1 Online mistake-bounded learning for classification

Bayesian probability is the most-studied mathematical model of learning (here at CMU, anyway). But there are other models that also are experimentally successful, and give useful insight. Sometimes these models are also mathematically more appropriate - e.g., a function that models $P(Y|X)$ may not be the best function to use if you want to maximize accuracy.

Another useful model is this. Consider an on-line learner L. L has two methods:

- L.predict(x) returns some real number \hat{y}. The sign of \hat{y} is a binary prediction, “positive” or “negative”.

- L.addExample(x,y) is called to “tell” L that y is the correct label for x. Here $y \in \{-1, +1\}$.

Notation and stuff: x and such are vectors, y is a real number, $x \cdot u$ is dot product, and $\|x\| = \sqrt{x \cdot x}$. As some background, remember that if θ is the angle between x and u, $\cos \theta = \frac{x \cdot u}{\|x\| \|u\|}$

This is important if you're trying to keep a picture in your mind of what all these dot-products mean. A special case is that $x \cdot u = \|x\| \cos \theta$ when
V |i = 1. Visually, for a unit vector \(u \), \(x \cdot u \) is the distance you get “if you project \(x \) in the direction \(u \)”.

Now consider this game, played between two players \(A \) and \(B \). Player \(A \) provides examples \(x_1, \ldots, x_T \) for each round (chosen arbitrarily).

In each round, \(B \) first makes a prediction \(\hat{y}_i \) (say, using a learner \(L \)). Then \(A \) picks a label \(y_i \), arbitrarily, to assign to \(x_i \). If \(\text{sign}(y_i) \neq \text{sign}(\hat{y}_i) \)… or if you prefer, if \(y_i \hat{y}_i < 0 \)... then \(B \) has made a mistake. \(A \) is trying to force \(B \) to make as many mistakes as possible.

To make this reasonable, we need a few more constraints on what \(A \) is allowed to do, and what \(B \) will do. Each set of constraints gives you a new theorem (maybe, if you can work it out!).

1.1 The perceptron game

Here’s the version of the online-learning game we’ll consider today. There are three extra rules, to make the game “fair” for \(B \).

Margin \(\gamma \). \(A \) must provide examples that can be separated with some vector \(u \) with margin \(\gamma > 0 \), i.e.

\[
\exists u : \forall (x_i, y_i) \text{ given by } A, (u \cdot x_i)y_i > \gamma
\]

and furthermore, \(\|u\| = 1 \).

To make sense of this, recall that if \(\theta \) is the angle between \(x \) and \(u \), then

\[
\cos \theta = \frac{x \cdot u}{\|x\|\|u\|}
\]

so if \(\|u\| = 1 \) then \(\|x\| \cos \theta = x \cdot u \). In other words, \(x \cdot u \) is exactly the result of projecting \(x \) onto vector \(u \), and \(x \cdot u > \gamma \) means that \(x \) is distance \(\gamma \) away from the hyperplane \(h \) that is perpendicular to \(u \). This hyperplane \(h \) is the separating hyperplane. Notice that \(y(x \cdot u) > \gamma \) means that \(x \) is distance \(\gamma \) away from \(h \) on the “correct” side of \(h \).

Radius \(R \). \(A \) must provide examples “near the origin”, i.e.

\[
\forall x_i \text{ given by } A, \|x_i\|^2 < R^2
\]

\(B \)’s strategy. \(B \) uses this learning strategy.
Figure 1: A couple of rounds of the perceptron game, played in two dimensions.

1. B's initial guess is \(v_0 = 0 \).
2. At every round, B's prediction is \(v_k \cdot x_i \), where \(v_k \) is the current guess.
3. When B makes a mistake (i.e., \((v_k \cdot x_i)y_i < 0 \)) then B updates the guess as follows:

\[
v_{k+1} = v_k + y_i x_i
\]
1.2 Some exercises

Don’t turn these in, but do try this at home:

• Play the perceptron game with yourself or a friend in two dimensions on paper or a whiteboard. Start out by drawing \mathbf{u} and the corresponding hyperplane, the separating margin γ, and the radius R. Then draw each \mathbf{v}_k. After each mistake, measure $\mathbf{v}_k \cdot \mathbf{u}$ visually by projecting \mathbf{v}_k onto \mathbf{u}.

• Suppose that you were A and could either make \mathbf{u} large, or make R large. How could you force B to make lots and lots of mistakes?

