Graph-Based Parallel
Computing

William Cohen

Computing paradigms

1. Stream-and-sort

2. Iterative streaming ML (eg SGD)

3. Map-reduce (stream-and-sort + parallelism)
— plus dataflow-language abstractions

4. Iterative parameter mixing (~= 2 + 3)

5. Spark and Flink (~= 2 + iteration + caching)
6. ...7

Many ML algorithms tend to have

* Sparse data dependencies
* Local computations
* [terative updates

* Typical example: PageRank

—repeat:
* for each node, collect/combine incoming PRs

* for each node, send outgoing PR

previous_pagerank =
LOAD 'Sdocs_in'
USING PigStorage('\t')
AS (url: chararray, pagerank: float, links:{ link: C url: chararray) });

outbound_pagerank =
FOREACH previous_pagerank
GENERATE
pagerank / COUNT (links) AS pagerank,
FLATTEN (l1inks) AS to_url;

new_pagerank =
FOREACH
(COGROUP outbound_pagerank BY to_url, previous_pagerank BY url INNER)
GENERATE
group AS url,
(1-8%d) + %d * SUM (outbound_pagerank.pagerank) AS pagerank,
FLATTEN (previous_pagerank.links) AS links;

STORE new_pagerank

INTO 'Sdocs_out’
USING PigStorage('\t');

lots of i/o happening here...

Many ML algorithms tend to have

* Sparse data dependencies
* Local computations
* [terative updates

* Typical example: PageRank

—repeat:
* for each node, collect/combine incoming PRs

* for each node, send outgoing PR

Many Graph-Parallel Algorithms

* Collaborative Filtering * Community Detection
— Alternating Least Squares — Triangle-Counting
— Stochastic Gradient Descent — K-core Decomposition
— lensor Factorization — K-Truss

* Structured Prediction * Graph Analytics
— Loopy Belief Propagation — PageRank
— Max-Product Linear Programs ~ — Personalized PageRank
— Gibbs Sampling — Shortest Path

« Semi-supervised ML — Graph Coloring

— Graph SSL * (lassification
— CoEM — Neural Networks

Suggested architecture

* Alarge mutable graph stored in distributed
memory

—Repeat some node-centric computation until
convergence

—Node values change and edges (mostly)
don’t

—Node updates depend (mostly) on their
neighbors in the graph

—Node updates are done in parallel

Sample system: Pregel

Pregel (Google, Sigmod 2010)

* Primary data structure is a graph
 Computations are sequence of supersteps, in each of

which vertex value changes
— user-defined function (UDF) is invoked (in
parallel) at each vertex v, can get/set value

— UDF can also issue requests to get/set edges

— UDF can read messages sent to vin the last
superstep and schedule messages to send to in the
next superstep

— Halt when every vertex votes to halt
* Outputis directed graph

* Also: aggregators (like ALLREDUCE)

* Bulk synchronous processing (BSP) model: all vertex
operations happen simultaneously

communication

Pregel (Google, Sigmod 2010)

* One master: partitions the graph among
workers

 Workers keep graph “shard” in memory
* Messages to other partitions are buffered

 Communication across partitions is expensive,
within partitions is cheap

—quality of partition makes a difference!

template <typename VertexValue,
typename EdgeValue,
typename MessageValu

class Vertex {

everyone
computes in
parallel

public:
virtual void Compute(Messagelterator* msgs) = 0;

const string& vertex_id() const;
int64 superstep() const;

const VertexValue& GetValue();
VertexValue*x MutableValue();
OutEdgelterator GetOutEdgelIterator();

void SendMessageTo(const string& dest_vertex,
const MessageValue& message);

void VoteToHalt();

}; simplest rule: stop

when everyone votes to
halt

Figure 3: The Vertex API foundations.

