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Aside: Logistic Regression: 
Notational Differences 



Logistic Regression 
Ziv’s notation 

Data likelihood 

log data likelihood 



Logistic regression via gradient 
ascent: MLE for log likelihood 

William’s notation 



Logistic regression 
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William’s notation 

€ 

logistic(u) ≡ 1
1+ e−u



Predict  “pos”  on  (x1,x2)    iff  
ax1  +  bx2    +  c  >0  


= sign(ax1  +  bx2    +  c)  

Logistic 
regression 
as “soft” 
linear 
classifier 



Pr(pos|x1,x2)  =  Sigmoid(ax1+bx2+c)




Aside: Logistic Regression 
Stochastic vs “Batch” 

Gradient 



Stochastic gradients (SGD) for 
logistic regression 

1.  P(y|x)=logis*c(x	
  .	
  w)	
  
2.  Log	
  condi*onal	
  likelihood:	
  

3.  Differen*ate	
  the	
  LCL	
  func*on	
  and	
  use	
  
gradient	
  descent	
  to	
  minimize	
  
–  	
  Start	
  with	
  w0	
  

–  For	
  t=1,…,T	
  	
  	
  	
  	
  -­‐	
  un%l	
  convergence	
  	
  
•  For	
  each	
  example	
  x,y	
  in	
  D:	
  
•  	
   	
  wt+1	
  =	
  wt	
  +	
  λ	
  Lx,y(w	
  t)	
  
	
  where	
  λ	
  is	
  small	
  

LCLD (w) ≡ logP(yi | xi,w)
i
∑

More steps,  noisier path toward the 
minimum, but each step is cheaper  9 



Breaking it down: SGD for logistic 
regression 

1.  P(y|x)=logis*c(x	
  .	
  w)	
  
2.  Define	
  a	
  func*on	
  

3.  Differen*ate	
  the	
  func*on	
  and	
  use	
  
gradient	
  descent	
  
–  	
  Start	
  with	
  w0	
  

–  For	
  t=1,…,T	
  	
  	
  	
  	
  -­‐	
  un%l	
  convergence	
  	
  
•  For	
  each	
  example	
  x,y	
  in	
  D:	
  

•  	
   	
  wt+1	
  =	
  wt	
  +	
  λ	
  Lx,y(w	
  t)	
  
	
  where	
  λ	
  is	
  small	
  

LCLD (w) ≡ logP(yi | xi,w)
i
∑

€ 

= wt + λ(y − pi)x

€ 

pi = 1+ exp(−x⋅ w)( )−1

10 



Aside: Logistic Regression 
and Regularization 



Non-stochastic gradient descent 

•  In batch gradient descent, average the gradient 
over all the examples D={(x1,y1)…,(xn , yn)}  

12 



Non-stochastic gradient descent 

•  This can be interpreted as a difference between the 
expected value of y|xj=1 in the data and the 
expected value of y|xj=1  as predicted by the model 

•  Gradient ascent tries to make those equal 

13 



This LCL function “overfits” 

•  This can be interpreted as a difference between the 
expected value of y|xj=1 in the data and the 
expected value of y|xj=1  as predicted by the model 

•  Gradient ascent tries to make those equal 

 

•  That’s  impossible  for  some  wj    !

•  e.g.,  if  wj    =1  only  in  positive  examples,  the  
gradient  is  always  positive
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Regularization 
Ziv’s notation 



Regularization 

If we differentiate to get the new 
gradient, we get the old MLE gradient 
plus a new term: 

Ziv’s notation 



Naïve Bayes is also linear 



Naïve Bayes 
•  Given a new instance with Xi=xij compute the following for 

each possible value y of Y 

€ 

= argmaxyk P(X1 = x j,1 |Y = y) * ...*P(Xn = x j,n |Y = yk )P(Y = yk )

€ 

= argmaxyk P(Xi = x ji |Y = yk )
i
∏ P(Y = yk )

= argmaxk logq(i, ji,k)+ log p(k)i=1

n
∑

= sign logq(i, ji, pos)+ log p(pos)i=1

n
∑( )− logq(i, ji, neg)+ log p(negi=1

n
∑( )#

$%
&
'(

for two classes y1=pos, y2=neg 



For two classes Naïve 
Bayes is linear 



More generally 
the boundary for a 
linear classifier is a 

hyperplane 



Predict  “pos”  on  (x1,x2)    iff  
ax1  +  bx2    +  c  >0  


= sign(ax1  +  bx2    +  c)  



LOGISTIC REGRESSION AND LINEAR 
CLASSIFIERS 

 
 
 



Linear classifiers we’ve seen so far 
•  Naïve Bayes:  

–  a generative linear classifier 
–  can show the decision boundary is linear 

•  Logistic regression:  
–  a discriminative linear classifier 
–  same functional form (linear) but optimize the LCL 

log Pr(y|x), not the joint likelihood log Pr(x, y) 
•  Do we need anything else? 