1.3 The mistake bound

If you do follow the rules, this simple algorithm is simple to analyze. Amazingly this doesn’t depend at all on the dimension of the x’s, and the proof is very simple.

Theorem 1 Under these rules, it is always the case that $k < R^2/\gamma^2$. In other words, the number of B’s mistakes is bounded by R^2, the square of radius the examples fall into, and $1/\gamma^2$, the square of the inverse of the margin.

The trick is to show two things: that $\mathbf{v}_k \cdot \mathbf{u}$ grows, but $\|\mathbf{v}_k\|$ stays small.

Lemma 1 $\forall k$, $\mathbf{v}_k \cdot \mathbf{u} \geq k\gamma$. In other words, the dot product between \mathbf{v}_k and \mathbf{u} increases with each mistake, at a rate depending on the margin γ.

Proof:

\[
\mathbf{v}_{k+1} \cdot \mathbf{u} = (\mathbf{v}_k + y_i \mathbf{x}_i) \cdot \mathbf{u} \\
\Rightarrow \mathbf{v}_{k+1} \cdot \mathbf{u} = (\mathbf{v}_k \cdot \mathbf{u}) + y_i (\mathbf{x}_i \cdot \mathbf{u}) \\
\Rightarrow \mathbf{v}_{k+1} \cdot \mathbf{u} \geq \mathbf{v}_k \cdot \mathbf{u} + \gamma \\
\Rightarrow \mathbf{v}_k \cdot \mathbf{u} \geq k\gamma
\]

The first step is natural to consider—we’re just taking the definition of \mathbf{v}_{k+1}, and since we care about the dot product with \mathbf{u}, we dot-product both sides with \mathbf{u} and then grind away. These steps follow from “B’s strategy”; distributivity; the “margin γ” assumption; and then induction; respectively. That’s the first lemma.
Now, $\mathbf{v}_k \cdot \mathbf{u}$ could grow even if \mathbf{v}_k points “away from” \mathbf{u}—i.e., the angle between them stays large—if $||\mathbf{v}_k||$ grows as well. Again, let’s start with the definition of \mathbf{v}_{k+1} and “square” each side (in the dot-product sense) to see what happens to the norm.

Lemma 2 \(\forall k, \|\mathbf{v}_k\|^2 \leq kR^2 \). In other words, the norm of \mathbf{v}_k grows “slowly”, at a rate depending on R^2.

Proof:

\[
\mathbf{v}_{k+1} \cdot \mathbf{v}_{k+1} = (\mathbf{v}_k + y_i \mathbf{x}_i) \cdot (\mathbf{v}_k + y_i \mathbf{x}_i) \\
\Rightarrow \|\mathbf{v}_{k+1}\|^2 = \|\mathbf{v}_k\|^2 + 2y_i \mathbf{x}_i \cdot \mathbf{v}_k + y_i^2 \|\mathbf{x}_i\|^2 \\
\Rightarrow \|\mathbf{v}_{k+1}\|^2 = \|\mathbf{v}_k\|^2 + \text{[something negative]} + 1\|\mathbf{x}_i\|^2 \\
\Rightarrow \|\mathbf{v}_{k+1}\|^2 \leq \|\mathbf{v}_k\|^2 + \|\mathbf{x}\|^2 \\
\Rightarrow \|\mathbf{v}_{k+1}\|^2 \leq \|\mathbf{v}_k\|^2 + R^2 \\
\Rightarrow \|\mathbf{v}_{k+1}\|^2 \leq kR^2
\]

These steps follow from: “B’s strategy”; distributivity; “B’s strategy” again (in particular, the fact that there was a mistake, and the fact that $y_i \in \{-1, +1\}$); a simplification; the “radius R” assumption; and induction.

Finally, we can wrap this up and prove the theorem. Notice that Lemma 2 bounds the norm of \mathbf{v}_k, while Lemma 1 bounds the dot product of \mathbf{v}_k and \mathbf{u}. Think about this a second: if the norm of \mathbf{v}_k is small and the dot product with \mathbf{u} is large, then \mathbf{v}_k might be converging to \mathbf{u}—but it depends on the details of how fast these different quantities grow. So the question is, how fast two these trends go? How do we compare them?

