Fast Personalized PageRank On MapReduce

Authors: Bahman Bahmani, Kaushik Chakrabart, Dong Xin In SIGMOD 2011

Presenter: Adams Wei Yu

March 2015, CMU

Graph data is Ubiquitous

Basic Problem in Graphs: How do we measure the proximity (similarity) between two nodes?

Typical proximity measure

- Shortest distance
- Common neighbor set

Typical proximity measure

- Shortest distance
- Common neighbor set
- Personalized PageRank (PPR), a.k.a Random
 Walk with Restart
 - Considers all the possible paths from node to node
 - Captures the global structure of the graph

Starting node u

Starting node u

Starting node u

Starting node u

PPR Proximity Matrix

_	_	J		.	O
0.32	0.24	0.24	0.19	0.20	0.18
0.28	0.39	0.29	0.31	0.33	0.30
0.12	0.17	0.27	0.13	0.14	0.13
0.13	0.10	0.10	0.23	0.08	0.14
0.06	0.04	0.04	0.10	0.18	0.06
0.09	0.07	0.07	0.05	0.06	0.20

Application of PPR

- Citation analysis [Jeh, KDD 02]
- Link prediction [Liben Nowell, CIKM 03].
- Graph clustering [Andersen, FOCS 06].
- Recommendation system [Konstas, SIGIR 09].
- Top-k search [Fujiwara, VLDB 12]
- Reverse Top-k Search [Yu, VLDB 14]
- •

How to Compute the PPR?

1	2	3	4	5	6
0.32	0.24	0.24	0.19	0.20	0.18
0.28	0.39	0.29	0.31	0.33	0.30
0.12	0.17	0.27	0.13	0.14	0.13
0.13	0.10	0.10	0.23	0.08	0.14
0.06	0.04	0.04	0.10	0.18	0.06
0.09	0.07	0.07	0.05	0.06	0.20

Reducer: Compute random neighbor of u

- Reducer: Compute random neighbor of u
 - G = (u, v, weight). Reducer uses u as the key, groups all (u, v, weight) triples (for all v), and generating one random neighbor v for u and outputs (u, v).

- Reducer: Compute random neighbor of u
 - G = (u, v, weight). Reducer uses u as the key, groups all (u, v, weight) triples (for all v), and generating one random neighbor v for u and outputs (u, v).
- Combiner: Extend $N = \langle u, v \rangle$ to $\langle u, v, t \rangle$.

- Reducer: Compute random neighbor of u
 - G = $\langle u, v, weight \rangle$. Reducer uses u as the key, groups all $\langle u, v, weight \rangle$ triples (for all v), and generating one random neighbor v for u and outputs $\langle u, v \rangle$.
- Combiner: Extend $N = \langle u, v \rangle$ to $\langle u, v, t \rangle$.
 - Find a random neighbor t of v by joining N and G on condition N.v = G.u from the graph G and output (u, v, t).

Power Iteration:

$$\pi_u^{(i)}(v) = \epsilon \delta_u(v) + (1 - \epsilon) \sum_{\{w \mid (w,v) \in E\}} \pi_u^{(i-1)}(w) \alpha_{w,v}$$

Power Iteration:

$$\pi_u^{(i)}(v) = \epsilon \delta_u(v) + (1 - \epsilon) \sum_{\{w \mid (w,v) \in E\}} \pi_u^{(i-1)}(w) \alpha_{w,v}$$

- Basic MapReduce:
 - Given a graph $G=\langle u,v,\alpha_{u,v}\rangle$, the initialization of $\overrightarrow{\pi_u}^{(0)}$ is a Reducer of graph on key u.
 - Update of $\overrightarrow{\pi_u}^{(i)}$ can be implemented as combiner joining $\overrightarrow{\pi_u}^{(i-1)}$ and G.

Power Iteration:

$$\pi_u^{(i)}(v) = \epsilon \delta_u(v) + (1 - \epsilon) \sum_{\{w \mid (w,v) \in E\}} \pi_u^{(i-1)}(w) \alpha_{w,v}$$

- Basic MapReduce:
 - Given a graph $G=\langle u,v,\alpha_{u,v}\rangle$, the initialization of $\overrightarrow{\pi_u}^{(0)}$ is a Reducer of graph on key u.
 - Update of $\overrightarrow{\pi_u}^{(i)}$ can be implemented as combiner joining $\overrightarrow{\pi_u}^{(i-1)}$ and G.

