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ABSTRACT 
In this proposal, we describe a potential design a distributed 
training of convolutional neural network by synthetic gradient. 
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1. INTRODUCTION 
 
Parallelization is always an intriguing idea for researchers 
working with exceptional large datasets or complex models in 
machine learning community. Recently, the emergence of 
affordable cloud services and multi-core machines has made it 
feasible more than ever.  
 

Paralleling the training of neural network is always a challenge as 
each layer takes input from its previous layer, and has to wait for 
the gradient passed from its next layer. An intuitive way of doing 
parallelization in such structure is to use Asynchronous Stochastic 
Gradient Descent, which is extensively discussed by the paper 
published by Google at 2012 [1], that made a compromise on the 
mathematical effectiveness and the scalability of distributed 
system, by paralleling the model update asynchronously with 
independent workers managed by a parameter server. This 
technique has been extensively used and significant improvement 
has been made on both the parameter server [2,3] and the 
algorithm itself [4] later on and becomes a industrial standard for 
large scale training of neural networks.  
 

Though the exceptional popularity that Asynchronous Stochastic 
Gradient Descent has gained in the recent years, question exists as 
it parallels data over the model itself, where at here, is composed 
of end to end layers. Are we able to parallel the training of each 
layers instead of each data block? It is made possible by the paper 
published this year by Google Deepmind [5]. 
 

Normally the training of neural network requires back propagation 
to update parameters from each layer of the neural network, 
through which the gradient calculated accumulatively, percolate 
down from the output layer to the input layer and, sequentially 
update the weights and biases in each layer. Repetitive calculation 
of the gradient is greatly reduced through this is way because the 
loss function is the composite of many sub-functions. This method, 
though established as the standard training pipeline, suffers from 
the fact that the the parameter update in each layer is dependent 
on its adjacent layers. The proposed method by [5] uses two types 

of additional small neural networks, that simulate the input and 
gradient update whenever a layer makes a request. 
 

The advantage of this lock-free version of training of neural 
network could be applied in tasks that involves multiple small 
neural networks that communicate with each other. However, this 
is not the focus on our project. In this project, we tend to discover 
and implement a more robust model that utilizes this elegant idea 
of layer wise training. The complete decoupled model [5] has 
achieved proven effectiveness on simple dataset like MNIST, and 
now we want to extend its application in larger dataset with 
slightly more complicated models by changing training model 
dynamically on distributed system.  

 
By this time, we haven’t seen any distributed version of this 
model and we tend to discover the effectiveness of this model by 
doing extensive experiments from naive to complex models with 
our knowledge in machine learning and distributed system. Trivial 
but important works should be done focusing on decreasing the 
variance of input and gradient update simulated by auxiliary 
neural networks. Also, how to scale the data by improving the 
data storage and cache system is also things that awaits us to 
tackle with. 

2. IDEA  
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We tend to train the synthetic gradient model in a distributed way 
by using parameter server. The big picture of our model might 
look like the picture described below.  

 

3. IMPLEMENTATIONS 
 

As this is a brand new idea for the whole data pipeline, there are 
many factors that needed to be taken into consideration. As the 
amount of data is very huge, the storage of them might still be a 
problem. We might use a NoSQL database to deal with the 
storage problem. For the inner implementation of each single 
worker, we plan on using TensorFlow [6] for gradient calculation 
and weight update. Further, due to the large amount of data, more 
machines might be required for each worker. They should follow 
the master slave schema, and the auto-scaling setup for each 
machine should also be considered. Besides, for each worker, the 
unlabeled data of the input is will be repeatedly used across 
iterations, so a front-end cache might be able to speed it up. The 

communication among different servers might need the timeout 
mechanism as the data might be outdated for too much waiting 
time, or be left behind due to blocking. To solve this problem, we 
might need an additional machine or databases like Memcached 
or Redis to decrease the burden for each worker. From the side of 
the data center, backup mechanisms is required, which will 
involve replication and a load balancer as well. 
 
Finally, to reduce the variance problem among layers, the network 
would not be necessarily trained with independent layers, and we 
plan to group several layers into one and train that group as one. 
Moreover, we still manage to change the splitting of the network 
dynamically thus the variance might be further reduced. 
 

4. DATASET 
 

We tend to test out our framework with datasets varies in their 
sizes from MNIST to Amazon review dataset [7] to do 
classification task with either fully connected neural network and 
convolutional neural network.  
 

5. EXPECTATION 
 

As this is a new algorithm and no distributed version of this has 
been released, we might not expect the accuracy of this 
framework to be as high as some state of art models, however, we 
expect it to achieve a better convergence rate than asynchronous 
stochastic gradient descent alone, though with potential loss of 
accuracy due to the instability of the calculation among layers. 
We also want to discover what modification on the model may 
help improving the system in either accuracy and convergence 
time, this might be extremely useful for big data environment as 
we always want to make a balance between the precision and the 
efficiency.  
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