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Aside: Logistic Regression:
Notational Differences



Ziv’s notation

Logistic Regression

Defining a new
function, g

\

p(y=0|X;0)=g(X;w)=

1+e" ¥
ewTX
p(y=11X;0)=1-g(X;w) =——
l+e
Data likelihood
\

L(y | Xiw) = H(l—g(Xi; W))yi g(Xi; w) )

LL(y|X,W) = i}:l yIWTX’ _ln(l+ewTXi)

]
|
Logistic Regression Model
| X /
/ear Probability Model

log data likelihood




Logistic regression via gradient
ascent: MLE for log likelihood

William’s notation

1. Chose A 9 g P(Y =y|X =x,w) = (y — p)a’

ow’

2. Start with a guess for w
3. For all j set W e/ +SZilXij{yi (=g (X;w)}
4. If no improvement for

LL(y| X;w) =Yy, In(1- g(X,;w)+(1- ) In g(X,;w)

stop. Otherwise go to step 3



William’s notation

Logistic regression

1

ity =1
1 +exp(-x;" w)
P(y, Ix;,w) =1 | g
- ify, =0
I +exp(—x; w) J
A o
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Pr(pos|x1,x2) = Sigmoid(ax1+bx2+c)
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Aside: Logistic Regression
Stochastic vs “Batch”
Gradient



Stochastic gradients (SGD) for
logistic regression

1. P(y|x)=logistic(x . w)
2. Log conditional likelihood:  LCL (W) = ElogP(yi Ix., W)

3. Differentiate the LCL function and use
gradient descent to minimize

— Start with w
— For t=1,.., T - until convergence
e For each example x,y in D:
Wi =W +AL (W)

where A is small

0.5 : N : -
-1000  -500 0 500 1000 1500 2000
01!

minimum, but each step is cheaper :




Breaking it down: SGD for logistic
regression

=

P(y | x)=logistic(x . w)
2. Define a function

LCL, (W)= Elog P(y. 1x,,w)

3. Differentiate the function and use
gradient descent

— Start with w,
— For t=1,.., T - until convergence
e For each example x,y in D:
D, = (1+6Xp(—X° W))_l
* W, =w +AL (w) =w, + A(y — p,)X
where A is small
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Aside: Logistic Regression
and Regularization



Non-stochastic gradient descent

ow?

* In batch gradient descent, average the gradient
over all the examples D={(x,y,)...,(x,, ¥}

0 1

5o 08 P(Dlw) = — Ei:(y pi)]
/1 N\ /1 I
ol Z Yi —\— Pi

" z':a:?.':l " izl =1

\_ : N /
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Non-stochastic gradient descent

 This can be interpreted as a difference between the
expected value of y | x¥/=1 in the data and the

expected value of v | x¥'=1 as predicted by the model

* Gradient ascent tries to make those equal

0 1 i
S log P(D|w) = - Z(yz — p;)xl =

1

—| Z Yi —|— Pi
z:c _1 pas =1

\ o)
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This LCL function “overfits”

 This can be interpreted as a difference between the
expected value of y | x¥/=1 in the data and the

expected value of v | x¥'=1 as predicted by the model

* Gradient ascent tries to make those equal

0 1
mlw P(D\w) ==Y (yi — pi): ZZ— Z Yi — — Z i

n
L (i —l i) _l

* That’s impossible for some w' !

* e.g,if W =1 only in positive examples, the
gradient is always positive
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Regularization

Ziv’s notation

« For example, lets assume that w comes from a Gaussian
distribution with mean 0 and variance 2 (where o2 is a user defined
parameter): wi~N(0, c?)

* Inthat case we have a prior on the parameters and so:

p(y=10|X)x p(y=1|X;0)p(0)

* Here we use a Gaussian model for the prior. Assuming mean
« Thus, the log likelihood changes to : of 0 and

( ,-)/ removing terms
N T WT/\,- w:

LL(y;w| X)=) yw X.—In(l+e" *')— that are not
i) Z'ﬂyl ind : Z,: 20° dependent on w




Regularization

Ziv’s notation

p(y=10|X) < p(y=1|X;0)p(0)

* Here we use a Gaussian model for the prior. Assuming mean
« Thus, the log likelihood changes to : OfQ and
(w )2/ removing terms
N T WTX- :
LL(y;w| X)=) yw X. —In(l1+e" *')— that are not
3wl X) Z'=] Y : ( ) Z,: 20° dependent on w

If we differentiate to get the new
gradient, we get the old MLE gradient

plus a new term:

: : N ; Wj

w Wi +e) X/ {y—-(-g(X;w)}-¢—
The variance of
Also known as the MAP our prior model

estimate



Naive Bayes is also linear



Naive Bayes

* Given a new instance with X;=x; compute the following for
each possible value yof Y