Streaming PageRank: recap

with some long rows

* Repeat until converged:
— Letvttl=cu + (1-c)Wvt

« Store A as a list of edges: each line is: “i d(i) j”
e Store v’ and v in memory: v’ starts out as cu

* Foreachline “id]'“ note we need to scan
« v'[j] += (1-c)v][i]/d through the graph
each time

We need to get the
degree of i and store
it locally

class PageRankVertex
: public Vertex<double, void, double> {
public:
virtual void Compute(Messagelterator* msgs) {
if (superstep() >= 1) {
double sum = 0;
for (; !'msgs->Done(); msgs->Next())
sum += msgs->Value() ;
*MutableValue() =
0.15 / NumVertices() + 0.85 * sum;

}

if (superstep() < 30) {

const int64 n = GetOutEdgeIterator().size();

SendMessageToAllNeighbors (GetValue() / n);
} else {
VoteToHalt () ;
}
}
};

Another task: single source shortest path

class ShortestPathVertex
: public Vertex<int, int, int> {
void Compute (Messagelterator* msgs) {
int mindist = IsSource(vertex_id()) ? 0 : INF;
for (; 'msgs->Done(); msgs->Next())
mindist = min(mindist, msgs->Value());
if (mindist < GetValue()) {
*MutableValue() = mindist;
OutEdgelterator iter = GetOutEdgeIterator();
for (; 'iter.Done(); iter.Next())
SendMessageTo(iter.Target (),

mindist + iter.GetValue());

} .
VoteToHalt () ; edge weight

180

160 -
-3 140
§ 120
@100
o 80
=
TE 60 -
5 40
a e
20 - —— —9
100 200 300 400 500 600 700 800

Number of worker tasks

a little bit of a cheat

Figure 7: SSSP—1 billion vertex binary tree: vary-
ing number of worker tasks scheduled on 300 multi-

core machines

Sample system: Signal-Collect

Signal/collect model vs Pregel

Integrated with RDF/SPARQL
Vertices can be non-uniform types

Vertex: For “data-flow” operations

— Id, mutable state, outgoing edges, most recent
received signals (map: neighbor id->signal),
uncollected signals

—user-defined collect function
Edge: id, source, dest
—user-defined signal function

Allows asynchronous computations....via
v.scoreSignal, v.scoreCollect

On multicore architecture: shared memory for workers

Signal/collect model

v.d081gnal() signals are made

available in a list and
a map

lastSignalState := state
for all (e € outgoingEdges) do

e.target.uncollectedSignals.append(e.signal())
e.target.signalMap.put(e.sourceld, e.signal())

end for
relax “num__iterations” soon
v.doCollect() - .
state := collect() Algorithm 1 Synchronous execution
uncollectedSignals := Nl for i « 1..num iterations do
for all v € V parallel do

next state for a vertex is v.doS ignal()

output of the collect()

operation end for

for all v € V parallel do
v.doCollect()
end for
end for 8

Signal/collect examples

Single-source shortest path

initialState if (isSource) 0 else infinity
collect () return min(oldState, min(signals))

signal () return source.state + edge.weight

QOO OISO
SERRR SRR SN

'
'
'
'
'
1
'
'
.
.
.
'
'
'
'
]
'
'
'
'

initial step 1 step 2

initialState

collect ()

signal ()

initialState

collect ()

signal ()

Signal/collect examples
Life

if (isInitiallyAlive) 1 else O

switch (sum(signals))

case 0: return O // dies of loneliness
case 1l: return 0 // dies of loneliness
case 2: return oldState // same as before

case 3: return 1 // becomes alive if dead
other: return 0 // dies of overcrowding

return source.state

PageRank

baseRank
return baseRank + dampingFactor * sum(signals)

return source.state x edge.weight / sum(edgeWeights (source))
20

PageRank + Preprocessing and Graph Building

Algorithm

class Document(id: Any) extends Vertex(id, 0.15) {
def collect = 0.15 + 0.85 * signals[Double].foldLeft(0.0)(_ + _)
override def processResult = if (state > 5) println(id + ": " + state)
override def scoreSignal = (state - lastSignalState.getOrElse(@)).abs

