Fast Personalized PageRank On MapReduce

Authors: Bahman Bahmani, Kaushik Chakrabart, Dong Xin
In SIGMOD 2011

Presenter: Adams Wei Yu

March 2015, CMU
Graph data is Ubiquitous
Basic Problem in Graphs:
How do we measure the proximity (similarity) between two nodes?
Typical proximity measure

- Shortest distance
- Common neighbor set
Typical proximity measure

• Shortest distance
• Common neighbor set
• **Personalized PageRank (PPR), a.k.a Random Walk with Restart**
 – Considers all the possible paths from node to node
 – Captures the global structure of the graph
Personalized PageRank

Starting node u
Personalized PageRank

Starting node u
Personalized PageRank

Starting node u
Personalized PageRank

Starting node u
Personalized PageRank

Starting node u
Personalized PageRank

PPR proximity from q:
Stable probability distribution

Starting node u

node v
Personalized PageRank

\[\pi_u(v) = \varepsilon \delta_u(v) + (1 - \varepsilon) \sum_{\{w | (w, v) \in E\}} \pi_u(w) \alpha_{w,v} \]

- PPR vector
- Restart probability
- Starting vector
- Column normalized adjacent matrix
PPR Proximity Matrix

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.32</td>
<td>0.24</td>
<td>0.24</td>
<td>0.19</td>
<td>0.20</td>
<td>0.18</td>
</tr>
<tr>
<td>2</td>
<td>0.28</td>
<td>0.39</td>
<td>0.29</td>
<td>0.31</td>
<td>0.33</td>
<td>0.30</td>
</tr>
<tr>
<td>3</td>
<td>0.12</td>
<td>0.17</td>
<td>0.27</td>
<td>0.13</td>
<td>0.14</td>
<td>0.13</td>
</tr>
<tr>
<td>4</td>
<td>0.13</td>
<td>0.10</td>
<td>0.10</td>
<td>0.23</td>
<td>0.08</td>
<td>0.14</td>
</tr>
<tr>
<td>5</td>
<td>0.06</td>
<td>0.04</td>
<td>0.04</td>
<td>0.10</td>
<td>0.18</td>
<td>0.06</td>
</tr>
<tr>
<td>6</td>
<td>0.09</td>
<td>0.07</td>
<td>0.07</td>
<td>0.05</td>
<td>0.06</td>
<td>0.20</td>
</tr>
</tbody>
</table>
Application of PPR

• Citation analysis [Jeh, KDD 02]
• Link prediction [Liben Nowell, CIKM 03].
• Graph clustering [Andersen, FOCS 06].
• Recommendation system [Konstas, SIGIR 09].
• Top-k search [Fujiwara, VLDB 12]
• Reverse Top-k Search [Yu, VLDB 14]
•
How to Compute the PPR?

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.32</td>
<td>0.24</td>
<td>0.24</td>
<td>0.19</td>
<td>0.20</td>
<td>0.18</td>
</tr>
<tr>
<td>2</td>
<td>0.28</td>
<td>0.39</td>
<td>0.29</td>
<td>0.31</td>
<td>0.33</td>
<td>0.30</td>
</tr>
<tr>
<td>3</td>
<td>0.12</td>
<td>0.17</td>
<td>0.27</td>
<td>0.13</td>
<td>0.14</td>
<td>0.13</td>
</tr>
<tr>
<td>4</td>
<td>0.13</td>
<td>0.10</td>
<td>0.10</td>
<td>0.23</td>
<td>0.08</td>
<td>0.14</td>
</tr>
<tr>
<td>5</td>
<td>0.06</td>
<td>0.04</td>
<td>0.04</td>
<td>0.10</td>
<td>0.18</td>
<td>0.06</td>
</tr>
<tr>
<td>6</td>
<td>0.09</td>
<td>0.07</td>
<td>0.07</td>
<td>0.05</td>
<td>0.06</td>
<td>0.20</td>
</tr>
</tbody>
</table>