=argmax, P(X,=x; Y =y)* . *P(X, =x, 1Y =y)PY =y,)

=argmax, HP(Xi =X, Y=y )PY =y,)

= argmax, E; logq(i, j..k)+log p(k)

= Sign

(El logq(i, ji,pos) +log p(pOS)) - (21 logq(i, j;,neg) +log p(neg)]

for two classes y,;=pos, y,=neg



For two classes Naive
Bayes is linear
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Predict “pos” on (x1,x2) iff
ax1l +bx2 +c>0

= sign(ax1 + bx2 + c)
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LOGISTIC REGRESSION AND LINEAR
CLASSIFIERS



Linear classifiers we’ve seen so far

* Naive Bayes:

— a generative linear classifier

— can show the decision boundary is linear
* Logistic regression:

— a discriminative linear classifier

— same functional form (linear) but optimize the LCL
log Pr(y | x), not the joint likelihood log Pr(x, y)

* Do we need anything else?

Questions:

* Why optimize LCL if we want to reduce errors on
the test data?

* Assume there is a linear classifier: does that always
make learning “easy”? can we quantify how “easy”
a learning problem is?



Another analytic approach

. (Sitart with a simple learner and analyze what it
oes

e Goals:

— capture geometric intuitions about what
makes learning hard or easy

—analyze performance worst-case settings

—analyze existing plausible learning methods
* e.g. in studying human learning, biology, ...

 This particular analysis is simple enough to
give some insight into “margin” learning

* See: Freund & Schapire, 1998



MISTAKE BOUNDS FOR THE
PERCEPTRON



The perceptron

[Rosenblatt, 1957]

A
instance X; ‘ Compute: y; = sign(vy . X; )

A B

A If mistake: v,,., =V, + Y X
y.

/

*On-line setting:
» Adversary A provides student B with an instance x
* Student B predicts a class (+1, -1) according to a simple
linear classifier: sign(v, . x)
» Adversary gives student the answer (+1,-1) for that
instance
*Will do a worst-case analysis of the mistakes made by the
student over any sequence of instances from the adversary
s ... that follow a few rules



The perceptron

[Rosenblatt, 1957]

A
instance X, ‘ Compute: y; = sign(v, . X; )

A B

A If mistake: v,,., =V, + Y X
y.

/

* Recall dot product definition:

i

v

eand intuition; < X
* project vector x onto vector v
* dot product is the distance from the
origin of that projection

57V

* So why does this algorithm make sense?
cases: actual =+1/-1, predicted = +1/-1 M




The perceptron

[Rosenblatt, 1957]

A
instance X, ‘ Compute: y; = sign(v, . X; )

A If mistake: v,,., =V, + Y X
y.

/

Logistic update: v,,,=v, + &(y;-p; )X;
e=1 > =V YV X - P X

cases: actual =1/0, predicted =1/0



The perceptron

instance X

* Amazingly simple algorithm
* Quite effective

* Very easy to understand if you do a little
linear algebra

[Rosenblatt, 1957]

A
Compute: y; = sign(v, . X; )

If mistake: v,,., =V, + Y X

&
w

*Two rules:
* Examples are not too “big”
* There is a “good” answer -- i.e. a
line that clearly separates the pos/
neg examples

v



dimenzion 3




The perceptron

A
instance X, ‘ Compute: y; = sign(v, . X; )

A If mistake: v,,., =V, + Y X
y.

/

[Rosenblatt, 1957]

Rule 1: Radius R: A must
provide examples “near the
origin”

2
< R’
2

Vx. given by A,

Ix], = (2 + .ot x2)

X,

Rule 2: Margin ¥ : A must _
provide examples that can be du:Vx, givenby A, (u® X )y, >y
separated with some vector u

with margin ¥ >0 and unit and H“Hz =1 Y /‘ .,
margin
norm



>

Vx, given by A,

XlH <R
2

Ju:Vx, givenby A, (uex )y, >y

and [ul, =1



Vx, given by A,

XlH <R
2

Comments:

1. Scale shouldn’t matter to
“how hard learning is”

2. Wide margin (compared to

R) means that we can afford

larger errors in our
estimation of u

Ju:Vx, givenby A, (uex )y, >y

and [ul, =1

v



The perceptron: after one positive X

A

instance X Compute: y; = sign(v, . X;)

A B

A If mistake: v,,, =V, + Yy, X;
Yi

/

What region

would cause a
mistake on a <
positive example?




The perceptron: after two positive x.

