Graph-Based Parallel Computing

William Cohen
Computing paradigms

1. Stream-and-sort
2. Iterative streaming ML (eg SGD)
3. Map-reduce (stream-and-sort + parallelism) – plus dataflow-language abstractions
4. Iterative parameter mixing (∼= 2 + 3)

5. Spark and Flink (∼= 2 + iteration + caching)
6.?
Many ML algorithms tend to have

- Sparse data dependencies
- Local computations
- Iterative updates

- Typical example: PageRank
 - repeat:
 - for each node, collect/combine incoming PRs
 - for each node, send outgoing PR
previous_pagerank =
 LOAD '$docs_in'
 USING PigStorage('\\t')
 AS (url: chararray, pagerank: float, links:{ link: (url: chararray) });

outbound_pagerank =
 FOREACH previous_pagerank
 GENERATE
 pagerank / COUNT (links) AS pagerank,
 FLATTEN (links) AS to_url;

new_pagerank =
 FOREACH
 (COGROUP outbound_pagerank BY to_url, previous_pagerank BY url INNER)
 GENERATE
 group AS url,
 (1 - $d) + $d * SUM (outbound_pagerank.pagerank) AS pagerank,
 FLATTEN (previous_pagerank.links) AS links;

STORE new_pagerank
 INTO '$docs_out'
 USING PigStorage('\\t');

lots of i/o happening here...
Many ML algorithms tend to have

• Sparse data dependencies
• Local computations
• Iterative updates

• Typical example: PageRank
 – repeat:
 • for each node, collect/combine incoming PRs
 • for each node, send outgoing PR
Many Graph-Parallel Algorithms

• Collaborative Filtering
 – Alternating Least Squares
 – Stochastic Gradient Descent
 – Tensor Factorization

• Structured Prediction
 – Loopy Belief Propagation
 – Max-Product Linear Programs
 – Gibbs Sampling

• Semi-supervised ML
 – Graph SSL
 – CoEM

• Community Detection
 – Triangle-Counting
 – K-core Decomposition
 – K-Truss

• Graph Analytics
 – PageRank
 – Personalized PageRank
 – Shortest Path
 – Graph Coloring

• Classification
 – Neural Networks
Suggested architecture

• A large mutable graph stored in distributed memory
 – Repeat some node-centric computation until convergence
 – Node values change and edges (mostly) don’t
 – Node updates depend (mostly) on their neighbors in the graph
 – Node updates are done in parallel
Sample system: Pregel
Pregel (Google, Sigmod 2010)

- Primary data structure is a graph
- Computations are sequence of supersteps, in each of which
 - user-defined function (UDF) is invoked (in parallel) at each vertex \(v \), can get/set value
 - UDF can also issue requests to get/set edges
 - UDF can read messages sent to \(v \) in the last superstep and schedule messages to send to in the next superstep
 - Halt when every vertex votes to halt
- Output is directed graph
- Also: aggregators (like ALLREDUCE)
- Bulk synchronous processing (BSP) model: all vertex operations happen simultaneously
Pregel (Google, Sigmod 2010)

- One master: partitions the graph among workers
- Workers keep graph “shard” in memory
- Messages to other partitions are buffered

- Communication across partitions is expensive, within partitions is cheap
 - quality of partition makes a difference!
template <typename VertexValue,
 typename EdgeValue,
 typename MessageValue>
class Vertex {
public:
 virtual void Compute(MessageIterator* msgs) = 0;

 const string& vertex_id() const;
 int64 superstep() const;

 const VertexValue& GetValue();
 VertexValue* MutableValue();
 OutEdgeIterator GetOutEdgeIterator();

 void SendMessageTo(const string& dest_vertex,
 const MessageValue& message);
 void VoteToHalt();
};

Figure 3: The Vertex API foundations.

simplest rule: stop when everyone votes to halt

everyone computes in parallel
Streaming PageRank: with some long rows

• Repeat until converged:

 \[v^{t+1} = cu + (1-c)Wv^t \]