?
MapReduce for PPR Computation

- Reducer: Compute random neighbor of u
• Reducer: Compute random neighbor of u
 – $G = \langle u, v, \text{weight} \rangle$. Reducer uses u as the key, groups all $\langle u, v, \text{weight} \rangle$ triples (for all v), and generating one random neighbor v for u and outputs $\langle u, v \rangle$.
MapReduce for PPR Computation

- Reducer: Compute random neighbor of \(u \)
 - \(G = \langle u, v, \text{weight} \rangle \). Reducer uses \(u \) as the key, groups all \(\langle u, v, \text{weight} \rangle \) triples (for all \(v \)), and generating one random neighbor \(v \) for \(u \) and outputs \(\langle u, v \rangle \).

- Combiner: Extend \(N = \langle u, v \rangle \) to \(\langle u, v, t \rangle \).
MapReduce for PPR Computation

• Reducer: Compute random neighbor of u
 – $G = \langle u, v, \text{weight} \rangle$. Reducer uses u as the key, groups all $\langle u, v, \text{weight} \rangle$ triples (for all v), and generating one random neighbor v for u and outputs $\langle u, v \rangle$.

• Combiner: Extend $N = \langle u, v \rangle$ to $\langle u, v, t \rangle$.
 – Find a random neighbor t of v by joining N and G on condition $N.v = G.u$ from the graph G and output $\langle u, v, t \rangle$.
Computation of PPR

• Power Iteration:

\[
\pi_u^{(i)}(v) = \epsilon \delta_u(v) + (1 - \epsilon) \sum_{\{w \mid (w, v) \in E\}} \pi_u^{(i-1)}(w) \alpha_{w,v}
\]
Computation of PPR

• Power Iteration:

\[\pi_u^{(i)}(v) = \epsilon \delta_u(v) + (1 - \epsilon) \sum_{\{w|(w,v)\in E\}} \pi_u^{(i-1)}(w)\alpha_{w,v} \]

• Basic MapReduce:

 – Given a graph \(G = \langle u, v, \alpha_{u,v} \rangle \), the initialization of \(\pi_u^{(0)} \) is a Reducer of graph on key \(u \).

 – Update of \(\pi_u^{(i)} \) can be implemented as combiner joining \(\pi_u^{(i-1)} \) and \(G \).
Computation of PPR

• Power Iteration:

\[\pi_u^{(i)}(v) = \epsilon \delta_u(v) + (1 - \epsilon) \sum_{\{w | (w,v) \in E\}} \pi_u^{(i-1)}(w) \alpha_{w,v} \]

• Basic MapReduce:
 – Given a graph \(G = \langle u, v, \alpha_{u,v} \rangle \), the initialization of \(\pi_u^{(0)} \) is a Reducer of graph on key \(u \).
 – Update of \(\pi_u^{(i)} \) can be implemented as combiner joining \(\pi_u^{(i-1)} \) and \(G \).

Space: \(O(n^2) \)!
We may not need the exact PPR for most tasks!
Computation of PPR

• Monte Carlo Simulation
 Simulate R random walks starting from u, the portion of visits to v is approximately $\pi_u(v)$
Computation of PPR

- Monte Carlo Simulation
 Simulate R random walks starting from u, the portion of visits to v is approximately $\pi_u(v)$

- Basic MapReduce:
 - A Reducer to initialize R random walks from u.
 - A sequence of Combiner iterations to extend each random walk until it restarts at u.
 - A final Reducer to aggregate the frequencies of visits to every node v in all R walks (for each source node), and approximate the PPR values.
• Monte Carlo Simulation
 Simulate R random walks starting from u, the portion of visits to v is approximately $\pi_u(v)$

• Basic MapReduce:
 – A Reducer to initialize R random walks from u.
 – A sequence of Combiner iterations to extend each random walk until it restarts at u.
 – A final Reducer to aggregate the frequencies of visits to every node v in all R walks (for each source node), and approximate the PPR values.