}

class Citation(citer: Any, cited: Any) extends Edge(citer, cited) {
override type SourceVertexType = Document
def signal = source.state * weight / source.sumOfOutWeights

}

Initialization

Execution

object Algorithm {
def executeCitationRank(db: SparqlAccessor) {
val computeGraph = new ComputeGraph(ScoreGuidedSynchronous)
val citations = new SparglTuples(db, "select 7source 7target where {"
+ "7source <http://l1sdis.cs.uga.edu/projects/semdis/opus#cites> 7target}™)
citations foreach {
case (citer, cited) =
computeGraph.addVertex[Document](citer)
computeGraph.addVertex|[Document](cited)
computeGraph.addEdge[Citation](citer, cited)
3
computeGraph.execute(signalThreshold = @)
}
¥

21

initialState

collect ()

signal ()

Signal/collect examples
Co-EM/wvRN/Harmonic fields

if (isTrainingData) trainingData else avgProbDist

if (isTrainingData)
return oldState
else
return signals.sum.normalise

return source.state

22

initialState
collect ()

signal ()

initialState

collect ()

signal ()

Set (id)
return union (oldState, union(signals))

return source.state

Fig. 8. Transitive closure (data-graph/data-flow).

randomColour

if (contains(signals, oldState))
return randomColorExcept (oldState)
else
return oldState

return source.state

Fig. 9. Vertex colouring (data-graph).

23

initialState
collect ()

signal ()

0
return 1 / (1 + e—signals.sum)

return source.state * edge.weight

Fig. 15. Artificial neural networks (data-graph).

24

Signal/collect examples

Matching path queries:
dept(X) -[member]—> postdoc(Y) -[recieved]> grant(Z)

initialState emptySet

collect () matched = successfulMatchesWithVertex(signals)
(fullyMatched, partiallyMatched) = partition (matched)
reportResults (fullyMatched)
return union (oldState - lastSignalState, partiallyMatched)
signal ()

return successfulMatchesWithEdge (source.state)

dept(X) -[member]—> postdoc(Y) -[recieved]> grant(Z)

2l
NSF378

InMind7

25

Signal/collect examples: data flow

Matching path queries:
dept(X) -[member]—> postdoc(Y) -[recieved]> grant(Z)

initialState emptySet

collect () matched = successfulMatchesWithVertex(signals)
(fullyMatched, partiallyMatched) = partition (matched)
reportResults (fullyMatched)
return union (oldState - lastSignalState, partiallyMatched)

signal () return successfulMatchesWithEdge (source.state)

dept(X=MLD) -[member]—> postdoc(Y) -[recieved]> grant(Z)

note: can be
multiple input
signals

dept(X=LTI) -[member]~> postdoc(Y) -[recieved]> grant(Z) 26

Signal/collect examples

Matching path queries:
dept(X) -[member]—> postdoc(Y) -[recieved]> grant(Z)

initialState emptySet

collect () matched = successfulMatchesWithVertex(signals)
(fullyMatched, partiallyMatched) = partition (matched)
reportResults (fullyMatched)
return union (oldState - lastSignalState, partiallyMatched)
signal ()

return successfulMatchesWithEdge (source.state)

dept(X=MLD) -[member]> postdoc(Y=partha) -[recieved]> grant(Z)

4t 22
wcohen NSF378

InMind7

27

Signal/collect model vs Pregel

* Integrated with RDF/SPARQL
* Vertices can be non-uniform types

* Vertex: For “data-flow” operations

— Id, mutable state, outgoing edges, most recent
received signals (map: neighbor id->signal),
uncollected signals

—user-defined collect function
* Edge: id, source, dest
—user-defined signal function

* Allows asynchronous computations....via
v.scoreSignal, v.scoreCollect

28

Asynchronous Parallel Computation

* Bulk-Synchronous: All vertices
update in parallel

— need to keep copy of “old”
and “new” vertex values

* Asynchronous:

— Reason 1: if two vertices are
not connected, can update
them in any order

* more flexibility, less storage
— Reason 2: not all updates are
equally important

