
Presenter: Adams Wei Yu

Fast Personalized PageRank
On MapReduce

Authors: Bahman Bahmani, Kaushik Chakrabart, Dong Xin
In SIGMOD 2011

March 2015, CMU

Graph data is Ubiquitous

Basic Problem in Graphs:
How do we measure the

proximity (similarity)
between two nodes?

Typical proximity measure

• Shortest distance
• Common neighbor set

Typical proximity measure

• Shortest distance
• Common neighbor set
• Personalized PageRank (PPR), a.k.a Random

Walk with Restart
– Considers all the possible paths from node to node
– Captures the global structure of the graph

Personalized PageRank

Starting node u

Starting node u

Personalized PageRank

Starting node u

Personalized PageRank

Starting node u

Personalized PageRank

Starting node u

Personalized PageRank

Starting node u

Personalized PageRank

node v

PPR proximity from q:
Stable probability distribution Starting node u

Personalized PageRank

Personalized PageRank

column normalized
adjacent matrix

restart probability

PPR vector

starting vector

PPR Proximity Matrix

1

5

6

4

2

3 0.32
0.28
0.12
0.13
0.06
0.09

0.24
0.39
0.17
0.10
0.04
0.07

0.24
0.29
0.27
0.10
0.04
0.07

0.19
0.31
0.13
0.23
0.10
0.05

0.20
0.33
0.14
0.08
0.18
0.06

0.18
0.30
0.13
0.14
0.06
0.20

1 6 4 3 5 2

Application of PPR

• Citation analysis [Jeh, KDD 02]
• Link prediction [Liben Nowell, CIKM 03].
• Graph clustering [Andersen, FOCS 06].
• Recommendation system [Konstas, SIGIR 09].
• Top-k search [Fujiwara, VLDB 12]
• Reverse Top-k Search [Yu, VLDB 14]
• ……

How to Compute the PPR?

0.32
0.28
0.12
0.13
0.06
0.09

0.24
0.39
0.17
0.10
0.04
0.07

0.24
0.29
0.27
0.10
0.04
0.07

0.19
0.31
0.13
0.23
0.10
0.05

0.20
0.33
0.14
0.08
0.18
0.06

0.18
0.30
0.13
0.14
0.06
0.20

1 6 4 3 5 2

?

MapReduce for PPR Computation

• Reducer: Compute random neighbor of u

MapReduce for PPR Computation

• Reducer: Compute random neighbor of u
– G = ⟨u, v, weight⟩. Reducer uses u as the key,

groups all ⟨u, v, weight⟩ triples (for all v), and
generating one random neighbor v for u and
outputs ⟨u, v⟩.

MapReduce for PPR Computation

• Reducer: Compute random neighbor of u
– G = ⟨u, v, weight⟩. Reducer uses u as the key,

groups all ⟨u, v, weight⟩ triples (for all v), and
generating one random neighbor v for u and
outputs ⟨u, v⟩.

• Combiner: Extend N = ⟨u, v⟩ to ⟨u, v, t⟩.

MapReduce for PPR Computation

• Reducer: Compute random neighbor of u
– G = ⟨u, v, weight⟩. Reducer uses u as the key,

groups all ⟨u, v, weight⟩ triples (for all v), and
generating one random neighbor v for u and
outputs ⟨u, v⟩.

• Combiner: Extend N = ⟨u, v⟩ to ⟨u, v, t⟩.
– Find a random neighbor t of v by joining N and G

on condition N.v = G.u from the graph G and
output ⟨u, v, t⟩.

Computation of PPR

• Power Iteration:

Computation of PPR

• Power Iteration:

• Basic MapReduce:
– Given a graph , the initialization

of is a Reducer of graph on key u.
– Update of can be implemented as combiner

joining and G.

Computation of PPR

• Power Iteration:

• Basic MapReduce:
– Given a graph , the initialization

of is a Reducer of graph on key u.
– Update of can be implemented as combiner

joining and G.