Needs to execute the Combiner many times for long walks!
Computation of PPR

• Monte Carlo Simulation

Given a graph G and a length λ, outputs one random walk of length λ starting from each node in the graph.
Basic Idea

• Preprocessing: Sample $\eta=\lambda/\theta$ short segments of length θ out of each node.

• Online Computation: Merge these segments to form the longer walk.

![Diagram](attachment:image.png)

$\lambda=6, \ \Theta=2$
Basic Idea

- Preprocessing: Sample $\eta=\lambda/\theta$ short segments of length θ out of each node.
- Online Computation: Merge these segments to form the longer walk.

1. How to ensure it is a REAL random walk?
2. How to make it efficient?
Doubling Algorithm: Initialization

- Assume $\lambda = 17$, $\theta = 3$.
- For each node u, generate $\eta = \lceil 17/3 \rceil = 6$ segments $S[u, i]$ ($1 \leq i \leq 6$), i is its ID.
- $S[u, 6]$ is of length 2 while the other segments $S[u, i]$ ($i < 6$) are of length 3.
Doubling Algorithm: Initialization

- $S[u, i]$: i-th segment of u
- $W[u, i, \eta]$: RW from u, η is the maximum ID at the current iteration.
- In the beginning, $\eta = 6$, and $W[u, i, \eta] = S[u, i]$ for $i = 1, \ldots, 6$.

![Diagram of the algorithm](image)
Doubling Algorithm: Merge

- Appends W2 to W1 if:
 - $W1.\text{LastNode} = W2.\text{FirstNode}$
 - $W1.\text{ID} < W2.\text{ID}$
 - $W1.\text{ID} + W2.\text{ID} = \eta + 1$. (ensure each segment is a proper random walk)
Doubling Algorithm: Merge

• For a node u, we merge $W[u,i,6]$ with $W[vi,7-i,6]$ for $i = 1, 2, 3$, and get 3 new segments:
 – $W[u,1,3]$ that ends at x_1, $W[u,2,3]$ that ends at x_2, and $W[u,3,3]$ that ends at x_3
Doubling Algorithm: Merge

- Continue: $\eta = 3$, and we will merge $W[u,1,3]$ with $W[x1,3,3]$. See Fig (c).
- Finally: merge $W[u,1,2]$ with $W[y1,2,2]$, and get $W[u,1,1]$, which has length $\lambda = 17$.

![Diagram showing the doubling algorithm steps](image-url)
Doubling Algorithm: Merge

Shrinkage fast: One merging iteration will reduce the maximum ID from η to $\left\lfloor \frac{\eta+1}{2} \right\rfloor$!
• Theorem: The Doubling algorithm with parameters λ, θ finishes in $\theta + \lceil \log_2 \left(\frac{\lambda}{\theta} \right) \rceil$ MapReduce iterations.

\[1 + \lceil \log_2 \lambda \rceil \text{ if } \theta = 1 \]

Optimal for in the class of Natural Algorithms (NA)!
NA only allows Extend and Merge operations.
Computing the PPR

- Choose different λ, θ and R for different nodes.
- Repeat Doubling algorithm.
- Collect and count number of visits.
 - $C(u, v)^+ = \text{number of visits to } v \text{ in } Wi[u]$
I/O cost of the Algorithm

$$O(m \max_{1 \leq i \leq R} \{\theta_i\} + n \sum_{i=1}^{R} (\lambda_i \theta_i + \lambda_i \log_2 \frac{\lambda_i}{\theta_i}))$$
Experiments

Graph Size: 112M nodes and 513M edges

Figure 2: $\overline{Err}(., 10)$ vs. Clock Time

Figure 3: $\overline{Err}(., 10)$ vs. Machine Time
• A new PPR computation method on MapReduce is proposed.
• Theoretically sound
 – Optimal in the class of natural algorithms.
 – Manageable I/O cost.
• Empirically works well.
Thanks!