* parts of the graph converge
quickly, parts slowly

29

Algorithm 2 Score-guided synchronous execution

using:
* v.scoreSignal
* v.scoreCollect

done := false

iter :=0
while iter < max iter and !done do
done := true

iter := iter +1
for all v € V parallel do
if (v.scoreSignal() > s_threshold) then
done := false
v.doSignal()
end if
end for
for all v € V parallel do
if (v.scoreCollect() > c_threshold)
then
done := false
v.doCollect()
end if
end for
end while 30

Time (seconds)

¢ synchronous ~—8—eager asynchronous ¢ synchronous —B—eager asynchronous
180 15
<
160 } 13 o °
140 1
‘ o 1
120 s
§’
100 & 9
o
8¢ 2
80 = 3 7
\ 5
60 &
.; 5
40 -
20 3
0 rrrrrrrrrrrrrrrrrrrrrrrr1rrr1ri1 1 T T T T T T T T T T T
1 3 5 7 9 11 13 156 17 19 21 23 1 3 5 7 9 11 13 15 17 19 21 23

Worker Thread
orker I'nreads # Worker Threads

31

SSSP

PageRank

Average Computation Time (ms)

1000
900
800

I

700
600
500 -
400 -
300 - T =
200 - i
100 -

0 - T T T

Synchronous Score-Guided "Eager" Score- "Above Average"
Synchronous Guided Score-Guided
Asynchronous Asynchronous

300000
250000
200000
150000
100000

50000

Average # of Signal Operations Executed

Synchronous Score-Guided "Eager" Score-
Synchronous Guided
Asynchronous

"Above Average"
Score-Guided
Asynchronous

Algorithm 3 Score-guided asynchronous execution
ops :=0
while
ops <. max_ops and Jv & V(
v.scoreSignal() > s_threshold or

v.scoreCollect() > c_threshold)
do

S := choose subset of V'

for all v € S parallel do
Randomly call either v.doSignal() or
v.doCollect() iff respective threshold is
reached; increment ops if an operation was
executed.

end for
end while

32

Sample system: GraphLab

GraphlLab

* Data in graph, UDF vertex function
e Differences:

—some control over scheduling
 vertex function can insert new tasks in a queue

—messages must follow graph edges: can access
adjacent vertices only

— “shared data table” for global data

— library algorithms for matrix factorization,
coEM, SVM, Gibbs, ...

— GraphLab = Now Dato

GraphlLab’s descendents

* PowerGraph
* GraphChi
* GraphX

35

GraphLab con’t

* PowerGraph
* GraphChi

— Goal: use graph abstraction on-disk, not in-
memory, on a conventional workstation

Topic Collaborative
Modeling Filtering

Graph Graphical Computer

Analytics Models Vision EsteTing

General-purpose API

MPI/TCP-IP PThreads Hadoop/HDFS

Linux Cluster Services (Amazon AWS)

36

GraphLab con’t

* GraphChi
— Key insight:
* some algorithms on graph are streamable (i.e.,
PageRank-Nibble)

* in general we can’t easily stream the graph
because neighbors will be scattered

* but maybe we can /imit the degree to which
they're scattered ... enough to make streaming
possible?

—“almost-streaming”: keep P cursors in a file
instead of one

PSW: Shards and Intervals

2. Compute

3.Write

 Vertices are numbered from 1 to n

— P intervals, each associated with a shard on disk.

— sub-graph = interval of vertices

Vi

\f)

interval(l)

n

interval(2) - interval(P)

shard(1)

shard(2) shard(P)

38

Lo |
PSW: Layout 2 Compute

3.Write
Shard: in-edges for interval of vertices; sorted by source-id
Vertices Vertices Vertices Vertices
[..100 101..700 701..1000 1001..10000

in-edges for vertices 1..100
sorted by source_id

<

Shards small enough to fit in memory; balance size of shards

39

|. Load

PSW: Loading Sub-graph 2. Compute

. 3.Write
Load subgraph for vertices 1..100
Vertices Vertices Vertices Vertices
[..100 101..700 701..1000 1001..10000

|

i W »

Load all in-edges
In memory

in-edges for vertices |..100
sorted by source_id

What about out-edges!?