 
Questions: 
•  Why optimize LCL if we want to reduce errors on 

the test data? 
•  Assume there is a linear classifier: does that always 

make learning “easy”? can we quantify how “easy” 
a learning problem is? 



Another analytic approach   
•  Start with a simple learner and analyze what it 

does 
•  Goals: 

– capture geometric intuitions about what 
makes learning hard or easy 

– analyze performance worst-case settings 
– analyze existing plausible learning methods 

•  e.g. in studying human learning, biology, … 
•  This particular analysis is simple enough to 

give some insight into “margin” learning 
•  See: Freund & Schapire, 1998 



MISTAKE BOUNDS FOR  THE 
PERCEPTRON 



The perceptron 

A B 
instance xi Compute: yi = sign(vk . xi ) 

^ 

   yi 
^ 

   yi 

If mistake: vk+1 = vk  +  yi xi  

[Rosenblatt, 1957] 

• On-line setting: 
•  Adversary A provides student B with an instance x 
•  Student B predicts a class (+1, -1) according to a simple 
linear classifier: sign(vk . x) 
•   Adversary gives student the answer (+1,-1) for that 
instance   

• Will do a worst-case analysis of the mistakes made by the 
student over any sequence of instances from the adversary 

•  … that follow a few rules 



The perceptron 

A B 
instance xi Compute: yi = sign(vk . xi ) 

^ 

   yi 
^ 

   yi 

If mistake: vk+1 = vk  +  yi xi  

[Rosenblatt, 1957] 

v 

-v 

•  Recall dot product definition: 

  
• and intuition: 

•  project vector x onto vector v 
•  dot product is the distance from the 
origin of that projection 

•  So why does this algorithm make sense? 

€ 

x • v = xivi
i
∑

x 

cases: actual  = +1/-1, predicted = +1/-1 



The perceptron 

A B 
instance xi Compute: yi = sign(vk . xi ) 

^ 

   yi 
^ 

   yi 

If mistake: vk+1 = vk  +  yi xi  

[Rosenblatt, 1957] 

Logistic update:  vk+1 = vk  +  ε(yi -pi )xi  

 ε=1    è              = vk  + yi  xi  - pi  xi  

cases: actual  = 1/0, predicted = 1/0 



The perceptron 

A B 
instance xi Compute: yi = sign(vk . xi ) 

^ 

   yi 
^ 

   yi 

If mistake: vk+1 = vk  +  yi xi  

[Rosenblatt, 1957] 

u 

-u 

2γ 

•  Amazingly simple algorithm 
•  Quite effective 
•  Very easy to understand if you do a little 
linear algebra 

• Two rules:  
•  Examples are not too “big” 
•  There is a “good” answer -- i.e. a 
line that clearly separates the pos/
neg examples  





The perceptron 

A B 
instance xi Compute: yi = sign(vk . xi ) 

^ 

   yi 
^ 

   yi 

If mistake: vk+1 = vk  +  yi xi  

[Rosenblatt, 1957] 

Rule 1: Radius R: A must 
provide examples “near the 
origin” 
 
 
Rule 2: Margin γ: A must 
provide examples that can be 
separated with some vector u 
with margin γ>0 and unit 
norm 

∀xi  given by A, xi
2

2
≤ R2

∃u :∀xi  given by A, (u•x
i
)yi > γ

and u
2
=1

x
2
= (x1

2 +...+ xn
2 )

“margin” 



∀xi  given by A, xi 2
≤ R

∃u :∀xi  given by A, (u•x
i
)yi > γ

and u
2
=1



∀xi  given by A, xi 2
≤ R

∃u :∀xi  given by A, (u•x
i
)yi > γ

and u
2
=1

Comments: 
1.  Scale shouldn’t matter to 

“how hard learning is” 
2.  Wide margin (compared to 

R) means that we can afford 
larger errors in our 
estimation of u 

 



The perceptron: after one positive xi 

A B 
instance xi Compute: yi = sign(vk . xi ) 

^ 

   yi 
^ 

   yi 

If mistake: vk+1 = vk  +  yi xi  

What region 
would cause a 
mistake on a  
positive example? 



The perceptron: after two positive xi 

A B 
instance xi Compute: yi = sign(vk . xi ) 

^ 

   yi 
^ 

   yi 

If mistake: vk+1 = vk  +  yi xi  



The perceptron: after one positive xi 

A B 
instance xi Compute: yi = sign(vk . xi ) 

^ 

   yi 
^ 

   yi 

If mistake: vk+1 = vk  +  yi xi  

What region 
would cause a 
mistake on a  
negative 
example? 



