Scalable, Distributed Factor Analysis in Spark

Daoyuan Jia, Tiancheng Liu, Danielle Rager

12/6/2016

Overview

- Scientific Motivation
- Dimensionality Reduction Models:

• PCA / sPCA / FA

• Allen Institute Dataset and Data Pre-processing

• Distributed Implementation

- Distributed Factor Analysis (FA) Algorithm
- Conclusion

Scientific Motivation

One research question in neuroscience:

Neurons exhibit highly variable electrical responses, even for the same stimuli. Neuroscientists want to understand the structure of trial-to-trial variability in neural responses. Are there global effects in variability across neurons in the network?

nature International weekly journal of science											
Home News & Comm	ent Research	Careers & Jobs	Current Issue	Archive	Audio & Video	For Au					
Archive Volume 535	Sissue 7611	News Articl	e								

NATURE | NEWS

Brain-data gold mine could reveal how neurons compute

Allen Brain Observatory releases unprecedented survey of activity in the mouse visual cortex.

Helen Shen

13 July 2016

Noises Across Neurons in the Network

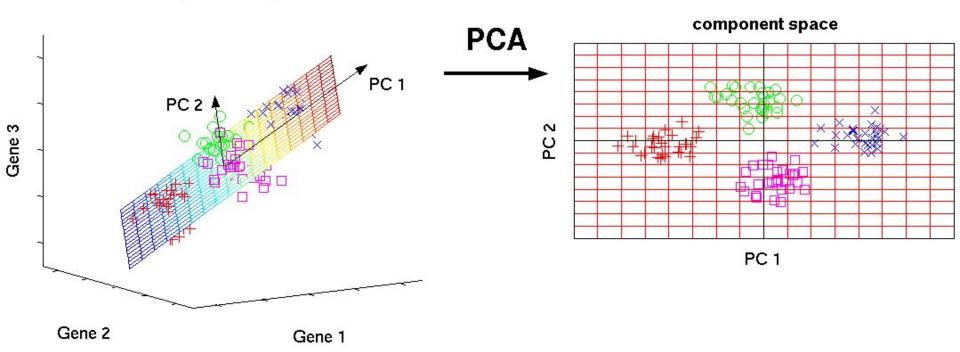
- Average human brain:100 billion neurons
- Proper dimensionality reduction techniques needed to analyze the variability across neurons
- Current algorithm: scalable
- Neuroscientists lack tools to analyze network covariability at this scale
- Solution: distributed dimensionality reduction algorithms

Overview

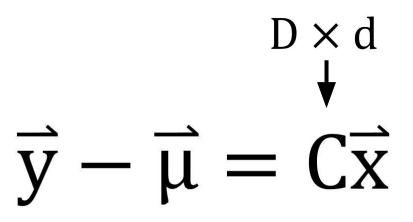
- Scientific Motivation
- Dimensionality Reduction Models:
 - PCA / sPCA / FA
- Allen Institute Dataset and Data Pre-processing
 - Distributed Implementation
- Distributed Factor Analysis (FA) Algorithm
- Conclusion

Dimensionality Reduction

original data space



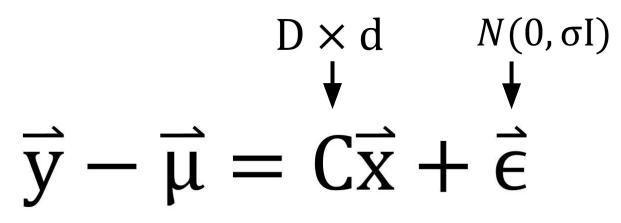
1. Principal Component Analysis (PCA)



- Closed-Form Solution: Singular Value Decomposition
- Complexity: $O(ND^2)$
- Distributed Implementation:

Spark: MLlib-PCA; R: RScaLAPACK

2. Probabilistic Principal Component Analysis (PPCA)



- Expectation-Maximization (EM) Algorithm
- Complexity: O(ND), better than PCA
- Distributed Implementation:

Spark/Hadoop: Stochastic Principal Component Analysis (sPCA)

- $D \times D$ 3. Factor Analysis (FA) *N*(0, $D \times d$ Ψ) $\vec{\mu} = C\vec{x} + \vec{\epsilon}$
 - Expectation-Maximization (EM) Algorithm
 - Complexity: O(ND)
 - Distributed Implementation:

Our implementation!