It’s not obvious, but the way to combine these is to start by squaring the inequality from Lemma 1:

\[
(k\gamma)^2 \leq (\mathbf{v}_k \cdot \mathbf{u})^2 \\
\Rightarrow k^2\gamma^2 \leq \|\mathbf{v}_k\|^2 \|\mathbf{u}\|^2 \\
\Rightarrow k^2\gamma^2 \leq \|\mathbf{v}_k\|^2
\]

The last step follows since conveniently, $\|\mathbf{u}\| = 1$. Now we have a bound on k^2 in terms of the norm of \mathbf{v}_k. Now put this together with Lemma 2, which has a bound on \mathbf{v}_k in terms of kR^2.
\[k^2 \gamma^2 \leq \|v_k\|^2 \leq kR^2 \]

How sweet—now we have a quadratic function in \(k \) that’s upper-bounded by a linear function in \(k \). That certainly ought to lead to a bound on \(k \), right? To follow through...

\[\Rightarrow k^2 \gamma^2 \leq kR^2 \]
\[\Rightarrow k \gamma^2 \leq R^2 \]
\[\Rightarrow k \leq \frac{R^2}{\gamma^2} \]

And that’s the whole proof for the mistake bound.

2 Converting to batch

Interestingly, we’ve shown that \(B \) won’t make too many mistakes, but we haven’t said anything about how accurate the “last” guess \(v_{k_{\text{max}}} \) is on i.i.d data. When the data is separable, it seems like it should be ok—but the mistake-bound analysis can be extended to handle non-separable data as well, and in that case it’s not at all clear what we should do.

Imagine we run the on-line perceptron and see this result.

<table>
<thead>
<tr>
<th>(i)</th>
<th>guess</th>
<th>input</th>
<th>result</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(v_0)</td>
<td>(x_1)</td>
<td>(\times) (a mistake)</td>
</tr>
<tr>
<td>2</td>
<td>(v_1)</td>
<td>(x_2)</td>
<td>(\checkmark) (correct!)</td>
</tr>
<tr>
<td>3</td>
<td>(v_1)</td>
<td>(x_3)</td>
<td>(\checkmark)</td>
</tr>
<tr>
<td>4</td>
<td>(v_1)</td>
<td>(x_4)</td>
<td>(\times) (a mistake)</td>
</tr>
<tr>
<td>5</td>
<td>(v_2)</td>
<td>(x_5)</td>
<td>(\checkmark)</td>
</tr>
<tr>
<td>6</td>
<td>(v_2)</td>
<td>(x_6)</td>
<td>(\checkmark)</td>
</tr>
<tr>
<td>7</td>
<td>(v_2)</td>
<td>(x_7)</td>
<td>(\checkmark)</td>
</tr>
<tr>
<td>8</td>
<td>(v_2)</td>
<td>(x_8)</td>
<td>(\times)</td>
</tr>
<tr>
<td>9</td>
<td>(v_3)</td>
<td>(x_9)</td>
<td>(\checkmark)</td>
</tr>
<tr>
<td>10</td>
<td>(v_3)</td>
<td>(x_{10})</td>
<td>(\times)</td>
</tr>
</tbody>
</table>

Our final hypothesis could be the most accurate guess constructed so far, which looks to be \(v_2 \) (which was right 3 times and before it had an error, for an empirical error rate of 25%). Or we could use the last guess \(v_4 \), which we haven’t tested at all...
Rob and Yoav suggest using a mixture of all of these, weighting them by their accuracy on the data—or more precisely, by \(m_k \), the number of examples they were used for. In this case, we’d randomly pick \(v_0 \) with probability 1/10, \(v_1 \) with probability 3/10, \(v_2 \) with probability 4/10, and \(v_3 \) with probability 2/10. After picking our \(v_k \), we just use its prediction.

Each \(v_k \)'s empirical error is \(1/m_k \), so if we let \(m = \sum m_k \) then the probability of an error using this voting scheme is

\[
P(\text{error in } x) = \sum_k P(\text{error on } x|\text{picked } v_k)P(\text{picked } v_k)
\]

\[
= \sum_k \frac{1}{m_k} \frac{m_k}{m} = \sum_k \frac{1}{m} = \frac{k}{m}
\]

This is easy to understand and seems to work well experimentally.

Even easier is to approximate the voting with a weighted average, and classify with a single vector

\[
v_\ast = \sum_k \left(\frac{m_k}{m} v_k \right)
\]

3 Online learning for ranking

Here’s a very similar on-line model for learning to rank items.

An on-line learner \(L \) again has two methods:

- \(L.\text{findBest}(x_1, \ldots, x_n) \) returns an integer \(\hat{\ell} \) between 1 and \(n \). Here \(\hat{\ell} \) is \(L \)'s prediction as to which \(x_j \) is “best”—i.e, a prediction that \(x_{\hat{\ell}} \) should be ranked highest.

