes.
– Homework:

• Watch the review lecture I linked to on the wiki
– I’m not going to repeat it
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