Fast Personalized PageRank
On MapReduce

Authors: Bahman Bahmani, Kaushik Chakrabart, Dong Xin
In SIGMOD 2011

Presenter: Adams Wei Yu
March 2015, CMU

Sy

ugx}fm\\‘“ o
1
B g“
_,-G ’ face gmogger

o,_—"

c \d
B~ L D) *\‘c "\
= ail \le\ - (\..’.M)U

: f Blaikie et al. (1994)
— \ \ I , 4 ., _Sen(1981)

[Burton et al. (1978)
Kates et al. (2001)=
W,

.

: . Timmerman (1981) » - & Panekes
Rappaport (1967) Kasperson et al. (1995)
Berkes and Folke (1998)

Gunderson et al. (1995) Holling (1986)
i .
Scheffer et al. (2001) £
e » . Holling (1973)
. » : .. s '. ’ 7

Basic Problem in Graphes:
How do we measure the

proximity (similarity)
between two nodes?

Typical proximity measure

e Shortest distance
e Common neighbor set

Typical proximity measure

e Shortest distance
e Common neighbor set

* Personalized PageRank (PPR), a.k.a Random
Walk with Restart

— Considers all the possible paths from node to node
— Captures the global structure of the graph

Y
-
(©

ad
)
oo
(©

o

O
)

i
(©
-
O
)
p -
)

o

Y
-
(©

ad
)
oo
(©

o

O
)

i
(©
-
O
)
p -
)

o

Y
-
(©

ad
)
oo
(©

o

O
)

i
(©
-
O
)
p -
)

o

Y
-
(©

ad
)
oo
(©

o

O
)

i
(©
-
O
)
p -
)

o

Y
-
(©

ad
)
oo
(©

o

O
)

i
(©
-
O
)
p -
)

o

Y
-
(©

ad
)
oo
(©

o

O
)

i
(©
-
O
)
p -
)

o

Personalized PageRank

PPR proximity from q: \éé
Stable probability distribution

Starting node u

Personalized PageRank

restart probability

PPR vector

starting vector

|
— my (V) = E(Su(‘v{('l — €) Z T (W) Ot v

{w|(w,v)€E) |

column normalized
adjacent matrix

PPR Proximity Matrix

1 2 3 4 5 6

0.32/10.24/0.24|/0.19([0.20(|0.18
0.28(/0.39(/0.29||0.31||0.33||0.30
0.12/0.17(]0.27(/0.13||0.14||0.13
0.13(/0.10((0.10(}0.23((0.08||0.14
0.06(/0.04{/0.04(/0.10||0.18/||0.06
0.09(/0.07(|0.07({0.05||0.06||0.20

Application of PPR

Citation analysis [Jeh, KDD 02]

Link prediction [Liben Nowell, CIKM 03].
Graph clustering [Andersen, FOCS 06].
Recommendation system [Konstas, SIGIR 09].
Top-k search [Fujiwara, VLDB 12]

Reverse Top-k Search [Yu, VLDB 14]

How to Compute the PPR?

1 2 3 4 5 6

0.32/0.24//0.24(/0.19|10.20|/0.18
0.28(/0.39(/0.29||0.31||0.33||0.30
0.12}/0.17|{0.27//0.13||0.14||0.13
0.13(/0.10((0.10(}0.23((0.08||0.14
0.06(/0.04{/0.04(/0.10(|0.18||0.06
0.09(/0.07(/0.07({0.05||0.06||0.20

MapReduce for PPR Computation

* Reducer: Compute random neighbor of u

MapReduce for PPR Computation

* Reducer: Compute random neighbor of u

— G =(u, v, weight). Reducer uses u as the key,
groups all (u, v, weight) triples (for all v), and
generating one random neighbor v for u and
outputs (u, v).

MapReduce for PPR Computation

* Reducer: Compute random neighbor of u
— G =(u, v, weight). Reducer uses u as the key,
groups all (u, v, weight) triples (for all v), and
generating one random neighbor v for u and
outputs (u, v).

* Combiner: Extend N = (u, v) to (u, v, t).

MapReduce for PPR Computation

* Reducer: Compute random neighbor of u

— G =(u, v, weight). Reducer uses u as the key,
groups all (u, v, weight) triples (for all v), and
generating one random neighbor v for u and
outputs (u, v).

* Combiner: Extend N = (u, v) to (u, v, t).

— Find a random neighbor t of v by joining N and G
on condition N.v = G.u from the graph G and
output (u, v, t).

Computation of PPR

e Power lteration:

7 (v) = €bu(v) + (1 —€) Z w80 (W) g o

{w|(w,v)€E}

Computation of PPR

e Power lteration:

O =eu)+(1—€) > 7V (w)awe
{w|(w,v)€E}
* Basic MapReduce:
— Given a graph G = (u, v, aq v), the initialization
of 7@ is a Reducer of graph on key u.

— Update of 7, can be implemented as combiner
joining 72(i—1) and G.

Computation of PPR

e Power lteration:

rdW) =ebu()+1—€ Y 7V (w)aw,
{w|(w,v)EE}
* Basic MapReduce:

— Given a graph G = (u, v, aq v), the initialization
of 7@ is a Reducer of graph on key u.

— Update of 7, can be implemented as combiner
joining 72(i—1) and G.

Space: O(n~"2)!