Overview

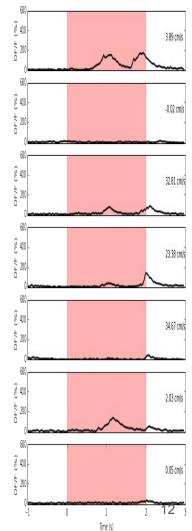
- Scientific Motivation
- Dimensionality Reduction Models:

• PCA / sPCA / FA

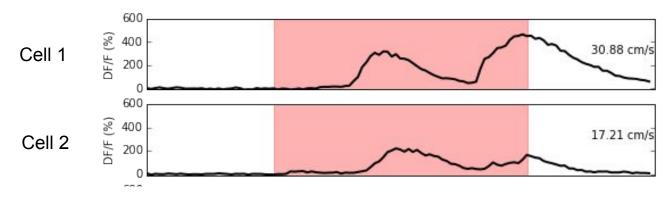
- Allen Institute Dataset and Data Pre-processing
 Distributed Implementation
 - Distributed Implementation
- Distributed Factor Analysis (FA) Algorithm
- Conclusion

Allen Institute Dataset

- AllenSDK:
 - For reading and processing data from Allen Institute
 - Contains an API to fetch data and experiment images
 - Also contains analytical functions for neuroscientists
- We focus on:
 - Raw data from Calcium Imaging
 - Cross-covariance between two cells' calcium response
 - Final output: covariance matrix



Bottleneck: Calculating Covariance Matrix



- Between two cells: sum of cross-covariances up to lag p
- Complexity: $O(pTN^2) \approx O(TN^2)$
- On my laptop: 2hr for 1000 cells
- Solution: distributed matrix operations in Spark

Overview

- Scientific Motivation
- Dimensionality Reduction Models:

• PCA / sPCA / FA

- Allen Institute Dataset and Data Pre-processing
 Distributed Implementation
 - Distributed Implementation
- Distributed Factor Analysis (FA) Algorithm
- Conclusion

EM algorithm for FA $\vec{y} - \vec{\mu} = C\vec{x} + \vec{\epsilon}$

- E step:
 - \circ Fix C and Ψ
 - Compute conditional likelihood L(X|Y) $< X|Y_c >$

 $< (X|Y_c)(X|Y_c)^T >$

- M step:
 - Fix conditional likelihood
 - \circ Compute new C and Ψ

 $N(0, \Psi)$

EM Algorithm for FA

$$Y_{c} = Y - \mu$$

$$M = CC^{T} + \Psi$$

$$< X|Y_{c} >= X_{m} = C^{T}M^{-1}Y_{c}$$

$$< (X|Y_{c})(X|Y_{c})^{T} >= \Sigma_{X_{m}} = I - C^{T}M^{-1}C + X_{m}X_{m}^{T}$$

$$Y_{proj} = Y_{c}X_{m}^{T}$$

$$C_{new} = \Sigma_{X_{m}}Y_{proj}$$

$$\psi_{proj} = C_{new}X_{m}Y_{m}^{T}$$

$$\Psi_{new} = \frac{1}{N}\operatorname{diag}(Y_{c}Y_{c}^{T} - \psi_{proj})$$

16

sFA Optimizations: Distribute operations minimally

Driver program does most operations locally, launches only a few Spark jobs distribute computations where you have dimension N

$$\begin{split} Y_c &= Y - \mu \\ M &= CC^T + \Psi \\ &< X | Y_c > = X_m = C^T M^{-1} Y_c \quad \text{MapReduce} \\ &< (X | Y_c) (X | Y_c)^T > = \Sigma_{X_m} = I - C^T M^{-1} C + X_m X_m^T \quad \text{MapReduce} \\ &\quad Y_{proj} = Y_c X_m^T \quad \text{MapReduce} \\ &\quad C_{new} = \Sigma_{X_m} Y_{proj} \\ &\quad \psi_{proj} = C_{new} X_m Y_m^T \quad \text{MapReduce} \\ &\quad \Psi_{new} = \frac{1}{N} \text{diag}(Y_c Y_c^T - \psi_{proj}) \end{split}$$