Space: O(n^2)!

We may not need the exact PPR for most tasks!

• Monte Carlo Simulation Simulate R random walks starting from u, the portion of visits to v is approximately $\pi_u(v)$

- Monte Carlo Simulation Simulate R random walks starting from u, the portion of visits to v is approximately $\pi_u(v)$
- Basic MapReduce:
 - A Reducer to initialize R random walks from u.
 - A sequence of Combiner iterations to extend each random walk until it restarts at u.
 - A final Reducer to aggregate the frequencies of visits to every node v in all R walks (for each source node), and approximate the PPR values.

- Monte Carlo Simulation Simulate R random walks starting from u, the portion of visits to v is approximately $\pi_u(v)$
- Basic MapReduce:
 - A Reducer to initialize R random walks from u.
 - A sequence of Combiner iterations to extend each random walk until it restarts at u.
 - A final Reducer to aggregate the frequencies of visits to every node v in all R walks (for each source node), and approximate the PPR values.

Needs to execute the Combiner many times for long walks!

Monte Carlo Simulation

Given a graph G and a length λ , outputs one random walk of length λ starting from each node in the graph.

Basic Idea

- Preprocessing: Sample $\eta = \lambda/\theta$ short segments of length θ out of each node.
- Online Computation: Merge these segments to form the longer walk.

Basic Idea

- Preprocessing: Sample $\eta = \lambda/\theta$ short segments of length θ out of each node.
- Online Computation: Merge these segments to form the longer walk.

- 1. How to ensure it is a REAL random walk?
- 2. How to make it efficient?

Doubling Algorithm: Initialization

- Assume $\lambda = 17$, $\theta = 3$.
- For each node u, generate $\eta = \lceil 17/3 \rceil = 6$ segments S[u, i] $(1 \le i \le 6)$, i is its ID.
- S[u, 6] is of length 2 while the other segments S[u, i] (i <
 6) are of length 3.

Doubling Algorithm: Initialization

- S[u, i]: i-th segment of u
- W[u, i, η]: RW from u, η is the maximum ID at the current iteration.
- In the beginning, $\eta = 6$, and W [u, i, η] = S[u, i] for i = 1, . . . , 6.

- Appends W2 to W1 if:
 - W1.LastNode = W2.FirstNode
 - -W1.ID < W2.ID
 - W1.ID + W2.ID = η + 1. (ensure each segment is a proper random walk)

- For a node u, we merge W[u,i,6] with W[vi,7-i,6]
 for i = 1,2,3, and get 3 new segments:
 - W[u,1,3] that ends at x1, W[u,2,3] that ends at x2, and W[u,3,3] that ends at x3

- Continue: η = 3, and we will merge W[u,1,3]
 with W[x1,3,3]. See Fig (c).
- Finally: merge W[u,1,2] with W[y1,2,2], and get W[u,1,1], which has length $\lambda = 17$.

Shrinkage fast: One merging iteration will reduce the maximum ID from η to $\lfloor \frac{\eta+1}{2} \rfloor$!

Optimality of the Algorithm

• Theorem: The Doubling algorithm with parameters λ , θ finishes in $\theta + \lceil \log_2 \lceil \frac{\lambda}{\theta} \rceil \rceil$ MapReduce iterations.

$$1 + \lceil \log_2 \lambda \rceil$$
 If $\theta = 1$

Optimal for in the class of Natural Algorithms(NA)!

NA only allows Extend and Merge operations.

Computing the PPR

- Choose different λ , θ and R for different nodes.
- Repeat Doubling algorithm.
- Collect and count number of visits.
 - -C(u,v)+= number of visits to v in Wi[u]

I/O cost of the Algorithm

$$O(m \max_{1 \le i \le R} \{\theta_i\} + n \sum_{i=1}^{R} (\lambda_i \theta_i + \lambda_i \log_2 \frac{\lambda_i}{\theta_i}))$$

Experiments

Figure 2: $\overline{Err}(.,10)$ vs. Clock Time Figure 3

Figure 3: $\overline{Err}(.,10)$ vs. Machine Time

Graph Size: 112M nodes and 513M edges

Take-home Message

- A new PPR computation method on MapReduce is proposed.
- Theoretically sound
 - Optimal in the class of natural algorithms.
 - Manageable I/O cost.
- Empirically works well.

Thanks!