• Store \(A \) as a list of edges: each line is: “i d(i) j”
• Store \(v' \) and \(v \) in memory: \(v' \) starts out as \(cu \)
• For each line “i d j”

 \[v'[j] += (1-c)v[i]/d \]

We need to get the degree of \(i \) and store it locally

note we need to scan through the graph each time
class PageRankVertex
 : public Vertex<double, void, double> {
public:
 virtual void Compute(MessageIterator* msgs) {
 if (superstep() >= 1) {
 double sum = 0;
 for (; !msgs->Done(); msgs->Next())
 sum += msgs->Value();
 *MutableValue() =
 0.15 / NumVertices() + 0.85 * sum;
 }

 if (superstep() < 30) {
 const int64 n = GetOutEdgeIterator().size();
 SendMessageToAllNeighbors(GetValue() / n);
 } else {
 VoteToHalt();
 }
 }
};
Another task: single source shortest path

class ShortestPathVertex
 : public Vertex<int, int, int> {
 void Compute(MessageIterator* msgs) {
 int mindist = IsSource(vertex_id()) ? 0 : INF;
 for (; !msgs->Done(); msgs->Next())
 mindist = min(mindist, msgs->Value());
 if (mindist < GetValue()) {
 *MutableValue() = mindist;
 OutEdgeIterator iter = GetOutEdgeIterator();
 for (; !iter.Done(); iter.Next())
 SendMessageTo(iter.Target(),
 mindist + iter.GetValue());
 }
 VoteToHalt();
 }
 };

edge weight
Figure 7: SSSP—1 billion vertex binary tree: varying number of worker tasks scheduled on 300 multicore machines

a little bit of a cheat
Sample system: Signal-Collect
Signal/collect model vs Pregel

• Integrated with RDF/SPARQL
• Vertices can be non-uniform types
• **Vertex:**
 – *id*, mutable *state*, outgoing *edges*, *most recent received signals* (map: neighbor *id* ➔ *signal*), *uncollected signals*
 – user-defined *collect* function
• **Edge:** *id*, *source*, *dest*
 – user-defined *signal* function
• Allows *asynchronous* computations....via `v.scoreSignal`, `v.scoreCollect`

For “data-flow” operations

On multicore architecture: shared memory for workers
Signal/collect model

v.doSignal()
lastSignalState := state
for all (e ∈ outgoingEdges) do
 e.target.uncollectedSignals.append(e.signal())
 e.target.signalMap.put(e.sourceId, e.signal())
end for

v.doCollect()
state := collect()
uncollectedSignals := Nil

next state for a vertex is output of the collect() operation

Algorithm 1 Synchronous execution

| for i ← 1..num_iterations do |
| for all v ∈ V parallel do |
| v.doSignal() |
| end for |
| for all v ∈ V parallel do |
| v.doCollect() |
| end for |

signals are made available in a list and a map
relax “num_iterations” soon
Signal/collect examples

Single-source shortest path

<table>
<thead>
<tr>
<th>Function</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>initialState</td>
<td><code>if (isSource) 0 else infinity</code></td>
</tr>
<tr>
<td>collect()</td>
<td><code>return min(oldState, min(signals))</code></td>
</tr>
<tr>
<td>signal()</td>
<td><code>return source.state + edge.weight</code></td>
</tr>
</tbody>
</table>

Initial state:

- Source: 0
- Other nodes: infinity

Step 1:

- Source: 1
- Other nodes: infinity

Step 2:

- Source: 1
- Other nodes: 2
Signal/collect examples

Life

<table>
<thead>
<tr>
<th>initialState</th>
<th>if (isInitiallyAlive) 1 else 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>collect()</td>
<td>switch (sum(signals))</td>
</tr>
<tr>
<td></td>
<td>case 0: return 0 // dies of loneliness</td>
</tr>
<tr>
<td></td>
<td>case 1: return 0 // dies of loneliness</td>
</tr>
<tr>
<td></td>
<td>case 2: return oldState // same as before</td>
</tr>
<tr>
<td></td>
<td>case 3: return 1 // becomes alive if dead</td>
</tr>
<tr>
<td></td>
<td>other: return 0 // dies of overcrowding</td>
</tr>
<tr>
<td>signal()</td>
<td>return source.state</td>
</tr>
</tbody>
</table>

