
HASHING AWAY DOT-PRODUCTS

Ishan Misra

MOTIVATION

Dot products

• Used for computing similarity between
vectors

• Object Detection in images
– many dot products (~10^5) per image
– High dimensional (3100) vectors
– Bottleneck …

Revision: Locality Sensitive Hashing

• Similar vectors => Similar hash values

Paper - Winner Takes All (WTA)
Hashing

Comparative Reasoning

Intuition

• Small differences in absolute value of filter
don’t matter as long as “nature of filter” is the
same

Intuition

• Capture “nature of the filter” using a set of
inequalities
– A>=B
– B>=C

Intuition

• Comparing two signals is comparing their set
of inequalities
– Expensive

WTA Hashing

5 10 2 8 16 7 Input
N – dim vector

Choose first K=3
elements

7 16 5 10 8 2 Permute elements
P=[6,5,1,2,4,3]

10 8 2

Set index of
max=1, rest 0 1 0 0 Hash of vector

WTA Hashing – another view

• Take random projection of the vector

• Compute index of the dimension with max
magnitude

Window Parameter

• Effect of window parameter K
– K = length of signal
– We are just storing the index of global max

• Exactly equal to “Max-hash”

• In general, smaller K captures more pair-wise
ordering

• Larger K captures a more “global max”

So if two hashes match?

• If two hashes of length K match
– K-1 inequalities in both signals have matched

• By computing and matching hash in O(K) we
can determine K-1 inequalities

• Notice that hash is sparse and thus allows for
efficient storage/computation

• One hash isn’t enough

• Need more “random projections”

Multi-band WTA

Input
Signal

WTA
Hashes

P permutations
Band W hashes

M hash bands

Normal hash
(C++ unordered_map)

Multi-band WTA

• P = 2400 (number of permutations)
• K = 16 (window size)
• M = 600 (bands)
• W = N/M = 4 (number of WTA-hashes banded

together)
• Each hash takes W log2 K bits = 16 bits to store

in memory => C++ unordered_map

OBJECT DETECTION

Why Object Detection?

• Face recognition/detection

• Generic object (e.g. cat, dog, bottle)

Revision: 2D Convolution

Input Signal

Template/Filter

Revision: 2D Convolution

Revision: 2D Convolution

Revision: 2D Convolution

Revision: 2D Convolution

Revision: 2D Convolution

Revision: 2D Convolution

Revision: 2D Convolution

Revision: 2D Convolution

Detections!

Template based object detection

Template based object detection

Template based object detection

• It works … sort of

Template based object detection

• Number of templates >= number of classes

• Each template – ~10^5 dot products per
image

Why can’t we scale object detection?

• Detecting one class for a regular (640x480 image)
requires ~1-2 seconds

• 1000 classes => 1000x
– ~1000 seconds per image
– Imagine video, which has 30 frames per second
– Not even close to real-time

• Even though embarrassingly parallel, latency is

too high for real-time applications

Why can’t we scale object detection?

• Each class template is a high dimensional
(~4000) vector of single/double precision
values

• More classes, more memory to store
templates

• Scarce main memory (on-board computers)

Paper – Scaling up object detection

Best Paper

Follow up: Uses similar LSH based techniques to scale detection for CNN based
detectors -Vijayanarasimhan et al., arXiv 2014

What’s the bottleneck?
Detector template

Input image feature

Each step is a dot product of two high dimensional (3100) vectors

What’s the bottleneck?
Detector templates

Input image feature

Each step is a dot product of two high dimensional (3100) vectors
C detectors (one per class) => O(C) expensive convolutions

Computation bottleneck

37
Misra et al., 2014

Feature
computation

Convolution

Others

Main idea

• Reduce number of dot products

• Replace dot products by hash lookup

• All detectors will not give high “dot product”
response

• Use hashing to find “high response” detectors.
Dot product for only these detectors

Main idea

Input image

Hash Table

Detectors

Image region

Main idea

Input image

Detectors

Hash Table

Closest
detectors

Main idea

Compute dot product only for closest detector

Input image

What should the hash do?