17

sFA Optimizations: Distribute operations minimally

Use same MapReduce job for operations w/o dependencies

$$\begin{split} Y_{c} &= Y - \mu \\ M &= CC^{T} + \Psi \\ &< X | Y_{c} > = X_{m} = C^{T}M^{-1}Y_{c} \quad \text{MapReduce} \\ &< (X|Y_{c})(X|Y_{c})^{T} > = \Sigma_{X_{m}} = I - C^{T}M^{-1}C + X_{m}X_{m}^{T} \\ Y_{proj} &= Y_{c}X_{m}^{T} \\ C_{new} &= \Sigma_{X_{m}}Y_{proj} \\ \psi_{proj} &= C_{new}X_{m}Y_{m}^{T} \quad \text{MapReduce} \\ \Psi_{new} &= \frac{1}{N}\text{diag}(Y_{c}Y_{c}^{T} - \psi_{proj}) \end{split}$$
18

sFA Optimizations: Minimize Intermediary Data

Recompute X and Y at each job rather than storing and exchanging

$$Y_{c} = Y - \mu$$

$$M = CC^{T} + \Psi$$

$$< X|Y_{c} \ge X_{m} = C^{T}M^{-1}Y_{c}$$

$$< (X|Y_{c})(X|Y_{c})^{T} \ge \Sigma_{X_{m}} = I - C^{T}M^{-1}C + X_{m}X_{m}^{T}$$

$$Y_{proj} = Y_{c}X_{m}^{T}$$

$$C_{new} = \Sigma_{X_{m}}Y_{proj}$$

$$\psi_{proj} = C_{new}X_{m}Y_{m}^{T}$$

$$\Psi_{new} = \frac{1}{N}\operatorname{diag}(Y_{c}Y_{c}^{T} - \psi_{proj})$$

19

sFA Optimizations: Minimize Intermediary Data

Recompute X and Y at each job rather than storing and exchanging

$$\begin{split} Y_{c} &= Y - \mu \\ M &= CC^{T} + \Psi \\ \hline &< X | Y_{c} \rangle = X_{m} = C^{T} M^{-1} Y_{c} \\ < (X|Y_{c})(X|Y_{c})^{T} \rangle = \Sigma_{X_{m}} = I - C^{T} M^{-1} C + X_{m} X_{m}^{T} \\ Y_{proj} &= Y_{c} X_{m}^{T} \\ C_{new} &= \Sigma_{X_{m}} Y_{proj} \\ \psi_{proj} &= C_{new} X_{m} Y_{m}^{T} \text{ MapReduce} \\ \Psi_{new} &= \frac{1}{N} \text{diag}(Y_{c} Y_{c}^{T} - \psi_{proj}) \end{split}$$

sFA Optimizations: Leverage Sparsity

(Don't lose opportunity to do computations on 0 values)

Mean sparsity:
$$M^{-1}Y_c = M^{-1}(Y-\mu) = M^{-1}\overline{Y} - M^{-1}\mu$$

Matrix Inversion Lemma:
$$M^{-1} = (CC^T + \Psi)^{-1}$$

= $\Psi^{-1} - \Psi^{-1}C(I + C^T \Psi^{-1}C)^{-1}C^T \Psi^{-1}$

Diagonal matrix multiplication tricks

sFA Optimizations: Efficient Matrix Multiplication

Optimizes computations when both matrices are large

$(A * B)_i = A_i * B$

Optimization when one matrix is small enough to fit in memory

Overview

- Scientific Motivation
- Dimensionality Reduction Models:

• PCA / sPCA / FA

• Allen Institute Dataset and Data Pre-processing

• Distributed Implementation

- Distributed Factor Analysis (FA) Algorithm
- Conclusion

Conclusion: Format for Large Distributed Files

H5Spark: Bridging the I/O Gap between Spark and Scientific Data Formats on HPC Systems

Jialin Liu¹, Evan Racah¹, Quincey Koziol¹, Richard Shane Canon¹, Alex Gittens², Lisa Gerhardt¹, Suren Byna¹, Mike F. Ringenburg³, Prabhat¹.