PageRank

<table>
<thead>
<tr>
<th>initialState</th>
<th>baseRank</th>
</tr>
</thead>
<tbody>
<tr>
<td>collect()</td>
<td>return baseRank + dampingFactor * sum(signals)</td>
</tr>
<tr>
<td>signal()</td>
<td>return source.state * edge.weight / sum(edgeWeights(source))</td>
</tr>
</tbody>
</table>
class Document(id: Any) extends Vertex(id, 0.15) {
 def collect = 0.15 + 0.85 * signals[Double].foldLeft(0.0)(_ + _)
 override def processResult = if (state > 5) println(id + ":: " + state)
 override def scoreSignal = (state - lastSignalState.getOrElse(0)).abs
}

class Citation(citer: Any, cited: Any) extends Edge(citer, cited) {
 override type SourceVertexType = Document
 def signal = source.state * weight / source.sumOfOutWeights
}

object Algorithm {
 def executeCitationRank(db: SparqlAccessor) {
 val computeGraph = new ComputeGraph(ScoreGuidedSynchronous)
 val citations = new SparqlTuples(db, "select ?source ?target where {
 }
 citations foreach {
 case (citer, cited) =>
 computeGraph.addVertex[Document](citer)
 computeGraph.addVertex[Document](cited)
 computeGraph.addEdge[Citation](citer, cited)
 }
 computeGraph.execute(signalThreshold = 0)
 }
}
Signal/collect examples

Co-EM/wvRN/Harmonic fields

<table>
<thead>
<tr>
<th>Function</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>initialState</code></td>
<td><code>if (isTrainingData) trainingData else avgProbDist</code></td>
</tr>
<tr>
<td><code>collect()</code></td>
<td><code>if (isTrainingData)</code></td>
</tr>
<tr>
<td></td>
<td><code>return oldState</code></td>
</tr>
<tr>
<td></td>
<td><code>else</code></td>
</tr>
<tr>
<td></td>
<td><code>return signals.sum.normalise</code></td>
</tr>
<tr>
<td><code>signal()</code></td>
<td><code>return source.state</code></td>
</tr>
<tr>
<td>initialState</td>
<td>Set(id)</td>
</tr>
<tr>
<td>------------------</td>
<td>---------</td>
</tr>
<tr>
<td>collect()</td>
<td>return union(oldState, union(signals))</td>
</tr>
<tr>
<td>signal()</td>
<td>return source.state</td>
</tr>
</tbody>
</table>

Fig. 8. Transitive closure (data-graph/data-flow).

<table>
<thead>
<tr>
<th>initialState</th>
<th>randomColour</th>
</tr>
</thead>
</table>
| collect() | if (contains(signals, oldState))
| | return randomColorExcept(oldState)
| | else
| | return oldState |
| signal() | return source.state |

Fig. 9. Vertex colouring (data-graph).
<table>
<thead>
<tr>
<th>initialState</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>collect()</td>
<td>return $1 / (1 + e^{-\text{signals.sum}})$</td>
</tr>
<tr>
<td>signal()</td>
<td>return source.state * edge.weight</td>
</tr>
</tbody>
</table>

Fig. 15. Artificial neural networks (data-graph).
Signal/collect examples

Matching path queries:
\[\text{dept}(X) -[\text{member}] \rightarrow \text{postdoc}(Y) -[\text{recieved}] \rightarrow \text{grant}(Z) \]

<table>
<thead>
<tr>
<th>Method</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>initState</td>
<td>emptySet</td>
</tr>
<tr>
<td>collect()</td>
<td>matched = successfulMatchesWithVertex(signals) ((\text{fullyMatched, partiallyMatched}) =) partition(matched) () reportResults(\text{fullyMatched}) () return union(\text{oldState} - \text{lastSignalState, partiallyMatched})</td>
</tr>
<tr>
<td>signal()</td>
<td>return successfulMatchesWithEdge(source.state)</td>
</tr>
</tbody>
</table>
Signal/collect examples: data flow

