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Graph data is Ubiquitous 



Basic Problem in Graphs:  
How do we measure the  

proximity (similarity)  
between two nodes? 



Typical proximity measure 

• Shortest distance 
• Common neighbor set 



Typical proximity measure 

• Shortest distance 
• Common neighbor set 
• Personalized PageRank (PPR), a.k.a Random 

Walk with Restart 
– Considers all the possible paths from node to node 
– Captures the global structure of the graph 
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Application of PPR 

• Citation analysis [Jeh, KDD 02] 
• Link prediction [Liben Nowell, CIKM 03]. 
• Graph clustering [Andersen, FOCS 06]. 
• Recommendation system [Konstas, SIGIR 09]. 
• Top-k search [Fujiwara, VLDB 12] 
• Reverse Top-k Search [Yu, VLDB 14] 
• …… 



How to Compute the PPR? 
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MapReduce for PPR Computation 

• Reducer: Compute random neighbor of u 
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MapReduce for PPR Computation 

• Reducer: Compute random neighbor of u 
– G = ⟨u, v, weight⟩. Reducer uses u as the key, 

groups all ⟨u, v, weight⟩ triples (for all v), and 
generating one random neighbor v for u and 
outputs ⟨u, v⟩. 

• Combiner: Extend N = ⟨u, v⟩ to ⟨u, v, t⟩. 
– Find a random neighbor t of v by joining N and G 

on condition N.v = G.u from the graph G and 
output ⟨u, v, t⟩. 
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• Basic MapReduce: 
– Given a graph                               , the initialization 

of           is a Reducer of graph on key u. 
– Update of           can be implemented as combiner 

joining                 and G.  



Computation of PPR 

• Power Iteration: 

• Basic MapReduce: 
– Given a graph                               , the initialization 

of           is a Reducer of graph on key u. 
– Update of           can be implemented as combiner 

joining                 and G.  

   Space:  O(n^2)!  



We may not need the exact 
PPR for most tasks! 
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• Basic MapReduce: 
– A Reducer to initialize R random walks from u. 
– A sequence of Combiner iterations to extend each 

random walk until it restarts at u. 
– A final Reducer to aggregate the frequencies of visits 

to every node v in all R walks (for each source node), 
and approximate the PPR values. 



Computation of PPR 

• Monte Carlo Simulation 
Simulate R random walks starting from u, 
the portion of visits to v is approximately   

• Basic MapReduce: 
– A Reducer to initialize R random walks from u. 
– A sequence of Combiner iterations to extend each 

random walk until it restarts at u. 
– A final Reducer to aggregate the frequencies of visits 

to every node v in all R walks (for each source node), 
and approximate the PPR values. 

Needs to execute the Combiner many times for long walks! 



Computation of PPR 

• Monte Carlo Simulation 

Given a  graph  G  and  a  length  λ,  outputs  
one  random  walk  of  length  λ  starting  
from each node in the graph. 



Basic Idea 

• Preprocessing: Sample η=λ/θ  short segments of 
length  θ  out  of  each  node.  

• Online Computation: Merge these segments to 
form the longer walk. 

u 
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Basic Idea 

• Preprocessing: Sample η=λ/θ  short segments of 
length  θ  out  of  each  node.  

• Online Computation: Merge these segments to 
form the longer walk. 

u 

λ=6,    Θ=2 

1. How to ensure it is a REAL random walk? 
2. How to make it efficient? 



Doubling Algorithm: Initialization 

• Assume  λ  =  17,  θ  =  3.   
• For each node u, generate η  =  ⌈17/3⌉ = 6 segments S[u, i] 

(1  ≤  i  ≤  6), i is its ID.  
• S[u, 6] is of length 2 while the other segments S[u, i] (i < 

6) are of length 3. 



Doubling Algorithm: Initialization 

• S[u, i]: i-th segment of u 
• W[u,  i,  η]:  RW  from  u,  η  is the maximum ID at the 

current iteration.  
• In  the  beginning,  η  =  6,  and  W  [u,  i,  η]  = S[u, i] for i 

= 1, . . . , 6. 



Doubling Algorithm: Merge 

• Appends W2 to W1 if: 
– W1.LastNode = W2.FirstNode 
– W1.ID < W2.ID 
– W1.ID +  W2.ID  =  η  +  1. (ensure each segment is a 

proper random walk) 



Doubling Algorithm: Merge 

• For a node u, we merge  W[u,i,6]  with  W[vi,7−i,6]  
for i = 1,2,3, and get 3 new segments:  
– W[u,1,3] that ends at x1, W[u,2,3] that ends at x2, 

and W[u,3,3] that ends at x3 



Doubling Algorithm: Merge 

• Continue: η  =  3,  and  we  will  merge  W[u,1,3]  
with W[x1,3,3]. See Fig (c). 

• Finally: merge W[u,1,2] with W[y1,2,2], and get 
W[u,1,1],  which  has  length  λ  =  17. 
 



Doubling Algorithm: Merge 

Shrinkage fast: One merging iteration will reduce 
the maximum  ID  from  η  to               !  



Optimality of the Algorithm 

• Theorem: The Doubling algorithm with 
parameters  λ,  θ  finishes  in                          
MapReduce iterations.  

If  θ  =  1 

Optimal for in the class of Natural Algorithms(NA)! 

NA only allows Extend and Merge operations.  



Computing the PPR 

• Choose different λ,  θ  and  R  for  different  nodes. 
• Repeat Doubling algorithm. 
• Collect and count number of visits. 

– C(u,v)+ = number of visits to v in Wi[u]   



I/O cost of the Algorithm 

 



Experiments 

Graph Size: 112M nodes and 513M edges 



Take-home Message 

• A new PPR computation method on 
MapReduce is proposed. 

• Theoretically sound  
– Optimal in the class of natural algorithms. 
– Manageable I/O cost. 

• Empirically works well. 



Thanks! 