Arranged in sequence in other shards

[Lioed |
PSW: Loading Sub-graph 2. Compute

Load subgraph for vertices 101..700 3. Write
Vertices Vertices Vertices Vertices
[..100 101..700 701..1000 1001..10000

in-edges for vertices 1..100
sorted by source_id

<€

Load all in-edges

in memory Out-edge blocks

in memory 2

PSW Load-Phase 2. Compute

3.Write

Only P large reads for each interval.

P2 reads on one full pass.

Interval 1

Shard 1 Shard 2 Shard 3 Shard 4

42

|. Load

PSW: Execute updates 2. Compute

3.Write

* Update-function is executed on interval’s vertices

* Edges have pointers to the loaded data blocks
— Changes take effect immediately = asynchronous.

—

Q{ ' *ET \ElockX
& =i

43

|. Load

PSW: Commit to Disk 2- Compute

* In write phase, the blocks are written back to disk

— Next load-phase sees the preceding writes =2
asynchronous.

In total:

P2 reads and writes / full pass on the graph.
—> Performs well on both SSD and hard drive.

ey To make this work:
. _'. the size of a vertex

)\ state can’t change
| when it’s updated (at

e\ e ' Block Y last, as stored on
Q/ L o¢ disk).

Experiment Setting

* Mac Mini (Apple Inc.)

. NS
— 256 GB SSD, 1TB hard drive i% ;zgf,«:

— Intel Core i5, 2.5 GHz
* Experiment graphs:

Vertices P (shards) Preprocessing
live-journal 4.8M 69M 3 0.5 min
netflix 0.5M 99M 20 | min
twitter-2010 42M 1.5B 20 2 min
uk-2007-05 106M 3.7B 40 31 min
uk-union 133M 5.4B 50 33 min
yahoo-web |.4B 6.6B 50 37 min

See the paper for more comparisons.

Comparison to Existing Systems

PageRank

Twitter-2010 (1.5B edges)
GraphChi
(Mac
)

Mini
Spark (50
machines)

0 2 4 6 8 10 12 14

Minutes

Matrix Factorization (Alt. Least

Netflix (99B edges)

GraphChi
(Mac Mini)

GraphLab
vl (8
cores)

0 2 4 6 8 10 12

Minutes

WebGraph Belief Propagation (U Kang

Yahoo-web (6.7B edges)
GraphChi
(Mac Mini)

Pegasus /
Hadoop
(100

machines)
0 5 10 15 20 25 30

Minutes

Triangle Counting

twitter-2010 (1.5B edges)

GraphChi
(Mac
B Mini)
Hadoop
(1636
machines)

0 50 100 I50 200 250 300 350 400 450

Minutes

Notes: comparison results do not include time to transfer the data to cluster, preprocessing, or the time to load the
graph from disk. GraphChi computes asynchronously, while all but GraphLab synchronously.

GraphlLab’s descendents

* PowerGraph
* GraphChi
* GraphX

el " hared : |

On cluster architecture (like Pregel): different memory spaces

What are the challenges moving away from shared-memory?

47

_Natural Graphs - Power Law

10
8 1 \ :60
107 -, J)o % Top 1% of vertices is -
N % adjacent to
\

10° | o %- | 53% of the edges! -
Y= A\
S

10% | :

10° | :

10°

10 10
degree

Altavista Web Graph: 1.4B Vertices, 6.7B Edges
GraphLab group/Aapo

Problem:
High Degree Vertices Limit Parallelism

X

Edge information Touches a large Produces many
too large for single fraction of graph messages
machine (GraphlLab 1) (Pregel, Signal/Collect)
*—e > | —e —>» I
*—e > 1 —o —> i
*—e —] —0 —> I
*—e > 1 o—o —> i
i i
- i :
Asynchronous consistency Synchronous consistency is prone to
requires heavy locking (Graphlab 1) stragglers (Pregel)