Matching path queries:
\[\text{dept}(X) -[\text{member}] \rightarrow \text{postdoc}(Y) -[\text{recieved}] \rightarrow \text{grant}(Z)\]

<table>
<thead>
<tr>
<th>initialState</th>
<th>emptySet</th>
</tr>
</thead>
</table>
| collect() | \text{matched} = \text{successfulMatchesWithVertex}(\text{signals}) \\
| | \text{(fullyMatched, partiallyMatched)} = \text{partition}(\text{matched}) \\
| | \text{reportResults}(\text{fullyMatched}) \\
| | \text{return } \text{union}(\text{oldState} - \text{lastSignalState}, \text{partiallyMatched}) |
| signal() | \text{return } \text{successfulMatchesWithEdge}(\text{source.state}) |

note: can be multiple input signals
Signal/collection examples

Matching path queries:
```
department(X) -[member]→ postdoc(Y) -[received]→ grant(Z)
```

<table>
<thead>
<tr>
<th>Function</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>initialState</td>
<td><code>emptySet</code></td>
</tr>
<tr>
<td>collect()</td>
<td><code>matched = successfulMatchesWithVertex(signals)</code></td>
</tr>
<tr>
<td></td>
<td><code>(fullyMatched, partiallyMatched) = partition(matched)</code></td>
</tr>
<tr>
<td></td>
<td><code>reportResults(fullyMatched)</code></td>
</tr>
<tr>
<td></td>
<td><code>return union(oldState - lastSignalState, partiallyMatched)</code></td>
</tr>
<tr>
<td>signal()</td>
<td><code>return successfulMatchesWithEdge(source.state)</code></td>
</tr>
</tbody>
</table>

Diagram:
```
department(X=MLD) -[member]→ postdoc(Y=partha) -[received]→ grant(Z)
```

Nodes:
- LTI
- MLD
- wcohen
- partha
- NSF378
- InMind7

Edges:
- LTI -> MLD
- MLD -> LTI
- MLD -> wcohen
- wcohen -> MLD
- wcohen -> partha
- partha -> wcohen
- partha -> NSF378
- NSF378 -> partha
- NSF378 -> InMind7
- InMind7 -> NSF378
- InMind7 -> LTI
Signal/collect model vs Pregel

• Integrated with RDF/SPARQL
• Vertices can be non-uniform types
• **Vertex:**
 – *id*, mutable *state*, outgoing *edges*, *most recent received signals* (map: neighbor id → signal), *uncollected signals*
 – user-defined *collect* function
• **Edge:** *id*, *source*, *dest*
 – user-defined *signal* function
• Allows *asynchronous* computations....via *v.scoreSignal, v.scoreCollect*
Asynchronous Parallel Computation

• **Bulk-Synchronous:** All vertices update in parallel
 – need to keep copy of “old” and “new” vertex values

• **Asynchronous:**
 – Reason 1: if two vertices are not connected, can update them in any order
 • more flexibility, less storage
 – Reason 2: not all updates are equally *important*
 • parts of the graph converge quickly, parts slowly
using:
- `v.scoreSignal`
- `v.scoreCollect`

Algorithm 2 Score-guided synchronous execution

```plaintext
done := false
iter := 0
while iter < max_iter and !done do
    done := true
    iter := iter + 1
    for all v ∈ V parallel do
        if (v.scoreSignal() > s_threshold) then
            done := false
            v.doSignal()
        end if
    end for
    for all v ∈ V parallel do
        if (v.scoreCollect() > c_threshold) then
            done := false
            v.doCollect()
        end if
    end for
end while
```
Algorithm 3 Score-guided asynchronous execution

ops := 0
while
ops < max_ops and \(\exists v \in V(\)
 v.scoreSignal() > s_threshold or
 v.scoreCollect() > c_threshold)
do
 S := choose subset of V
 for all v \in S parallel do
 Randomly call either v.doSignal() or
 v.doCollect() if respective threshold is reached; increment ops if an operation was executed.
 end for
end while
Sample system: GraphLab
GraphLab