We may not need the exact

PPR for most tasks!

Computation of PPR

e Monte Carlo Simulation

Simulate R random walks starting from u,
the portion of visits to v is approximately 7, (v)

Computation of PPR

e Monte Carlo Simulation

Simulate R random walks starting from u,
the portion of visits to v is approximately 7, (v)

e Basic MapReduce:
— A Reducer to initialize R random walks from u.

— A sequence of Combiner iterations to extend each
random walk until it restarts at u.

— A final Reducer to aggregate the frequencies of visits
to every node v in all R walks (for each source node),
and approximate the PPR values.

Computation of PPR

e Monte Carlo Simulation

Simulate R random walks starting from u,
the portion of visits to v is approximately 7, (v)

e Basic MapReduce:
— A Reducer to initialize R random walks from u.

— A sequence of Combiner iterations to extend each
random walk until it restarts at u.

— A final Reducer to aggregate the frequencies of visits
to every node v in all R walks (for each source node),
and approximate the PPR values.

Needs to execute the Combiner many times for long walks!

Computation of PPR

e Monte Carlo Simulation

Given a graph G and a length A, outputs
one random walk of length A starting
from each node in the graph.

* Preprocessing: Sample n=A/8 short segments of
length O out of each node.

* Online Computation: Merge these segments to
form the longer walk.

* Preprocessing: Sample n=A/8 short segments of
length O out of each node.

* Online Computation: Merge these segments to
form the longer walk.

1. How to ensure it is a REAL random walk?
2. How to make it efficient?

Doubling Algorithm: Initialization

e AssumeA=17,0 =3.

* For each node u, generate n = [17/3] = 6 segments S[u,]
(1<i<6),iisitsID.

e S[u, 6] is of length 2 while the other segments S[u, i] (i <
6) are of length 3.

U Vi
Xi6
Xi1

oo

Doubling Algorithm: Initialization

e S[u, i]: i-th segment of u

* W[y, i, n]: RW from u, n is the maximum ID at the
current iteration.

* Inthe beginning, n =6, and W [u, i, n] = S]u, i] for i
=1,...,6.

U Vi
Xi6
Xi1

oo

Doubling Algorithm: Merge

* Appends W2 to W1 if:
— W1.LastNode = W2.FirstNode
— W1.ID<W2.1D

— W1.ID + W2.ID = n + 1. (ensure each segment is a
proper random walk)

X2

S3
Vi (¥2)

Yi3
Xi6
Xi1

Xi2 Yi1
Yi2
(a) (b) (c

u u X34 u
V6 (X3)
V1
Vi vV X16
2
(X1) 25 X1
(X2)
Xi

Y13

u
(Y1)
)

Doubling Algorithm: Merge

 For a node u, we merge W|u,i,6] with W|vi,7-i,6]
fori=1,2,3, and get 3 new segments:

— WI[u,1,3] that ends at x1, W[u,2,3] that ends at x2,
and W/[u,3,3] that ends at x3

AT %

(X2)

A

Doubling Algorithm: Merge

e Continue: n =3, and we will merge W|u,1,3]
with W[x1,3,3]. See Fig (c).

* Finally: merge W|[u,1,2] with W][y1,2,2], and get
W/[u,1,1], which has length A = 17.

u
Ve
Vi
Vi X16
V2

(X1)

u
X
(X2) X2
. Xi (YZ) S3
Vi
Yi3
Xi6
Xi1 Y13
Xi2 Yi1
Yi2
(a) (b)

u X34
(X3)
25

u
1
(Y1)

(c) (d)

Doubling Algorithm: Merge

Shrinkage fast: One merging iteration will reduce
the maximum ID from n to Lﬂg—lj !

U u X34 u
Ve (X3)
Vi1
Vi ve X16
(X1) 25 X1
(X2) X2
Vi
Yi3
Xi6

Xi1 Y13
Xi2 Yi1 (Y1)

Yi2
(a) (b) (c) (d)

Optimality of the Algorithm

* Theorem: The Doubling algorithm with
parameters A, O finishes in 6 + [log,[51]
MapReduce iterations.

1+ [logo A] If 86=1

Optimal for in the class of Natural Algorithms(NA)!

NA only allows Extend and Merge operations.

Computing the PPR

 Choose different A, 8 and R for different nodes.
* Repeat Doubling algorithm.
e Collect and count number of visits.

— C(u,v)+ = number of visits to v in Wi[u]

/O cost of the Algorithm

R
Ai
0i} + E i0i + A —
O(m max {6;} +n) (Aifi + Ailog, 91',))

1<z:<R ‘
1=1

Experiments

0.6 0.6
0.5 05
o 04 o 04
i~ =
® 0.3 & 0.3
=] 5
; g
“ 02 0.2
0.1 0.1
0 ."-.’ a — £ &
o 5 10 15 20 5 i 200 400 600 800
Clock Time (Hour) Machine Time {(Hour)
=@-Rounding =#=Doubling =@-Rounding =#=Doubling

Figure 2: Err(..10) vs. Clock Time Figure 3: Err(..10) vs. Machine Time

Graph Size: 112M nodes and 513M edges

Take-home Message

* A new PPR computation method on
MapReduce is proposed.

* Theoretically sound

— Optimal in the class of natural algorithms.
— Manageable 1/0 cost.

* Empirically works well.