A
instance X; ‘ Compute: y; = sign(v, . X; )

A If mistake: v,,, =V, + Yy, X;




The perceptron: after one positive X

A

instance X Compute: y; = sign(v, . X;)

A B

A If mistake: v,,, =V, + Yy, X;
\ yl/ I |
Yi

/

What region

would cause a
mistake on a <
negative

example?




The perceptron: after one pos + one neg Xx;

A

instance X Compute: y; = sign(v, . X;)

A B

A If mistake: v,,, =V, + Yy, X;
y.

/




The guess v, after the two positive The guess v, after the one positive and one

examples: v,=v,+x, negative example: v,=v,-X,

A

Lemma 1: the dot product
between v, and u increases with
each mistake by at last 7 :1i.e,

Vk:v, -u=ky

v



The guess v, after the two positive
examples: v,=v,+x,

The guess v, after the one positive and one
negative example: v,=v,-X,

A

Lemma 1: the dot product
between v, and u increases with
each mistake by at last 7 :1i.e,

Vk:v, -u=ky

A k+1
Vk+1

\ k+1

v

‘u=(vV, +yX.)'u

‘u=(v, w)+y(x;,-u)

u=(v,-u)+y

SO ...

‘u =Ky

Ju:Vx, given by A, (u*x )y, >y



Some people see
this more readily
when u is “up”

Lemma 1: the dot product Another observation:

between v, and u increases with increasing the dot

each mistake by at last 7 :1i.e, product of v, with u
Vi vV, uz ky (going “up”) doesn’t

mean we're converging
to u.



(38) The guess v, after the two (3b) The guess v, after the one positive and
positive examples: v,=v,+X, one negative example: v,=v,-X,

A
v
A

A,
v

Vir " Vi
Lemma 2: The norm of v, grows 2
slowly with each mistake, i.e., Vst |l
2 2 2
2
Vk+1 o)

2 2
Xl” <R
2

2
vilL

Vx. given by A,

v

v %,

= (V4 V%) (Ve + X))
=|v, z+2in,- +y?||Xz-||§
<Vl + 1)

<|v, 2+R2

SO ..

< kR*



Lemma 1: the dot product
between v, and u increases with
each mistake by at last 7 :1i.e,,

Vk:v, -u=ky Vk,||vk||j < kR’

Lemma 2: The norm of v grows
slowly with each mistake, i.e.,

ky=v,-u and Hkaz < kR?  Remember that |v[] =v-v
Ky <|v, qu and Hkaz < kR?

2 9 2 2 2 2
k7y SHVkuz Luuz and Hvkuz = kR ..and |uf, =1

2

k*y* <|v.| and Hvkui < kR’
k’y® < Hkaz < kR’

k’y® < kR’

3]



Summary

« We have shown that

— If : exists a u with unit norm that has margin y on examples in the seq

(x1’Y1),(X2,y2),....
— Then : the perceptron algorithm makes < R?/ y? mistakes on the sequence
(where R >=||x||)

— Independent of dimension of the data or classifier (!)

* This is surprising in several ways:

— You can bound errors in an adversarial setting

» General case: you bound “regret”, i.e., how well you do on-line vs the
best fixed classifier

— We’re making claims about generalization after a few examples
 Statistical efficiency
— We don’t care about how many features there are, only how “big”
the example is.

» Important special case: for each example, only a few features have non-
zero values (sparse examples)



Summary

We have shown that

— If : exists a u with unit norm that has margin y on examples in

the seq (x4,y¢),(X5,Y5),---.
— Then : the perceptron algorithm makes < R?/ y2 mistakes on the
sequence (where R >= ||x||)

— Independent of dimension of the data or classifier (!)

We don’t know if this algorithm could be better

— There are many variants that rely on similar analysis (ROMMA,
Passive-Aggressive, MIRA, ...)

We don’t know what happens if the data’s not separable
— Unless | explain the “Atrick” to you
We don’t know what classifier to use “after” training



The A Trick

* The proof assumes the data is separable by a
wide margin

* We can make that true by adding an “id” feature
to each example

— sort of like we added a constant feature

n new features
1 1 1 1 1 1 1
X =(X,X,.,X, ) = (X, %,,....,%, , A,0,....,0)
2 p) 2 2 2 2 2
X =(X,%X),...,X, ) = (X, ,%X5,....,x, ,0,A,....,0)

n

X" =(X,X) 00X, ) = (X, X, ,..., X, ,0,0,...,A)

b m?



The A Trick

* Replace x; with x’. so X becomes [X | | A]
« Replace R? in our bounds with R? + A?