- Data in graph, UDF vertex function
- Differences:
 - some control over scheduling
 - vertex function can insert new tasks in a queue
 - messages must follow graph edges: can access adjacent vertices only
 - “shared data table” for global data
 - library algorithms for matrix factorization, coEM, SVM, Gibbs, ...
- GraphLab \(\rightarrow\) Now Dato
GraphLab’s descendents

• PowerGraph
• GraphChi
• GraphX
GraphLab con’t

• PowerGraph
• GraphChi
 – Goal: use graph abstraction on-disk, not in-memory, on a conventional workstation
GraphLab con’t

• GraphChi
 – Key insight:
 • some algorithms on graph are streamable (i.e., PageRank-Nibble)
 • in general we can’t easily stream the graph because neighbors will be scattered
 • but maybe we can *limit the degree* to which they’re scattered ... enough to make streaming possible?
 – “almost-streaming”: keep P cursors in a file instead of one
PSW: Shards and Intervals

- Vertices are numbered from 1 to n
 - \(P \) intervals, each associated with a shard on disk.
 - sub-graph = interval of vertices

![Diagram of PSW: Shards and Intervals]

1. Load
2. Compute
3. Write
PSW: Layout

Shard: in-edges for interval of vertices; sorted by source-id

Vertices 1..100

Vertices 101..700

Vertices 701..1000

Vertices 1001..10000

Shards small enough to fit in memory; balance size of shards
PSW: Loading Sub-graph

Load subgraph for vertices 1..100

Vertices 1..100
Shard 1

Vertices 101..700
Shard 2

Vertices 701..1000
Shard 3

Vertices 1001..10000
Shard 4

1. Load
2. Compute
3. Write

What about out-edges?
Arranged in sequence in other shards
PSW: Loading Sub-graph

Load subgraph for vertices 101..700

1. Load
2. Compute
3. Write

Load all in-edges in memory

Vertices 1..100
Shard 1

Vertices 101..700
Shard 2

Vertices 701..1000
Shard 3

Vertices 1001..10000
Shard 4

Out-edge blocks in memory

in-edges for vertices 1..100
sorted by source_id
PSW Load-Phase

Only P large reads for each interval.

P^2 reads on one full pass.
PSW: Execute updates

- Update-function is executed on interval’s vertices
- Edges have **pointers** to the loaded data blocks
 - Changes take effect immediately → *asynchronous*.
PSW: Commit to Disk

• In write phase, the blocks are written back to disk
 – Next load-phase sees the preceding writes asynchronous.

In total:

P^2 reads and writes / full pass on the graph.
→ Performs well on both SSD and hard drive.

To make this work: the size of a vertex state can’t change when it’s updated (at last, as stored on disk).
Experiment Setting

• Mac Mini (Apple Inc.)
 – 8 GB RAM
 – 256 GB SSD, 1TB hard drive
 – Intel Core i5, 2.5 GHz

• Experiment graphs:

<table>
<thead>
<tr>
<th>Graph</th>
<th>Vertices</th>
<th>Edges</th>
<th>P (shards)</th>
<th>Preprocessing</th>
</tr>
</thead>
<tbody>
<tr>
<td>live-journal</td>
<td>4.8M</td>
<td>69M</td>
<td>3</td>
<td>0.5 min</td>
</tr>
<tr>
<td>netflix</td>
<td>0.5M</td>
<td>99M</td>
<td>20</td>
<td>1 min</td>
</tr>
<tr>
<td>twitter-2010</td>
<td>42M</td>
<td>1.5B</td>
<td>20</td>
<td>2 min</td>
</tr>
<tr>
<td>uk-2007-05</td>
<td>106M</td>
<td>3.7B</td>
<td>40</td>
<td>31 min</td>
</tr>
<tr>
<td>uk-union</td>
<td>133M</td>
<td>5.4B</td>
<td>50</td>
<td>33 min</td>
</tr>
<tr>
<td>yahoo-web</td>
<td>1.4B</td>
<td>6.6B</td>
<td>50</td>
<td>37 min</td>
</tr>
</tbody>
</table>
Comparison to Existing Systems

