
1/16

Streaming and Parallelized Coresets construction
and its applications

Wei Ma Max Ma

CMU 10805, 2016 Fall

2/16

Outline

I Motivation

I Coresets

I Conceptual tree based architecture

I Asynchronized architecture

I Experiments

3/16

Motivation

I Huge “volume” and “velocity” of the data being produced

I Limited computation and storage resources

I How to get a SKETCH of the full dataset?

I A coreset yields (1 + ε) approximation to the original dataset.

4/16

Coresets: Definition

Definition

A small number of data set S can approximate the measures of
whole point sets P. Note S is not necessarily a subset of P, where
we refer S is a strong coreset of P. Mathematically,

(1− ε)µ(S) ≤ µ(P) ≤ (1 + ε)µ(S) (1)

I Gaussian Mixture: Likelihood

I K-means: L2 distance

5/16

Coresets: Variants

I Singular Value Decomposition (SVD):
I Strong coresets: may generate new data
I Used for (j , k)-projective clustering: projecting n rows data to

any set of k affine subspaces, each of dimension at most j
I |C | ∼ O(log(n))

I Adaptive Sampling:
I Weak coresets: preserve original data
I |C | ∼ O(poly(d))

Let δ be the largest value such that δ ≤ (ε/
√
d)α and 1/δ is an integer. We consider the d-dimensional grid

Z of size δ. That is, Z = {(δi1, . . . , δid) | i1, . . . , id ∈ Z} . For each column along the xd-axis in Z, we choose
one point from the highest nonempty cell of the column and one point from the lowest cell of the column;
see Figure 2 (i). Let Q be the set of chosen points. Since P ⊆ [−1,+1]d, |Q| = O(1/(αε)d−1). Moreover Q
can be constructed in time O(n+ 1/(αε)d−1) provided that the ceiling operation can be performed in constant
time. Agarwal et al. [AHV04] showed that Q is an ε-kernel of P . Hence, we can compute an ε-kernel of
P of size O(1/εd−1) in time O(n + 1/εd−1). This approach resembles the algorithm of Bentley, Faust, and
Preparata [BFP82].

Next we describe an improved construction, observed independently by Chan [Cha06] and Yu et al. [YAPV04],
which is a simplification of an algorithm by Agarwal et al. [AHV04], which in turn is an adaptation of a method
of Dudley [Dud74]. Let S be the sphere of radius

√
d + 1 centered at the origin. Set δ =

√
εα ≤ 1/2. One

can construct a set I of O(1/δd−1) = O(1/ε(d−1)/2) points on the sphere S so that for any point x on S, there
exists a point y ∈ I such that ‖x− y‖ ≤ δ. We process P into a data structure that can answer ε-approximate
nearest-neighbor queries [AMN+98]. For a query point q, let ϕ(q) be the point of P returned by this data struc-
ture. For each point y ∈ I, we compute ϕ(y) using this data structure. We return the set Q = {ϕ(y) | y ∈ I};
see Figure 2 (ii).

We now briefly sketch, following the argument in [YAPV04], why Q is is an ε-kernel of P . For simplicity,
we prove the claim under the assumption that ϕ(y) is the exact nearest-neighbor of y in P . Fix a direction
u ∈ Sd−1. Let σ ∈ P be the point that maximizes 〈u, p〉 over all p ∈ P . Suppose the ray emanating from σ in
direction u hits S at a point x. We know that there exists a point y ∈ I such that ‖x− y‖ ≤ δ. If ϕ(y) = σ,
then σ ∈ Q and

max
p∈P

〈u, p〉 −max
q∈Q

〈u, q〉 = 0.

Now suppose ϕ(y) 6= σ. Let B be the d-dimensional ball of radius ||y − σ|| centered at y. Since ‖y − ϕ(y)‖ ≤
‖y − σ‖, ϕ(y) ∈ B. Let us denote by z the point on the sphere ∂B that is hit by the ray emanating from y in
direction −u. Let w be the point on zy such that zy⊥σw and h the point on σx such that yh⊥σx; see Figure 2
(iii).