- \(L.\text{addExample}(x_1, \ldots, x_n, \ell) \) is called to “tell” \(L \) that \(x_{\ell} \) is the true “best” element of the given list of \(x_j \)'s.

Again, we can imagine a game. On each the \(i \)-th round, \(A \) generates a list \(x_{i,1}, \ldots, x_{i,n_i} \); \(B \) makes a prediction \(\hat{\ell} \); and then \(A \) provides the index \(\ell \) of the “true” best list element \(x_{\ell} \). \(B \) makes a mistake iff \(\hat{\ell} \neq \ell \).

3.1 The perceptron game

The rules for the “perceptron ranking game” are:
Figure 2: A perceptron used for ranking
Margin γ. A must provide examples that can be correctly ranked with some vector u with margin $\gamma > 0$, ie

$$\exists u : \forall x_{i,1}, \ldots, x_{i,n_i}, \ell \text{ given by } A, \forall j \neq \ell, u \cdot x_\ell - u \cdot x_j > \gamma$$

and furthermore, $||u||^2 = 1$.

Radius R. A must provide examples “near the origin”, ie

$$\forall x_i \text{ given by } A, ||x||^2 < R^2$$

B’s strategy. B uses this learning strategy.

1. B’s initial guess is $v_0 = 0$.

2. At every round, B’s prediction is the j such that $x_{i,j}$ that has the highest “score” as computed by $\text{score} = v_k \cdot x_{i,j}$, where v_k is the current guess. I.e.,

$$\hat{\ell} = \arg\max_j v_k \cdot x_{i,j}$$

3. When B makes a mistake then B updates the guess as follows:

$$v_{k+1} = v_k + x_{i,\ell} - x_{i,\hat{\ell}}$$

3.2 The analysis

The analysis is almost exactly the same as before. If you recall, the key things about $y_i x_i$ we needed to use were that

- for lemma 1, $y_i x_i \cdot u > \gamma$;
- for lemma 2, $y_i x_i \cdot v_k < 0$ when v_k made a mistake on x_i.

The ranking perceptron’s analysis uses the same properties for $(x_\ell - x_\hat{\ell})$.

- for lemma 1, we’ll use $(x_\ell - x_\hat{\ell}) \cdot u > \gamma$;
- for lemma 2, we’ll use $(x_\ell - x_\hat{\ell}) \cdot v_k < 0$, when there’s a mistake made on x by v_k.

Follow along:
Lemma 3 \(\forall k, \mathbf{v}_k \cdot \mathbf{u} \geq k\gamma \).

Proof:

\[
\mathbf{v}_{k+1} \cdot \mathbf{u} = (\mathbf{v}_k + \mathbf{x}_{i,\ell} - \mathbf{x}_{i,\hat{\ell}}) \cdot \mathbf{u}
\]

\[
\Rightarrow \mathbf{v}_k \cdot \mathbf{u} + \mathbf{x}_{i,\ell} \cdot \mathbf{u} - \mathbf{x}_{i,\hat{\ell}} \cdot \mathbf{u}
\]

\[
\Rightarrow \mathbf{v}_{k+1} \cdot \mathbf{u} \geq \mathbf{v}_k \cdot \mathbf{u} + \gamma
\]

\[
\Rightarrow \mathbf{v}_k \cdot \mathbf{u} \geq k\gamma
\]

Here the margin assumption means that \(\mathbf{x}_{i,\ell} \cdot \mathbf{u} - \mathbf{x}_{i,\hat{\ell}} \cdot \mathbf{u} > \gamma \)

Lemma 4 \(\forall k, \|\mathbf{v}_k\|^2 \leq 2kR^2 \).

Proof (a little more involved than before):

\[
\mathbf{v}_{k+1} \cdot \mathbf{v}_{k+1} = (\mathbf{v}_k + (\mathbf{x}_{i,\ell} - \mathbf{x}_{i,\hat{\ell}})) \cdot (\mathbf{v}_k + (\mathbf{x}_{i,\ell} - \mathbf{x}_{i,\hat{\ell}}))
\]

\[
\Rightarrow \|\mathbf{v}_{k+1}\|^2 = \|\mathbf{v}_k\|^2 + 2(\mathbf{v}_k \cdot \mathbf{x}_{i,\ell} - \mathbf{v}_k \cdot \mathbf{x}_{i,\hat{\ell}}) + \|\mathbf{x}_{i,\ell} - \mathbf{x}_{i,\hat{\ell}}\|^2
\]