PageRank
- **Twitter-2010 (1.5B edges)**
 - GraphChi (Mac Mini)
 - Spark (50 machines)

WebGraph Belief Propagation (U Kang et al.)
- **Yahoo-web (6.7B edges)**
 - GraphChi (Mac Mini)
 - Pegasus / Hadoop (100 machines)

Matrix Factorization (Alt. Least)
- **Netflix (99B edges)**
 - GraphChi (Mac Mini)
 - GraphLab v1 (8 cores)

Triangle Counting
- **twitter-2010 (1.5B edges)**
 - GraphChi (Mac Mini)
 - Hadoop (1636 machines)

Notes: comparison results do not include time to transfer the data to cluster, preprocessing, or the time to load the graph from disk. GraphChi computes asynchronously, while all but GraphLab synchronously.
GraphLab’s descendents

- PowerGraph
- GraphChi
- GraphX

On multicore architecture: shared memory for workers

On cluster architecture (like Pregel): different memory spaces

What are the challenges moving away from shared-memory?
Top 1% of vertices is adjacent to 53% of the edges!

"Power Law" Slope = $\alpha \approx 2$

Altavista Web Graph: 1.4B Vertices, 6.7B Edges
Problem:
High Degree Vertices Limit Parallelism

Edge information too large for single machine

Touches a large fraction of graph (GraphLab 1)

Produces many messages (Pregel, Signal/Collect)

Asynchronous consistency requires heavy locking (GraphLab 1)

Synchronous consistency is prone to stragglers (Pregel)
Problem: GraphLab’s localities can be large
 - “all neighbors of a node” can be large for hubs, high indegree nodes

Approach:
 - new graph partitioning algorithm
 - can replicate data
 - gather-apply-scatter API: finer-grained parallelism
 - gather ~ combiner
 - apply ~ vertex UDF (for all replicates)
 - scatter ~ messages from vertex to edges
Factorized Vertex Updates

Split update into 3 phases
Signal/collect examples

Single-source shortest path

<table>
<thead>
<tr>
<th>initialState</th>
<th>if (isSource) 0 else infinity</th>
</tr>
</thead>
<tbody>
<tr>
<td>collect()</td>
<td>return min(oldState, min(signals))</td>
</tr>
<tr>
<td>signal()</td>
<td>return source.state + edge.weight</td>
</tr>
</tbody>
</table>

Initial state:

0 -> ∞

Min state after step 1:

0 -> 1

Min state after step 2:

0 -> 1 -> 2
Signal/collect examples

Life

<table>
<thead>
<tr>
<th>initialState</th>
<th>if (isInitiallyAlive) 1 else 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>collect()</td>
<td>switch (sum(signals))</td>
</tr>
<tr>
<td></td>
<td>case 0: return 0 // dies of loneliness</td>
</tr>
<tr>
<td></td>
<td>case 1: return 0 // dies of loneliness</td>
</tr>
<tr>
<td></td>
<td>case 2: return oldState // same as before</td>
</tr>
<tr>
<td></td>
<td>case 3: return 1 // becomes alive if dead</td>
</tr>
<tr>
<td></td>
<td>other: return 0 // dies of overcrowding</td>
</tr>
<tr>
<td>signal()</td>
<td>return source.state</td>
</tr>
</tbody>
</table>

