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Scientific Motivation

One research question in neuroscience:

Neurons exhibit highly variable electrical responses, 
even for the same stimuli. Neuroscientists want to 
understand the structure of trial-to-trial variability in 
neural responses. Are there global effects in variability 
across neurons in the network?  
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Noises Across Neurons in the Network

● Average human brain:100 billion neurons
● Proper dimensionality reduction techniques needed to 

analyze the variability across neurons
● Current algorithm: scalable
● Neuroscientists lack tools to analyze network 

covariability at this scale
● Solution: distributed dimensionality reduction algorithms
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Dimensionality Reduction
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● Closed-Form Solution: Singular Value Decomposition
● Complexity: 
● Distributed Implementation:

Spark: MLlib-PCA; R: RScaLAPACK

1. Principal Component Analysis (PCA)
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● Expectation-Maximization (EM) Algorithm
● Complexity:    , better than PCA
● Distributed Implementation:

Spark/Hadoop: Stochastic Principal Component Analysis (sPCA)

2. Probabilistic Principal Component Analysis (PPCA)
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● Expectation-Maximization (EM) Algorithm
● Complexity: 
● Distributed Implementation:

Our implementation!

3. Factor Analysis (FA)
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Allen Institute Dataset

● AllenSDK:
○ For reading and processing data from Allen Institute
○ Contains an API to fetch data and experiment images
○ Also contains analytical functions for neuroscientists

● We focus on:
○ Raw data from Calcium Imaging
○ Cross-covariance between two cells’ calcium response
○ Final output: covariance matrix
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Bottleneck: Calculating Covariance Matrix

● Between two cells: sum of cross-covariances up to lag p
● Complexity:
● On my laptop: 2hr for 1000 cells
● Solution: distributed matrix operations in Spark
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EM algorithm for FA

● E step:
○ Fix C and  
○ Compute conditional likelihood L(X|Y)

● M step:
○ Fix conditional likelihood
○ Compute new C and  
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EM Algorithm for FA

16



sFA Optimizations: Distribute operations minimally
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MapReduce

MapReduce

MapReduce

Driver program does most operations locally, launches only a few Spark jobs
distribute computations where you have dimension N

MapReduce



sFA Optimizations: Distribute operations minimally
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MapReduce

MapReduce

MapReduce

Use same MapReduce job for operations w/o dependencies



sFA Optimizations: Minimize Intermediary Data
Recompute X and Y at each job rather than storing and exchanging
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sFA Optimizations: Minimize Intermediary Data
Recompute X and Y at each job rather than storing and exchanging
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sFA Optimizations:  Leverage Sparsity

(Don’t lose opportunity to do computations on 0 values)

Mean sparsity: 

Matrix Inversion Lemma: 

sparse

Diagonal matrix 
multiplication tricks
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sFA Optimizations:  Efficient Matrix Multiplication
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Optimizes computations when 
both matrices are large

Optimization when one matrix 
is small enough to fit in 
memory 



Overview

● Scientific Motivation
● Dimensionality Reduction Models:

○ PCA / sPCA / FA
● Allen Institute Dataset and Data Pre-processing

○ Distributed Implementation
● Distributed Factor Analysis (FA) Algorithm
● Conclusion

23



Conclusion: Format for Large Distributed Files

● HDF5:
○ Hierarchical Data Format V
○ Flexible and efficient I/O
○ High volume and complex
○ NWB from Allen Institute

● HFSpark
○ Department of Energy
○ From HDF5 to Spark RDD
○ Implemented in JavaSpark
○ Superior performance
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Conclusion: Format for Large Distributed Files

MPI IO

● IBM's Watson 
Laboratory

● Parallel I/O
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Conclusion: Format for Large Distributed Files

SciSpark

● NASA
● scientific RDD 

(SRDD)
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