 Space: O(n^2)!

We may not need the exact
PPR for most tasks!

Computation of PPR

• Monte Carlo Simulation
Simulate R random walks starting from u,
the portion of visits to v is approximately

Computation of PPR

• Monte Carlo Simulation
Simulate R random walks starting from u,
the portion of visits to v is approximately

• Basic MapReduce:
– A Reducer to initialize R random walks from u.
– A sequence of Combiner iterations to extend each

random walk until it restarts at u.
– A final Reducer to aggregate the frequencies of visits

to every node v in all R walks (for each source node),
and approximate the PPR values.

Computation of PPR

• Monte Carlo Simulation
Simulate R random walks starting from u,
the portion of visits to v is approximately

• Basic MapReduce:
– A Reducer to initialize R random walks from u.
– A sequence of Combiner iterations to extend each

random walk until it restarts at u.
– A final Reducer to aggregate the frequencies of visits

to every node v in all R walks (for each source node),
and approximate the PPR values.

Needs to execute the Combiner many times for long walks!

Computation of PPR

• Monte Carlo Simulation

Given a graph G and a length λ, outputs
one random walk of length λ starting
from each node in the graph.

Basic Idea

• Preprocessing: Sample η=λ/θ short segments of
length θ out of each node.

• Online Computation: Merge these segments to
form the longer walk.

u

λ=6, Θ=2

Basic Idea

• Preprocessing: Sample η=λ/θ short segments of
length θ out of each node.

• Online Computation: Merge these segments to
form the longer walk.

u

λ=6, Θ=2

1. How to ensure it is a REAL random walk?
2. How to make it efficient?

Doubling Algorithm: Initialization

• Assume λ = 17, θ = 3.
• For each node u, generate η = ⌈17/3⌉ = 6 segments S[u, i]

(1 ≤ i ≤ 6), i is its ID.
• S[u, 6] is of length 2 while the other segments S[u, i] (i <

6) are of length 3.

Doubling Algorithm: Initialization

• S[u, i]: i-th segment of u
• W[u, i, η]: RW from u, η is the maximum ID at the

current iteration.
• In the beginning, η = 6, and W [u, i, η] = S[u, i] for i

= 1, . . . , 6.

Doubling Algorithm: Merge

• Appends W2 to W1 if:
– W1.LastNode = W2.FirstNode
– W1.ID < W2.ID
– W1.ID + W2.ID = η + 1. (ensure each segment is a

proper random walk)

Doubling Algorithm: Merge

• For a node u, we merge W[u,i,6] with W[vi,7−i,6]
for i = 1,2,3, and get 3 new segments:
– W[u,1,3] that ends at x1, W[u,2,3] that ends at x2,

and W[u,3,3] that ends at x3

Doubling Algorithm: Merge

• Continue: η = 3, and we will merge W[u,1,3]
with W[x1,3,3]. See Fig (c).

• Finally: merge W[u,1,2] with W[y1,2,2], and get
W[u,1,1], which has length λ = 17.

Doubling Algorithm: Merge

Shrinkage fast: One merging iteration will reduce
the maximum ID from η to !

Optimality of the Algorithm

• Theorem: The Doubling algorithm with
parameters λ, θ finishes in
MapReduce iterations.

If θ = 1

Optimal for in the class of Natural Algorithms(NA)!

NA only allows Extend and Merge operations.

Computing the PPR

• Choose different λ, θ and R for different nodes.
• Repeat Doubling algorithm.
• Collect and count number of visits.

– C(u,v)+ = number of visits to v in Wi[u]

I/O cost of the Algorithm

Experiments

Graph Size: 112M nodes and 513M edges

Take-home Message

• A new PPR computation method on
MapReduce is proposed.

• Theoretically sound
– Optimal in the class of natural algorithms.
– Manageable I/O cost.

• Empirically works well.

Thanks!