So far, that’s just algebra. Next use the fact that there was a mistake, and hence \(\mathbf{v}_k \cdot \mathbf{x}_{i,\ell} - \mathbf{v}_k \cdot \mathbf{x}_{i,\hat{\ell}} < 0 \), and then the “triangle inequality” which says that \(\|\mathbf{x} + \mathbf{y}\|^2 \leq \|\mathbf{x}\|^2 + \|\mathbf{y}\|^2 \), and finally the radius assumption:

\[
\|\mathbf{v}_{k+1}\|^2 = \|\mathbf{v}_k\|^2 + 2(\mathbf{v}_k \cdot \mathbf{x}_{i,\ell} - \mathbf{v}_k \cdot \mathbf{x}_{i,\hat{\ell}}) + \|\mathbf{x}_{i,\ell} - \mathbf{x}_{i,\hat{\ell}}\|^2
\]

\[
\Rightarrow \|\mathbf{v}_{k+1}\|^2 \leq \|\mathbf{v}_k\|^2 + \|\mathbf{x}_{i,\ell} - \mathbf{x}_{i,\hat{\ell}}\|^2
\]

\[
\Rightarrow \|\mathbf{v}_{k+1}\|^2 \leq \|\mathbf{v}_k\|^2 + \|\mathbf{x}_{i,\ell}\|^2 + \|\mathbf{x}_{i,\hat{\ell}}\|^2
\]

\[
\Rightarrow \|\mathbf{v}_{k+1}\|^2 \leq \|\mathbf{v}_k\|^2 + 2R^2
\]

So \(\|\mathbf{v}_k\|^2 \leq 2kR^2 \) by induction. Putting these two lemmas together gives a bound, as in the classification case.

Theorem 2 Under the rules of the ranking perceptron game, it is always the case that \(k < 2R^2/\gamma^2 \).
Online learning for sequential classification

Now here a variant of the game, which gets us even closer to NER. On each round:

1. **A** constructs (or finds) a sequence $a_1 \ldots a_n$—say, the words from an n-word news article.

2. If each word can be labeled positive (for “part of an entity”) or negative, then associated with that sequence is a set of 2^n possible label sequences each sequence being a length-n vector containing the labels of every word in the article.

 A next creates 2^n objects x_1, \ldots, x_{2^n}, where x_j is a *vector of features* extracted from the pair $((a_1 \ldots a_n), (y^1_1 \ldots y^1_n))$, where $(y^1_1 \ldots y^1_n)$ is the j-th possible sequence of labels (from that enormous set of 2^n possible label sequences) for $a_1 \ldots a_n$.

3. After creating these 2^n vectors x_1, \ldots, x_{2^n}, **A** passes them to **B** for a prediction.

4. **B** returns a prediction $\hat{\ell}$, using the voted perceptron for ranking above. That is, **B** finds the $\hat{\ell}$ such that the score of $v_k \cdot x_{\hat{\ell}}$ is highest, for **B**’s current guess v_k.

5. **A** tells **B** which x_{ℓ} really should be ranked highest. Since each x_j corresponds to some sequence of labels $y^1_1 \ldots y^1_n$ for the words in the article, this is equivalent to **A** telling **B** the “best” labeling for the article.

 Just as in the ranking perceptron game, there has to be some unit u that makes **A**’s intended ranking consistent: i.e., $u \cdot x_{\ell} - u \cdot x_j > \gamma$.

 In this case the u vector has give the highest score to the featurized version of the pair $((a_1 \ldots a_n), (y^1_1 \ldots y^1_n))$.

 There’s no reason in principle why this couldn’t work—if the feature vectors are sparse then the x_j’s will have small radius, and if the features are good then a consistent ranking should be possible.

 However, **A** and **B** couldn’t really play this game efficiently because the lists of x’s are too long.
But, A doesn’t need to send the list of \(x \)'s to B—B could construct them on-the-fly when A simply sends him the article \(a_1 \ldots a_n \). In fact, B doesn’t need to construct them either—all B needs to do is pick a single best \(\hat{\ell} \), which corresponds to single labeling \(\hat{y}_1 \ldots \hat{y}_n \), and if the features are all Markovian, then B can just use Viterbi to find that labels gives the highest score.

To summarize, if \(\Phi(a_1 \ldots a_n, y_1 \ldots y_n) \) produces the featurizes vector \(x \), then the game above is equivalent to this one.