• The hash should make sure that two vectors
with “similar filter response” should be close

• WTA Hash 

After Training, hash all templates

Input
Signal

WTA
Hashes

P permutations
Band W hashes

M hash bands

Normal hash
(C++ unordered_map)

Test time

Image features

Detectors

Multi-band WTA

Closest
detectors

DATASETS

Pascal VOC2007

• Object detection benchmark
• Consists of images from Flickr
• 20 diverse object classes

– Bottle, dog, human, car, aeroplane, bus, plant etc.

Pascal VOC 2007

RESULTS

Results (Accuracy vs. Speed)

20 classes on PASCAL VOC 2007
5 seconds per image

Speed-up of 20x over standard DPM implementation (not the cascade version)

Paper: Fast Accurate Detection of 100,000 Object Classes on a Single Machine

Results – 100,000 detectors

Train them using 5000 machines
Test them on a single machine with 20GB RAM (P=2400, K=16, M=600)

Paper: Fast Accurate Detection of 100,000 Object Classes on a Single Machine, Dean et al., 2013

Bonus: Results

• Training a deep net with millions of classes as
output

Paper: Deep Networks With Large Output Spaces, Vijayanarasimhan et al. 2014

THANK YOU!

Optimized Implementation

Number of detectors

Time (ms)

Misra et al., 2014

Optimized Original

METRICS

Correct detection?

Average Precision (AP)

• Area under precision/recall curve

Results – Fixed compute budget

Test time

Test
image

feature

WTA
Hashes

P permutations
Band W hashes

M hash bands

Normal hash
(C++ unordered_map)

WTA Hashing

• Winner Takes All Hashing
– Input Signal of length L = [5,10, 2, 8]
– Parameter: Window size K = 2
– P is a permutation of indices 1 to N = [4,3,2,1]
– Permute signal according to P => [8,2,10,5]
– Look at first K elements => [8,2]
– Find index of the maximum element
– Hash = all zeros except at max; hash = [1 0]

 If K = N, then this is exactly Min-Hash

Paper – Scaling up object detection
Fast Accurate Detection of
100,000 Object Classes on a
Single Machine – Thomas
Dean et al., CVPR 2013

Best Paper

Follow up: Uses similar LSH based techniques to
scale detection for CNN based detectors -
Vijayanarasimhan et al., arXiv 2014

Winner Takes All (WTA) Hashing
The Power of Comparative Reasoning –
J. Yagnik, D. Strelow, D. Ross, R. Lin in
ICCV 2011

	Hashing Away Dot-products
	Motivation
	Dot products
	Revision: Locality Sensitive Hashing
	Paper - Winner Takes All (WTA) Hashing
	Comparative Reasoning
	Intuition
	Intuition
	Intuition
	WTA Hashing
	WTA Hashing – another view
	Window Parameter
	So if two hashes match?
	Slide Number 14
	Multi-band WTA
	Multi-band WTA
	Object detection
	Why Object Detection?
	Revision: 2D Convolution
	Revision: 2D Convolution
	Revision: 2D Convolution
	Revision: 2D Convolution
	Revision: 2D Convolution
	Revision: 2D Convolution
	Revision: 2D Convolution
	Revision: 2D Convolution
	Revision: 2D Convolution
	Template based object detection
	Template based object detection
	Template based object detection
	Template based object detection
	Why can’t we scale object detection?
	Why can’t we scale object detection?
	Paper – Scaling up object detection
	What’s the bottleneck?
	What’s the bottleneck?
	Computation bottleneck
	Main idea
	Main idea
	Main idea
	Main idea
	What should the hash do?
	After Training, hash all templates
	Test time
	datasets
	Pascal VOC2007
	Pascal VOC 2007
	results
	Results (Accuracy vs. Speed)
	Results – 100,000 detectors
	Bonus: Results
	Thank you!
	Optimized Implementation
	metrics
	Correct detection?
	Average Precision (AP)
	Results – Fixed compute budget
	Test time
	WTA Hashing
	Paper – Scaling up object detection
	Winner Takes All (WTA) Hashing