GraphLab group/Aapo

49

PowerGraph

* Problem: GraphLab’s localities can be large

— “all neighbors of a node” can be large for hubs,
high indegree nodes

* Approach:
—new graph partitioning algorithm
* can replicate data

— gather-apply-scatter API: finer-grained
parallelism

e gather ~ combiner
* apply ~ vertex UDF (for all replicates)
* scatter ~ messages from vertex to edges

GraphlLab group/Aapo
Sense p group/Aap

learn
act

Factorized@g}ex Updates

Split update into 3 phases
A

51

initialState
collect ()

signal ()

Signal/collect examples

Single-source shortest path

if (isSource) 0 else infinity

return min(oldState, min(signals))

return source.state + edge.weight

52

Signal/collect examples
Life

initialState if (isInitiallyAlive) 1 else 0

collect () switch (sum(signals))
case 0: return O // dies of loneliness
case 1: return O // dies of loneliness
case 2: return oldState // same as before
case 3: return 1 // becomes alive if dead
other: return 0 // dies of overcrowding
signal () return source.state

PageRank

initialState DbaseRank

collect () return baseRank + dampingFactor * sum(signals)

signal () return source.state x edge.weight / sum(edgeWeights (source))

53

iggf”PageRank + Preprocessing and Graph Building \

/ class Document(id: Any) extends Vertex(id, 0.15) {
/ def collect = ©0.15 + 0.85 * signals[Double].foldlLeft(0.0)(_ + _)
£ | override def processResult = 1f (state > 5) println(id + ": " + state)
~ override def scoreSignal = (state - lastSignalState.getOrElse(@)).abs
=3
o)
O)| class Citation(citer: Any, cited: Any) extends Edge(citer, cited) {
< override type SourceVertexType = Document
def signal = source.state * weight / source.sumOfOutWeights
¥
¢ | object Algorithm {
e def execute(CitationRank(db: SparqlAccessor) {
'ﬁ val computeGraph = new ComputeGraph(ScoreGuidedSynchronous)
N val citations = new SparglTuples(db, "select 7source 7target where {"
% + "7source <http://l1sdis.cs.uga.edu/projects/semdis/opus#cites> 7target}™)
per citations foreach {
= case (citer, cited) =
- computeGraph.addVertex[Document](citer)
computeGraph.addVertex|[Document](cited)
g computeGraph.addEdge[Citation](citer, cited)
= 1
\ 5 computeGraph.execute(signalThreshold = @)
S| 3
Ak 54 /

initialState

collect ()

signal ()

Signal/collect examples
Co-EM/wvRN/Harmonic fields

if (isTrainingData) trainingData else avgProbDist

if (isTrainingData)
return oldState
else
return signals.sum.normalise

return source.state

55

Sel.isc GraphLab group/Aapo

learn

<t PageRank in PowerGraph
Rli] =8+ (1—8) > wuR[j],_
(J,))€E

gather/sum like a group by ... reduce or collect

PageRankProgram(i)
Gather(j 2> i):return w;*R[j] | __
sum(a, b) : returna+ b; - j edge
Apply(i,2) : R[i]=p+ (1 -p) * 2 i vertex
Scatter(i-=2j):

if (R[1] changes) then activate(])

scatter is like a signal o

)

Graphlab group/Aapo

Distributed Execution of a
PowerGraph Vertex-Program

Machine 1 Machine 2

Machine 3 Machine 4

o GraphlLab group/Aapo
Sense p g Up/ p
learn

act c e e . . .
Minimizing Communication in PowerGraph

Communication is linear in
the number of machines
each vertex spans

A vertex-cut minimizes
machines each vertex spans

Percolation theory suggests that power law graphs
have good vertex cuts. [Albert et al. 2000]

58

Seiisc
leao (]

act

GraphLab group/Aapo

Partitioning Performance

Twitter Graph: 41M vertices, 1.4B edges

achines Spanned

Avg # of

18
16
14

Cost

8

16 24 32 40 48 56 64
Number of Machines

Construction Time

1000 \

800

600 -

400

Coordinated

200
Ran
O T T

8 16 24 32 40 48 56 64

Number of Machines

Partition Time (Seconds)

dOm

59

GraphLab group/Aapo

Partitioning matters...