1. Initially B lets \(v_0 = 0 \), and lets \(k = 0 \).

2. On each round of the game:

 (a) A finds a sequence \(a_1 \ldots a_n \) and sends it to B.

 (b) B uses Viterbi to find the sequence of labels \(\hat{y}_1 \ldots \hat{y}_n \) such that \(v_k \cdot \Phi(a_1 \ldots a_n, \hat{y}_1 \ldots \hat{y}_n) \) is largest, i.e., larger than \(v_k \cdot \Phi(a_1 \ldots a_n, y'_1 \ldots y'_n) \) for any other label sequence \(y'_1 \ldots y'_n \).

 (c) A tells B the best labels \(y_1 \ldots y_n \) for \(a_1 \ldots a_n \).

 (d) If B’s guess was wrong then B lets

 \[
 v_{k+1} = v_k + \Phi(a_1 \ldots a_n, y_1 \ldots y_n) - \Phi(a_1 \ldots a_n, \hat{y}_1 \ldots \hat{y}_n)
 \]

 and increments \(k \) (so that \(v_{k+1} \) is used for subsequent predictions).

Comment: if we replace \(a_1 \ldots a_n \) with \(x \), \(y_1 \ldots y_n \) with \(y \), and \(\Phi \) with \(F(x, y) \), then we’re back to our notation for CRFs.

5 The kernel trick

Notice that \(v_k \) is always the sum of certain \(x'_i \)'s (namely, the ones where a mistake was made). This means that we can rewrite the prediction in terms of these \(x'_i \)'s. Let \(\mathcal{M}_k \) be the first \(k \) indices \(i \) where a mistake was made: then

\[
\mathbf{v}_k = \sum_{i \in \mathcal{M}_k} y_i \mathbf{x}_i
\]

so the prediction made on some test example \(x \) would be

\[
\mathbf{v}_k \cdot \mathbf{x} = (\sum_{i \in \mathcal{M}_k} y_i \mathbf{x}_i) \cdot \mathbf{x} = \sum_{i \in \mathcal{M}_k} y_i (\mathbf{x}_i \cdot \mathbf{x}) = \sum_{i \in \mathcal{M}_k} y_i K(\mathbf{x}_i, \mathbf{x})
\]
where \(K(x_i, x) \) is defined, for now, as the dot product. In other words, we don’t need to compute \(v_k \): we could just keep around the \(x_i \)’s in \(M_k \), and their associated (+1/-1) labels \(y_i \). Implemented this way, and thinking of \(K(\cdot, \cdot) \) as a measure of similarity, the perceptron algorithm is a sort of weighted nearest neighbor algorithm.

This suggests we could plug in some other similarity function and get reasonable results. The “kernel trick” is a mathematical trick that shows one can in which we can: basically, whenever \(K(x_i, x) \) is equivalent to the dot product of some transformed vectors \(H(x_i) \) and \(H(x) \).

As an example: suppose we transform \(x = (x_1, \ldots, x_n) \) by adding in all the \(n^2 \) “interaction terms”: \(x_1x_1, x_1x_2, \ldots, x_nx_n \), plus another component that will always be equal to “1”: i.e.,

\[
H'(⟨x_1, \ldots, x_n⟩) = ⟨x_1x_1, x_1x_2, \ldots, x_nx_n, x_1 \ldots x_n, 1⟩
\]

Consider the function \(K(v, x) = (v \cdot x + 1)^2 \).

\[
K(v, x) = (v \cdot x + 1)(v \cdot x + 1) \\
= (vx)^2 + 2vx + 1 \\
= (v_1x_1 + \ldots + v_nx_n)^2 + 2(v_1x_1 + \ldots + v_nx_n) + 1 \\
= \sum_{i,j} v_ix_ix_j + 2 \sum_i v_ix_i + 1 \\
= \sum_{i,j} v_iv_jx_ix_j + 2 \sum_i v_ix_i + 1
\]

This is almost the same as \(H'(v) \cdot H'(x) \) - the only difference is the extra factor of 2 in the linear terms, which we could fix by using \(H \) as

\[
H(⟨x_1, \ldots, x_n⟩) = ⟨x_1x_1, x_1x_2, \ldots, x_nx_n, \sqrt{2}x_1 \ldots \sqrt{2}x_n, 1⟩
\]

Then \(K(x, y) = H(x) \cdot H(y) \).

So, using the “nearest-neighbor like” implementation of perceptron with the \(K(\cdot, \cdot) \) function above is just like (equivalent to!) learning in transformed space of \(H(x) \)’s.