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MOTIVATION 



Dot products 

• Used for computing similarity between 
vectors 
 

• Object Detection  in images 
– many dot products (~10^5) per image 
– High dimensional (3100) vectors 
– Bottleneck … 

 
 

 



Revision: Locality Sensitive Hashing 

• Similar vectors => Similar hash values 



Paper - Winner Takes All (WTA) 
Hashing 



Comparative Reasoning 



Intuition 

• Small differences in absolute value of filter 
don’t matter as long as “nature of filter” is the 
same 



Intuition 

• Capture “nature of the filter” using a set of 
inequalities 
– A>=B 
– B>=C 



Intuition 

• Comparing two signals is comparing their set 
of inequalities 
– Expensive 



WTA Hashing 

5 10 2 8 16 7 Input 
N – dim vector 

Choose first K=3 
elements 

7 16 5 10 8 2 Permute elements 
P=[6,5,1,2,4,3] 

10 8 2 

Set index of 
max=1, rest 0 1 0 0 Hash of vector 



WTA Hashing – another view 

• Take random projection of the vector 
 

• Compute index of the dimension with max 
magnitude 
 
 



Window Parameter 

• Effect of window parameter K 
– K = length of signal 
– We are just storing the index of global max 

• Exactly equal to “Max-hash” 

 

• In general, smaller K captures more pair-wise 
ordering 
 

• Larger K captures a more “global max” 
 



So if two hashes match? 

• If two hashes of length K match 
– K-1 inequalities in both signals have matched 

 

• By computing and matching hash in O(K) we 
can determine K-1 inequalities 
 

• Notice that hash is sparse and thus allows for 
efficient storage/computation 



• One hash isn’t enough 
 

• Need more “random projections” 



Multi-band WTA 

Input 
Signal 

WTA 
Hashes 

P permutations 
Band W hashes 

M hash bands 

Normal hash 
(C++ unordered_map) 



Multi-band WTA 

• P = 2400 (number of permutations) 
• K = 16 (window size) 
• M = 600 (bands) 
• W = N/M = 4 (number of WTA-hashes banded 

together) 
• Each hash takes W log2 K bits = 16 bits to store 

in memory => C++ unordered_map 

 



OBJECT DETECTION 



Why Object Detection? 

• Face recognition/detection 
 

• Generic object (e.g. cat, dog, bottle)  



Revision: 2D Convolution 

Input Signal 

Template/Filter 



Revision: 2D Convolution 



Revision: 2D Convolution 



Revision: 2D Convolution 



Revision: 2D Convolution 



Revision: 2D Convolution 



Revision: 2D Convolution 



Revision: 2D Convolution 



Revision: 2D Convolution 

Detections! 



Template based object detection 

 



Template based object detection 

 



Template based object detection 

• It works … sort of 



Template based object detection 

• Number of templates >= number of classes 
 

• Each template – ~10^5 dot products per 
image 



Why can’t we scale object detection? 

• Detecting one class for a regular (640x480 image) 
requires ~1-2 seconds 
 

• 1000 classes => 1000x 
– ~1000 seconds per image 
– Imagine video, which has 30 frames per second 
– Not even close to real-time 

 
• Even though embarrassingly parallel, latency is 

too high for real-time applications 



Why can’t we scale object detection? 

• Each class template is a high dimensional 
(~4000) vector of single/double precision 
values 
 

• More classes, more memory to store 
templates 
 

• Scarce main memory (on-board computers) 



Paper – Scaling up object detection 

 
Best Paper 

Follow up: Uses similar LSH based techniques to scale detection for CNN based 
detectors -Vijayanarasimhan et al., arXiv 2014 

 



What’s the bottleneck? 
Detector template 

Input image feature 

Each step is a dot product of two high dimensional (3100) vectors 



What’s the bottleneck? 
Detector templates 

Input image feature 

Each step is a dot product of two high dimensional (3100) vectors 
C detectors (one per class) => O(C) expensive convolutions 



Computation bottleneck 

37 
Misra et al., 2014 

Feature 
computation 

Convolution 

Others 



Main idea 

• Reduce number of dot products 
 

• Replace dot products by hash lookup 
 

• All detectors will not give high “dot product” 
response 
 

• Use hashing to find “high response” detectors. 
Dot product for only these detectors 
 



Main idea 

Input image 

Hash Table 

Detectors 

Image region 



Main idea 

Input image 

Detectors 

Hash Table 

Closest 
detectors 



Main idea 

Compute dot product only for closest detector 

Input image 



What should the hash do? 

• The hash should make sure that two vectors 
with “similar filter response” should be close 
 

• WTA Hash  



After Training, hash all templates 

Input 
Signal 

WTA 
Hashes 

P permutations 
Band W hashes 

M hash bands 

Normal hash 
(C++ unordered_map) 



Test time 

Image features 

Detectors 

Multi-band WTA 

Closest 
detectors 



DATASETS 



Pascal VOC2007 

• Object detection benchmark 
• Consists of images from Flickr 
• 20 diverse object classes 

– Bottle, dog, human, car, aeroplane, bus, plant etc. 



Pascal VOC 2007 



RESULTS 



Results (Accuracy vs. Speed) 

20 classes on PASCAL VOC 2007 
5 seconds per image 

Speed-up of 20x over standard DPM implementation (not the cascade version) 

Paper: Fast Accurate Detection of 100,000 Object Classes on a Single Machine 



Results – 100,000 detectors 

Train them using 5000 machines 
Test them on a single machine with 20GB RAM (P=2400, K=16, M=600) 

Paper: Fast Accurate Detection of 100,000 Object Classes on a Single Machine, Dean et al., 2013 



Bonus: Results 

• Training a deep net with millions of classes as 
output 

Paper: Deep Networks With Large Output Spaces, Vijayanarasimhan et al. 2014 



THANK YOU! 



Optimized Implementation 

Number of detectors 

Time (ms) 

Misra et al., 2014 

Optimized Original 



METRICS 



Correct detection? 



Average Precision (AP) 

• Area under precision/recall curve 



Results – Fixed compute budget 



Test time 

Test 
image 

feature 

WTA 
Hashes 

P permutations 
Band W hashes 

M hash bands 

Normal hash 
(C++ unordered_map) 



WTA Hashing 

• Winner Takes All Hashing 
– Input Signal of length L  = [5,10, 2, 8] 
– Parameter: Window size K  = 2 
– P is a permutation of indices 1 to N = [4,3,2,1] 
– Permute signal according to P => [8,2,10,5] 
– Look at first K elements => [8,2] 
– Find index of the maximum element 
– Hash = all zeros except at max; hash = [1 0] 

 
 If K = N, then this is exactly Min-Hash 



Paper – Scaling up object detection 
Fast Accurate Detection of 
100,000 Object Classes on a 
Single Machine – Thomas 
Dean et al., CVPR 2013 
 

Best Paper 

Follow up: Uses similar LSH based techniques to 
scale detection for CNN based detectors -
Vijayanarasimhan et al., arXiv 2014 
 



Winner Takes All (WTA) Hashing 
The Power of Comparative Reasoning – 
J. Yagnik, D. Strelow, D. Ross, R. Lin in 
ICCV 2011 
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