“ Random
“ Oblivious

- Greedy

Reduction in Runti

PageRank

Collaborative
Filtering Shortest Path

60

GraphlLab’s descendents

 PowerGraph

* GraphChi

* GraphX
— implementation of GraphLabs API on top of Spark
— Motivations:

* avoid transfers between subsystems
* leverage larger community for common infrastructure

— What's different:

* Graphs are now immutable and operations transform
one graph into another (RDD =» RDG, resiliant
distributed graph)

61

Idea |: Graph as Tables

Property Graph

Under the hood things can be
split even more finely: eg a
vertex map table + vertex
data table. Operators
maximize structure sharing
and minimize communication.

Vertex Property lable

Id Property (V)
RXin (Stu., Berk.)
Jegonzal (PstDoc, Berk.)
Franklin (Prof., Berk)
Istoica (Prof., Berk)

Edge Property lTable

Srcld Dstld Property (E)
rXin jegonzal Friend
franklin rXin Advisor
istoica franklin Coworker
franklin | jegonzal Pl

62

Operators

* Table (RDD) operators are inherited from Spark:

map

filter
groupBy

sort

union

join
leftOuterloin

rightouterJoin

reduce
count

fold
reduceByKey
groupByKey
cogroup
Cross

Z1p

sample

take

first
partitionBy
mapwith
pipe

save

63

Graph Operators

class Graph [v, E] {

?

def Graph(vertices: Table[(1d, V) 1,
edges: Tablel (1d, 1d, E)])

|dea 2: mrTriplets: low-
level routine similar to
scatter-gather-apply.

Evolved to
agsregateNeighbors,
ageregateMessages

64

The GraphX Stack
(Lines of Code)

PageRank | Connected | Shortest | SVD | ALS K-core
(5) Comp. (10) fPath (10)] (40) | (40) (51

Triangle DA
Count (120)
(45)
Pregel (28) + GraphlLab (50)

GraphX (3575)

65

Performance Comparisons

Live-Journal: 69 Million Edges

Mahout/Hadoop % 1340

Naive Spark _* 354

Giraph | 207
GraphX [68
Graphlab | 22

0 200 400 600 800 1000 1200 1400 1600

Runtime (in seconds, PageRank for |10 iterations)

GraphXis roughly 3x slower than Graphlab

66

Wrapup

Summary

e Large immutable data structures on (distributed)
disk, processing by sweeping through then and
creating new data structures:

— stream-and-sort, Hadoop, PIG, Hive, ...

* Large immutable data structures in distributed
memory:

— Spark - distributed tables

* Large mutable data structures in distributed
memory:

— parameter server: structure is a hashtable

— Pregel, GraphLab, GraphChi, GraphX: structure
is a graph

Summary

* APIs for the various systems vary in detail but
have a similar flavor

— Typical algorithms iteratively update vertex
state

— Changes in state are communicated with
messages which need to be aggregated from
neighbors

* Biggest wins are

— on problems where graph is fixed in each
iteration, but vertex data changes

—on graphs small enough to fit in (distributed)
memory

Some things to take away

* Platforms for iterative operations on graphs

— Gra
— Gra

— Gra

D
p

D

hX: if you want to integrate with Spark
hChi: if you don't have a cluster

hLab/Dato: if you don’t need free software and

performance is crucial
— Pregel: if you work at Google
— Giraph, Signal/collect, ... ??

* Important differences

— Intended architecture: shared-memory and threads,
distributed cluster memory, graph on disk

— How graphs are partitioned for clusters
— If processing is synchronous or asynchronous

70