• HDF5:

- Hierarchical Data Format V
- Flexible and efficient I/O
- High volume and complex
- NWB from Allen Institute

HFSpark

- Department of Energy
- From HDF5 to Spark RDD
- Implemented in JavaSpark
- Superior performance

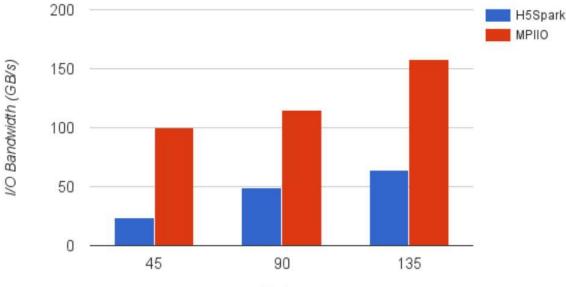
Conclusion: Format for Large Distributed Files

MPI IO

 IBM's Watson Laboratory

Parallel I/O

A	-								
	- 100								
1000									
100.0	1.0								
THE REPORT OF A	COLUMN RAY RAY								
101102-011	141 1								
101111-0012-011		1000				1.1.1	- 17	-	
	2 200				10000	11111			
			1000		00000	11117		1000	
	0 - L I							1000	
	100			10000	1000				
	100		- T	Distant.	-1000	1111F	- The	- A	
States and the second	Gine and a								
	19 Y 19 19								
100 Barriel 10	1 mar 1 m								



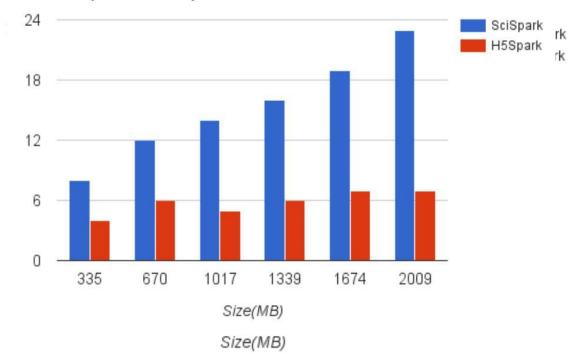
H5Spark and MPIIO

Nodes

Conclusion: Format for Large Distributed Files

SciSpark

- NASA
- scientific RDD (SRDD)



H5Spark vs SciSpark

Reference

- 1. Allen Institute. "Brain Observatory Trace Analysis." http://alleninstitute.github.io/AllenSDK/_static/examples/ nb/brain_observatory_analysis.html#Drifting-Gratings
- Tarek Elgamal, Maysam Yabandeh, Ashraf Aboulnaga, Waleed Mustafa, and Mohamed Hefeeda. 2015. sPCA: Scalable Principal Component Analysis for Big Data on Distributed Platforms. In Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data (SIGMOD '15). ACM, New York, NY, USA, 79-91. DOI: http://dx.doi.org/10.1145/2723372.2751520
- 3. http://johnsonhsieh.github.io/DSR_workshop/image/fig_pca_principal_component_analysis.png
- 4. https://cug.org/proceedings/cug2016_proceedings/includes/files/pap137-file2.pdf
- J.L. Liu, E. Racah, Q. Koziol, R. S. Canon, A. Gittens, L. Gerhardt, S. Byna, M. F. Ringenburg, Prabhat. "H5Spark: Bridging the I/O Gap between Spark and Scientific Data Formats on HPC Systems", Cray User Group, 2016