ε

C

S

y

ϕ(y)

CH(P)

B

x

h

w

u

S

y

z

σ

(i) (ii) (iii)

Figure 2. (i) A grid based algorithm for constructing an ε-kernel. (ii) An improved algorithm. (iii) Correctness of the improved
algorithm.

The hyperplane normal to u and passing through z is tangent to B. Since ϕ(y) lies inside B, 〈u, ϕ(y)〉 ≥
〈u, z〉. Moreover, it can be shown that 〈u, σ〉 − 〈u, ϕ(y)〉 ≤ αε. Thus, we can write

max
p∈P

〈u, p〉 −max
q∈Q

〈u, q〉 ≤ 〈u, σ〉 − 〈u, ϕ(y)〉 ≤ αε.

Similarly, we have minp∈P 〈u, p〉 −minq∈Q 〈u, q〉 ≥ −αε.
The above two inequalities together imply that ω(u,Q) ≥ ω(u, P)−2αε. Since αC ⊂ conv(P), ω(u, P) ≥ 2α.

Hence ω(u,Q) ≥ (1− ε)ω(u, P), for any u ∈ Sd−1, thereby implying that Q is an ε-kernel of P .

4

Figure: Illustration of adaptive sampling

6/16

Coresets: Cool feature

Takeaway Message

Coresets are closed under UNION operation.

I Construct coresets in parallel

I Friendly to new data

However, no practical implementation of coresets construction
available.

7/16

Conceptual tree based architecture

Figure: Tree based construction for coresets

I All-reduce framework

I Low I/O, high computational intensity, not good for
Hadoop/Spark

I Single core reading; Multi-core processing; In memory

I Coreset construction is more related to high performance
computing (HPC), good for MPI.

8/16

Asynchronized architecture

I Data structure: m data slots with level l
I K processors, each processor can:

I Read data into a slot and mark as level 1
I Merge slots at same level and increase the level by 1
I If no data/same level slots can be read/merged, merge slots

from different levels

I Only one slot will remain active, and it is the final coreset

9/16

MPI implementation

A lots of advances techniques in MPI are adopted.

I One-sided communication: remote memory access

I MPI FILE IO: shared file handlers

9

Remote Memory Access
Windows and Window Objects

9

Get

Put

Process 2

Process 1

Process 3

Process 0

= address spaces = window object

window

Figure: MPI One-sided communication

I Implemented by Open MPI C++

I https://github.com/Lemma1/Distributed-Coresets

https://github.com/Lemma1/Distributed-Coresets

10/16

Experiments: fake data test

I Intel(R) Xeon(R) CPU L5420@2.50GHz, 8 cores, 64-bit, 16
GB memory

I d = 100, |C | = 100,m = 20

2 4 6 8 10 12 14 16
Number of processors

0

50

100

150

200

250

300

E
x
ce
cu
ti
o
n
 t
im

e

SVD

1000
10000
100000

2 4 6 8 10 12 14 16
Number of processors

0

50

100

150

200

250

E
x
ce
cu
ti
o
n
 t
im

e

ADP

1000
10000
100000

Figure: Runing time on different data set

11/16

Experiments: MNIST

I The MNIST database of handwritten digits, available from
this page, has a training set of 60,000 examples, and a test
set of 10,000 examples

I The shape of each digit is 8× 8

Figure: Example of MNIST data

12/16

Experiments: MNIST - cont

(a) SVD wich coreset size 30 (b) ADS wich coreset size 30

13/16

Experiments: MNIST - cont

Figure: Accuracy on coreset size

14/16

Experiments: CIFAR

I The CIFAR-10 are labeled subsets of the 80 million tiny
images dataset.

I The shape of each image is 32× 32× 3

15/16

Experiments: CIFAR - cont

(a) SVD wich coreset size 30 (b) ADS wich coreset size 30

16/16

Thanks