PageRank

<table>
<thead>
<tr>
<th>initialState</th>
<th>baseRank</th>
</tr>
</thead>
<tbody>
<tr>
<td>collect()</td>
<td>return baseRank + dampingFactor * sum(signals)</td>
</tr>
<tr>
<td>signal()</td>
<td>return source.state * edge.weight / sum(edgeWeights(source))</td>
</tr>
</tbody>
</table>
PageRank + Preprocessing and Graph Building

```scala
class Document(id: Any) extends Vertex(id, 0.15) {
  def collect = 0.15 + 0.85 * signals[Double].foldLeft(0.0)(_ + _)
  override def processResult = if (state > 5) println(id + ": " + state)
  override def scoreSignal = (state - lastSignalState.getOrElse(0)).abs
}

class Citation(citer: Any, cited: Any) extends Edge(citer, cited) {
  override type SourceVertexType = Document
  def signal = source.state * weight / source.sumOfOutWeights
}

object Algorithm {
  def executeCitationRank(db: SparqlAccessor) {
    val computeGraph = new ComputeGraph(ScoreGuidedSynchronous)
    val citations = new SparqlTuples(db, "select ?source ?target where {
      + "?source <http://lsdis.cs.uga.edu/projects/semdis/opus#cites> ?target}"
    citations foreach {
      case (citer, cited) =>
        computeGraph.addVertex[Document](citer)
        computeGraph.addVertex[Document](cited)
        computeGraph.addEdge[Citation](citer, cited)
    }
    computeGraph.execute(signalThreshold = 0)
  }
}
```
Signal/collect examples

Co-EM/wvRN/Harmonic fields

<table>
<thead>
<tr>
<th>initialState</th>
<th>if (isTrainingData) trainingData else avgProbDist</th>
</tr>
</thead>
<tbody>
<tr>
<td>collect()</td>
<td>if (isTrainingData) return oldState else return signals.sum.normalise</td>
</tr>
<tr>
<td>signal()</td>
<td>return source.state</td>
</tr>
</tbody>
</table>

55
PageRank in PowerGraph

$$R[i] = \beta + (1 - \beta) \sum_{(j,i) \in E} w_{ji} R[j]$$

gather/sum like a group by ... reduce or collect

PageRankProgram(i)

- **Gather**(j → i) : return $w_{ji} \ast R[j]$
- **sum**(a, b) : return a + b;
- **Apply**(i, Σ) : $R[i] = \beta + (1 - \beta) \ast \Sigma$
- **Scatter**(i → j) :
 - if (R[i] changes) then activate(j)

scatter is like a signal
Distributed Execution of a PowerGraph Vertex-Program

Gather
Apply
Scatter
Minimizing Communication in PowerGraph

Communication is linear in the number of machines each vertex spans

A vertex-cut minimizes machines each vertex spans

Percolation theory suggests that power law graphs have good vertex cuts. [Albert et al. 2000]
Oblivious balances partition quality and partitioning time.
Partitioning matters...

![Bar chart showing reduction in runtime for different algorithms. The x-axis represents different tasks: PageRank, Collaborative Filtering, and Shortest Path. The y-axis represents the reduction in runtime. The chart compares three algorithms: Random, Oblivious, and Greedy. The Random algorithm shows the highest reduction in runtime for all tasks, followed by Oblivious, and then Greedy.]
GraphLab’s descendents

• PowerGraph
• GraphChi
• **GraphX**
 – implementation of GraphLabs API on top of Spark
 – Motivations:
 • avoid transfers between subsystems
 • leverage larger community for common infrastructure
 – What’s different:
 • Graphs are now *immutable* and operations transform one graph into another (RDD ➔ RDG, resilient distributed graph)
Idea 1: Graph as Tables

Property Graph

Under the hood things can be split even more finely: eg a **vertex map table + vertex data table**. Operators maximize structure sharing and minimize communication.

Vertex Property Table

<table>
<thead>
<tr>
<th>Id</th>
<th>Property (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rxin</td>
<td>(Stu., Berk.)</td>
</tr>
<tr>
<td>Jegonzal</td>
<td>(PstDoc, Berk.)</td>
</tr>
<tr>
<td>Franklin</td>
<td>(Prof., Berk)</td>
</tr>
<tr>
<td>Istoica</td>
<td>(Prof., Berk)</td>
</tr>
</tbody>
</table>