* Letd. = max(0, y-vy, x u)

e Letu’ = (uy,...,u,, y,d,/A, ...y, d /A)*1/Z

— So Z=sqrt(1 + D% A?), for D=sqrt(d,*+...+d_?)
— Now [X]IA] is separable by u’ with margin y

« Mistake bound is (R? + A%)Z?/ y?
e Let A =sqgrt(RD) = k <= ((R + D)/ y)?
» Conclusion: a little noise is ok



THE VOTED PERCEPTRON



On-line to batch learning

Imagine we run the on-line perceptron and see this result.

¢ guess input result

1 Vo x; X (a mistake)
2 Vi X V/ (correct!)
3 Vi X3 4

4 v xs X (a mistake)
D V2 X5 \/

6 V2 X6 \/

7 Vs X; 4/

3 V2 X3 X

) V3 X9 v

10 vy X190 X

Which v; should we use?
Maybe the /last one?

Here it's never gotten any

test cases right!
(Experimentally, the classifiers
move around a lot.)

Maybe the “best one™?

But we “improved” it with
later mistakes...



P(error in x)

> P(error on x|picked v;)P(picked v;)
k

;.

lm w1 %

mg m

k

Imagine we run the on-line perceptron and see this result.
¢ guess input result

1 Vo X, X (a mistake) 1. Pick a Vi at random

5 i | orrect!) acco_rdlng to m,/m, th_e
- Vi X2 v (correct! fraction of examples it
3 Vi X3 Vv was used for.

;l V1 Xs X (a mistake) 2. Predict using the v, you
o V2 X5 just picked.

6 Vo X6 \/

7 V2 X7 Vv

8 Vo Xg X

9 Va Xg \/

10 Va X10 X



P(error in x) > P(error on x|picked vy, ) P(picked vy)
k

;.

lm w1 %

mg m

k

Imagine we run the on-line perceptron and see this result.
¢ guess input result

1. Disadvantage: we need

1 Vo X; X (a mistake)

5 o ) to keep around every v

- Vi X2 \// (correct! used in learning. This

3 Vi X3 Vo can be expensive.

;L V1 X4 )x/ (a mistake) > Better: Use a

D V2 X5 \// deterministic

6 V2 X6 V approximation to this: a
7 Vo X~ V4 sum of the v,’s, weighted
8 Vs Xs X by m,/m

9 V3 X9 Vv

10 Va X10 X



From Freund & Schapire, 1998:
Classifying digits with VP

unnorm
unnorm

unnorm
vote -

20 + random
last
avg

...........

155 I Mees ™~ A

- »
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- ——t ey

e,

el
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o L TTT T
= S T

Test Erorr

0.1 1 10
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Breaking it down: the perceptron

* Letv, be an all-zeros vector
* Letk=0
* For each “epoch” t=1,2,....T:
— Randomly shuffle the examples -- voting proof wants them i.i.d.
 For each example x,,y; :
—If v, .x,y,<0,then  --amistake was made
» Vi, € Vi + Xy, - update the perceptron
» k €k+1



Breaking it down: the perceptron

* Letv be an all-zeros vector
* For each “epoch” t=1,2,....T:
— Randomly shuffle the examples -- voting proof wants them i.i.d.
 For each example x,,y; :
—If v.x;y; <0, then --a mistake was made
» v& Vv + Xy, --updatethe perceptron



Breaking it down: the voted
perceptron

* Letv, be an all-zeros vector; m, = 0; k=0; m=0
 Leta be an all-zeros vector
* For each “epoch” t=1,2,....T:
— Randomly shuffle the examples -- voting proof wants them i.i.d.
 For each example x,,y; :

— m<&m+l
—If v, . x;y; <0, then --a mistake was made
»a<€a+m v, --update the average
» Vi € Vo X;y; -- update the perceptron
»my 4, €1 -- initialize the weight of k-th perceptron
» k€ k+1

— Else: my € my +1  -- upweight the k-th classifier

* a=at+tm vy
* a=a/m



ASIDE: SPARSE VECTORS



Voted perceptron and text

* One important case: sparse examples, where
example example has only a few non-zero
features.

* Example: x=(x,,x,,...,x,) represents an d-word
document

— x; = number of occurrences of word i
« words #1: aaliyeh #2:aardvark ... #46737: zymurgy

— Usually s <<m
—2-Normof x<d ... so R? < d?

— ....Most of the x;'s are zero
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Voted perceptron and sparse
vectors

* A (Java) vector is not a good representation for this:

1 2 3 4 5 6 7 8 9
0 0 0 0 1 0 0 0 3

* Better: record only the indices and contents of the non-
zero values

(5,1),(9,3),...

 This is a sparse vector
— same AP, different implementation
* Matlab implements sparse vectors and matrices
— they will be much faster when your data is sparse.

* Another kind of sparsity we care about: sparse classifiers
(most weights are zero)