The perceptron: after one pos + one neg xi 

A B 
instance xi Compute: yi = sign(vk . xi ) 

^ 

   yi 
^ 

   yi 

If mistake: vk+1 = vk  +  yi xi  



u 

-u 

2γ 

u 

-u 

2γ 

v1 

+x2 

v2 

+x1 v1 

-x2 

v2 

The guess v2 after the two positive 
examples: v2=v1+x2 

The guess v2 after the one positive and one 
negative example: v2=v1-x2 
 

>γ 

Lemma 1: the dot product 
between vk and u increases with 
each mistake by at last γ: i.e.,  

∀k : vk ⋅u ≥ kγ



u 

-u 

2γ 

u 

-u 

2γ 

v1 

+x2 

v2 

+x1 v1 

-x2 

v2 

The guess v2 after the two positive 
examples: v2=v1+x2 

The guess v2 after the one positive and one 
negative example: v2=v1-x2 
 

>γ 

vk+1 ⋅u = (vk + yixi ) ⋅u
vk+1 ⋅u = (vk ⋅u)+ yi (xi ⋅u)
vk+1 ⋅u ≥ (vk ⋅u)+γ

so ...
vk ⋅u ≥ kγ

Lemma 1: the dot product 
between vk and u increases with 
each mistake by at last γ: i.e.,  

∀k : vk ⋅u ≥ kγ ∃u :∀xi  given by A, (u•x
i
)yi > γ



Lemma 1: the dot product 
between vk and u increases with 
each mistake by at last γ: i.e.,  

∀k : vk ⋅u ≥ kγ

Some people see 
this more readily 
when u is “up” 

Another observation: 
increasing the dot 
product of vk with u 
(going “up”) doesn’t 
mean we’re converging 
to u. 



u 

-u 

2γ 

u 

-u 

2γ 

v1 

+x2 

v2 

+x1 v1 

-x2 

v2 

(3a) The guess v2 after the two 
positive examples: v2=v1+x2 

(3b) The guess v2 after the one positive and 
one negative example: v2=v1-x2 
 

vk+1 ⋅vk+1 = (vk + yixi ) ⋅ (vk + yixi )

vk+1 2

2
= vk 2

2
+ 2yixi + yi

2 xi 2

2

vk+1 2

2
≤ vk 2

2
+1 xi 2

2

vk+1 2

2
≤ vk 2

2
+ R2

so ...

vk 2

2
≤ kR2

Lemma 2: The norm of vk  grows 
slowly with each mistake, i.e.,  

∀k, vk 2

2
≤ kR2

∀xi  given by A, xi
2

2
≤ R2



Lemma 1: the dot product 
between vk and u increases with 
each mistake by at last γ: i.e.,  

∀k : vk ⋅u ≥ kγ

Lemma 2: The norm of vk  grows 
slowly with each mistake, i.e.,  

∀k, vk 2

2
≤ kR2

kγ ≤ vk ⋅u  and  vk 2

2
≤ kR2

k2γ 2 ≤ vk ⋅u 2

2   and  vk 2

2
≤ kR2

k2γ 2 ≤ vk 2

2
⋅ u

2

2   and  vk 2

2
≤ kR2

k2γ 2 ≤ vk 2

2   and  vk 2

2
≤ kR2

k2γ 2 ≤ vk 2

2
≤ kR2

k2γ 2 ≤ kR2

k < R
γ

#

$
%

&

'
(

2

...and u
2
=1

Remember that  v
2

2
= v ⋅v



Summary 
•  We have shown that  

–  If : exists a u with unit norm that has margin γ on examples in the seq 
(x1,y1),(x2,y2),…. 

–  Then : the perceptron algorithm makes < R2/ γ2 mistakes on the sequence 
(where R >= ||xi||) 

–  Independent of dimension of the data or classifier (!) 

•  This is surprising in several ways: 
–  You can bound errors in an adversarial setting 

•  General case: you bound “regret”, i.e., how well you do on-line vs the 
best fixed classifier 

–  We’re making claims about generalization after a few examples  
•  Statistical efficiency 

–  We don’t care about how many features there are, only how “big” 
the example is. 

•  Important special case: for each example, only a few features have non-
zero values (sparse examples) 



Summary 
•  We have shown that  

–  If : exists a u with unit norm that has margin γ on examples in 
the seq (x1,y1),(x2,y2),…. 

–  Then : the perceptron algorithm makes < R2/ γ2 mistakes on the 
sequence (where R >= ||xi||) 

–  Independent of dimension of the data or classifier (!) 

