
Layer-wise Asynchronous Training of Neural Network with
Synthetic Gradient on Distributed System

ABSTRACT
In this proposal, we describe a potential design a distributed
training of convolutional neural network by synthetic gradient.

Keywords
Synthetic gradient, asynchronous, neural network

1. INTRODUCTION

Parallelization is always an intriguing idea for researchers
working with exceptional large datasets or complex models in
machine learning community. Recently, the emergence of
affordable cloud services and multi-core machines has made it
feasible more than ever.

Paralleling the training of neural network is always a challenge as
each layer takes input from its previous layer, and has to wait for
the gradient passed from its next layer. An intuitive way of doing
parallelization in such structure is to use Asynchronous Stochastic
Gradient Descent, which is extensively discussed by the paper
published by Google at 2012 [1], that made a compromise on the
mathematical effectiveness and the scalability of distributed
system, by paralleling the model update asynchronously with
independent workers managed by a parameter server. This
technique has been extensively used and significant improvement
has been made on both the parameter server [2,3] and the
algorithm itself [4] later on and becomes a industrial standard for
large scale training of neural networks.

Though the exceptional popularity that Asynchronous Stochastic
Gradient Descent has gained in the recent years, question exists as
it parallels data over the model itself, where at here, is composed
of end to end layers. Are we able to parallel the training of each
layers instead of each data block? It is made possible by the paper
published this year by Google Deepmind [5].

Normally the training of neural network requires back propagation
to update parameters from each layer of the neural network,
through which the gradient calculated accumulatively, percolate
down from the output layer to the input layer and, sequentially
update the weights and biases in each layer. Repetitive calculation
of the gradient is greatly reduced through this is way because the
loss function is the composite of many sub-functions. This method,
though established as the standard training pipeline, suffers from
the fact that the the parameter update in each layer is dependent
on its adjacent layers. The proposed method by [5] uses two types

of additional small neural networks, that simulate the input and
gradient update whenever a layer makes a request.

The advantage of this lock-free version of training of neural
network could be applied in tasks that involves multiple small
neural networks that communicate with each other. However, this
is not the focus on our project. In this project, we tend to discover
and implement a more robust model that utilizes this elegant idea
of layer wise training. The complete decoupled model [5] has
achieved proven effectiveness on simple dataset like MNIST, and
now we want to extend its application in larger dataset with
slightly more complicated models by changing training model
dynamically on distributed system.

By this time, we haven’t seen any distributed version of this
model and we tend to discover the effectiveness of this model by
doing extensive experiments from naive to complex models with
our knowledge in machine learning and distributed system. Trivial
but important works should be done focusing on decreasing the
variance of input and gradient update simulated by auxiliary
neural networks. Also, how to scale the data by improving the
data storage and cache system is also things that awaits us to
tackle with.

2. IDEA

Hao Wang
Carnegie Mellon University

Language Technologies Institute
haow2@andrew.cmu.edu

Xupeng Tong
Carnegie Mellon University

Computational Biology Department
xtong@andrew.cmu.edu

We tend to train the synthetic gradient model in a distributed way
by using parameter server. The big picture of our model might
look like the picture described below.

3. IMPLEMENTATIONS

As this is a brand new idea for the whole data pipeline, there are
many factors that needed to be taken into consideration. As the
amount of data is very huge, the storage of them might still be a
problem. We might use a NoSQL database to deal with the
storage problem. For the inner implementation of each single
worker, we plan on using TensorFlow [6] for gradient calculation
and weight update. Further, due to the large amount of data, more
machines might be required for each worker. They should follow
the master slave schema, and the auto-scaling setup for each
machine should also be considered. Besides, for each worker, the
unlabeled data of the input is will be repeatedly used across
iterations, so a front-end cache might be able to speed it up. The

communication among different servers might need the timeout
mechanism as the data might be outdated for too much waiting
time, or be left behind due to blocking. To solve this problem, we
might need an additional machine or databases like Memcached
or Redis to decrease the burden for each worker. From the side of
the data center, backup mechanisms is required, which will
involve replication and a load balancer as well.

Finally, to reduce the variance problem among layers, the network
would not be necessarily trained with independent layers, and we
plan to group several layers into one and train that group as one.
Moreover, we still manage to change the splitting of the network
dynamically thus the variance might be further reduced.

4. DATASET

We tend to test out our framework with datasets varies in their
sizes from MNIST to Amazon review dataset [7] to do
classification task with either fully connected neural network and
convolutional neural network.

5. EXPECTATION

As this is a new algorithm and no distributed version of this has
been released, we might not expect the accuracy of this
framework to be as high as some state of art models, however, we
expect it to achieve a better convergence rate than asynchronous
stochastic gradient descent alone, though with potential loss of
accuracy due to the instability of the calculation among layers.
We also want to discover what modification on the model may
help improving the system in either accuracy and convergence
time, this might be extremely useful for big data environment as
we always want to make a balance between the precision and the
efficiency.

6. REFERENCES

[1] Dean, Jeffrey, et al. "Large scale distributed deep
networks." Advances in neural information processing
systems. 2012.

[2] Ho, Qirong, et al. "More effective distributed ml via a stale
synchronous parallel parameter server." Advances in neural
information processing systems. 2013.

[3] Li, Mu, et al. "Scaling distributed machine learning with the
parameter server." 11th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 14). 2014.

[4] Zhang, Ruiliang, Shuai Zheng, and James T. Kwok. "Fast
distributed asynchronous sgd with variance reduction." arXiv
preprint arXiv:1508.01633(2015).

[5] Jaderberg, Max, et al. "Decoupled neural interfaces using
synthetic gradients." arXiv preprint
arXiv:1608.05343 (2016).

[6] Abadi, Martın, et al. "Tensorflow: Large-scale machine
learning on heterogeneous distributed systems." arXiv
preprint arXiv:1603.04467 (2016).

[7] http://snap.stanford.edu/data/amazon/productGraph

	

