Layer-wise Asynchronous Training of Neural Network with Synthetic Gradient

Xupeng Tong, Hao Wang, Ning Dong, Griffin Adams

Back Propagation of Training CNN

Asynchronous SGD

Dean, Jeffrey, et al. "Large scale distributed deep networks." *Advances in neural information processing systems*. 2012.

2-1 OVERVIEW

Jaderberg, Max, et al. "Decoupled neural interfaces using synthetic gradients." *arXiv preprint arXiv:1608.05343* (2016).

2-2

Each Layer can be trained independently

Minimizing the synthetic input/gradient simultaneously with the general loss

$$L_{\mathcal{M}} = \sum_{i} \left\| \delta_{i} - \hat{\delta}_{i} \right\|_{2}^{2}$$

$$L_{\mathcal{I}} = \sum_{i} \left\| h_{i} - \hat{h}_{i} \right\|_{2}^{2}$$

 $L(w_1, b_1, \cdots, w_i, b_i, \cdots, w_n, b_n) = L(W, B)$

4-1 ONE POSSIBLE ARCHITECTURE

4-1 INFRASTRUCTURE - BASIC

4-2 INFRASTRUCTURE - LIGHT

4-2 SLAVE

4-3 MASTER

MASTER				
	DATABASE		RESTful SERVER	
	True Input Table		Insert True Input	-
	True Gradient Table		Insert True Gradient	
			Get True Input	
	Heartbeat Log		Get True Gradient	

5-1

- Synthetic gradient and synthetic input as a new alternative of batch normalization / Dropput
- M and I auxiliary network introduces noises in the input/gradient of each layer
- No exact update is required!
- The model will learn how to reduce the variance within each batch
- while keeping the flavor of that specific batch.