•  We don’t know if this algorithm could be better 
–  There are many variants that rely on similar analysis (ROMMA, 

Passive-Aggressive, MIRA, …) 

•  We don’t know what happens if the data’s not separable 
–  Unless I explain the “Δ trick” to you 

•  We don’t know what classifier to use “after” training 



The Δ Trick 
•  The proof assumes the data is separable by a 

wide margin 
•  We can make that true by adding an “id” feature 

to each example 
– sort of like we added a constant feature 
 

x1 = (x1
1, x2

1,..., xm
1 )→ (x1

1, x2
1,..., xm

1 ,  Δ, 0,...., 0)
x2 = (x1

2, x2
2,..., xm

2 )→ (x1
2, x2

2,..., xm
2 , 0,Δ,...., 0)

...
xn = (x1

n, x2
n,..., xm

n )→ (x1
n, x2

n,..., xm
n , 0, 0,...,Δ)

n new features 



The Δ Trick 
•  Replace xi with x’i so X becomes [X | I Δ] 
•  Replace R2 in our bounds with R2 + Δ2 

•  Let di = max(0, γ - yi xi u)  
•  Let u’ = (u1,…,un, y1d1/Δ, … ymdm/Δ) * 1/Z 

– So Z=sqrt(1 + D2/ Δ2), for D=sqrt(d1
2+…+dm

2) 
–  Now [X|IΔ] is separable by u’ with margin γ 

•  Mistake bound is (R2 + Δ2)Z2 / γ2  

•  Let Δ = sqrt(RD) è k <= ((R + D)/ γ)2 

•  Conclusion: a little noise is ok 



THE VOTED PERCEPTRON 



On-line to batch learning 

Which vi should we use? 

Maybe the last one? 

Here it’s never gotten any 
test cases right! 
(Experimentally, the classifiers 
move around a lot.) 

Maybe the “best one”? 

But we “improved” it with 
later mistakes… 



On-line to batch learning 

1.  Pick a vk at random 
according to mk/m, the 
fraction of examples it 
was used for. 

2.  Predict using the vk you 
just picked. 



On-line to batch learning 

1.  Disadvantage: we need 
to keep around every v 
used in learning.  This 
can be expensive. 

2.  Better: use a 
deterministic 
approximation to this: a 
sum of the vk’s, weighted 
by mk/m 



From Freund & Schapire, 1998: 
Classifying digits with VP 



Breaking it down: the perceptron 

•  Let v0  be an all-zeros vector 
•  Let k=0 
•  For each “epoch” t=1,2,….T: 

–  Randomly shuffle the examples   -- voting proof wants them i.i.d. 
•  For each example xi,yi : 

–  If vk . xi yi < 0, then       -- a mistake was made 
»  vk+1 ß vk  +  xi yi      -- update the perceptron 
»  k ßk+1 



Breaking it down: the perceptron 

•  Let v  be an all-zeros vector 
•  For each “epoch” t=1,2,….T: 

–  Randomly shuffle the examples   -- voting proof wants them i.i.d. 
•  For each example xi,yi : 

–  If v . xi yi < 0, then   -- a mistake was made 
»  v ß v  +  xi yi      -- update the perceptron 



Breaking it down: the voted 
perceptron 
•  Let vo  be an all-zeros vector; m0 = 0; k=0; m=0 
•  Let a be an all-zeros vector 
•  For each “epoch” t=1,2,….T: 

–  Randomly shuffle the examples   -- voting proof wants them i.i.d. 
•  For each example xi,yi : 

– mßm+1 
–  If vk . xi yi < 0, then   -- a mistake was made 

»  a ß a + mk   vk        -- update the average 
»  vk+1 ß vk + xi yi      -- update the perceptron 
» mk+1 ß 1       -- initialize the weight of k-th perceptron 
»  k ß k + 1               

–  Else: mk ß mk +1      -- upweight the k-th classifier 

•  a = a + mk   vk 
•  a = a / m 



ASIDE: SPARSE VECTORS 



Voted perceptron and text 

•  One important case: sparse examples, where 
example example has only a few non-zero 
features. 

•  Example: x=(x1,x2,…,xn) represents an d-word 
document 
– xi = number of occurrences of word i 

•  words #1: aaliyeh #2:aardvark … #46737: zymurgy  

– Usually s << m 
– 2-Norm of x < d … so R2 < d2 

–    ….Most of the xi’s are zero 





Voted perceptron and sparse 
vectors 
•  A (Java) vector is not a good representation for this: 

•  Better: record only the indices and contents of the non-
zero values 

•  This is a sparse vector 
–  same API, different implementation 

•  Matlab implements sparse vectors and matrices 
–  they will be much faster when your data is sparse. 

•  Another kind of sparsity we care about: sparse classifiers 
(most  weights are zero) 

1 2 3 4 5 6 7 8 9 … 

0 0 0 0 1 0 0 0  3 … 

(5,1),(9,3),… 
 