Edge Property Table

<table>
<thead>
<tr>
<th>SrcId</th>
<th>DstId</th>
<th>Property (E)</th>
</tr>
</thead>
<tbody>
<tr>
<td>rxin</td>
<td>jegonzal</td>
<td>Friend</td>
</tr>
<tr>
<td>franklin</td>
<td>rxin</td>
<td>Advisor</td>
</tr>
<tr>
<td>istoica</td>
<td>franklin</td>
<td>Coworker</td>
</tr>
<tr>
<td>franklin</td>
<td>jegonzal</td>
<td>PI</td>
</tr>
</tbody>
</table>
Operators

Table (RDD) operators are inherited from Spark:

<table>
<thead>
<tr>
<th>Operator</th>
<th>Operator</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>map</td>
<td>reduce</td>
<td>sample</td>
</tr>
<tr>
<td>filter</td>
<td>count</td>
<td>take</td>
</tr>
<tr>
<td>groupBy</td>
<td>fold</td>
<td>first</td>
</tr>
<tr>
<td>sort</td>
<td>reduceByKey</td>
<td>partitionBy</td>
</tr>
<tr>
<td>union</td>
<td>groupByKey</td>
<td>mapWith</td>
</tr>
<tr>
<td>join</td>
<td>cogroup</td>
<td>pipe</td>
</tr>
<tr>
<td>leftOuterJoin</td>
<td>cross</td>
<td>save</td>
</tr>
<tr>
<td>rightOuterJoin</td>
<td>zip</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
class Graph [V, E] {
 def Graph(vertices: Table[(Id, V)],
 edges: Table[(Id, Id, E)])
 // Table Views -----------------
 def vertices: Table[(Id, V)]
 def edges: Table[(Id, Id, E)]
 def triplets: Table[(((Id, V), (Id, V),
 // Transformations ------------------------------
 def reverse: Graph[V, E]
 def subgraph(pV: (Id, V) => Boolean,
 pE: Edge[V,E] => Boolean): Graph[V,E]
 def mapV(m: (Id, V) => T): Graph[T,E]
 def mapE(m: Edge[V,E] => T): Graph[V,T]
 // Joins --
 def joinV(tbl: Table[(Id, T)]): Graph[(V, T), E]
 def joinE(tbl: Table[(Id, Id, T)]): Graph[V, (E, T)]
 // Computation ----------------------------------
 def mrTriplets(mapF: (Edge[V,E]) => List[(Id, T)],
 reduceF: (T, T) => T): Graph[T, E]
}
The GraphX Stack
(Lines of Code)

PageRank (5)
Connected Comp. (10)
Shortest Path (10)
SVD (40)
ALS (40)
K-core (51)
Triangle Count (45)
LDA (120)

Pregel (28) + GraphLab (50)

GraphX (3575)

Spark
Performance Comparisons

Live-Journal: 69 Million Edges

Runtime (in seconds, PageRank for 10 iterations)

GraphX is roughly **3x slower** than GraphLab
Summary

• Large immutable data structures on (distributed) disk, processing by sweeping through then and creating new data structures:
 – stream-and-sort, Hadoop, PIG, Hive, ...

• Large immutable data structures in distributed memory:
 – Spark – distributed tables

• Large mutable data structures in distributed memory:
 – parameter server: structure is a hashtable
 – Pregel, GraphLab, GraphChi, GraphX: structure is a graph
Summary

• APIs for the various systems vary in detail but have a similar flavor
 – Typical algorithms iteratively update vertex state
 – Changes in state are communicated with messages which need to be aggregated from neighbors

• Biggest wins are
 – on problems where graph is fixed in each iteration, but vertex data changes
 – on graphs small enough to fit in (distributed) memory
Some things to take away

• Platforms for iterative operations on graphs
 – GraphX: if you want to integrate with Spark
 – GraphChi: if you don’t have a cluster
 – GraphLab/Dato: if you don’t need free software and performance is crucial
 – Pregel: if you work at Google
 – Giraph, Signal/collect, ... ??

• Important differences
 – Intended architecture: shared-memory and threads, distributed cluster memory, graph on disk
 – How graphs are partitioned for clusters
 – If processing is synchronous or asynchronous