
The Perceptron

William Cohen
10-601

Aside: Logistic Regression:
Notational Differences

Logistic Regression
Ziv’s notation

Data likelihood

log data likelihood

Logistic regression via gradient
ascent: MLE for log likelihood

William’s notation

Logistic regression

€

P(yi | x i,w) ≡

1
1+ exp(−x i ⋅ w)

if yi =1

1−
1

1+ exp(−x i ⋅ w)
%

&
'

(

)
* if yi = 0

+

,
- -

.
-
-

/

0
- -

1
-
-

William’s notation

€

logistic(u) ≡ 1
1+ e−u

Predict “pos” on (x1,x2) iff
ax1 + bx2 + c >0

= sign(ax1 + bx2 + c)

Logistic
regression
as “soft”
linear
classifier

Pr(pos|x1,x2) = Sigmoid(ax1+bx2+c)

Aside: Logistic Regression
Stochastic vs “Batch”

Gradient

Stochastic gradients (SGD) for
logistic regression

1.  P(y|x)=logis*c(x	
 .	
 w)	

2.  Log	
 condi*onal	
 likelihood:	

3.  Differen*ate	
 the	
 LCL	
 func*on	
 and	
 use	

gradient	
 descent	
 to	
 minimize	

–  	
 Start	
 with	
 w0	

–  For	
 t=1,…,T	
 	
 	
 	
 	
 -­‐	
 un%l	
 convergence	
 	

•  For	
 each	
 example	
 x,y	
 in	
 D:	

•  	
 	
 wt+1	
 =	
 wt	
 +	
 λ	
 Lx,y(w	
 t)	

	
 where	
 λ	
 is	
 small	

LCLD (w) ≡ logP(yi | xi,w)
i
∑

More steps, noisier path toward the
minimum, but each step is cheaper 9

Breaking it down: SGD for logistic
regression

1.  P(y|x)=logis*c(x	
 .	
 w)	

2.  Define	
 a	
 func*on	

3.  Differen*ate	
 the	
 func*on	
 and	
 use	

gradient	
 descent	

–  	
 Start	
 with	
 w0	

–  For	
 t=1,…,T	
 	
 	
 	
 	
 -­‐	
 un%l	
 convergence	
 	

•  For	
 each	
 example	
 x,y	
 in	
 D:	

•  	
 	
 wt+1	
 =	
 wt	
 +	
 λ	
 Lx,y(w	
 t)	

	
 where	
 λ	
 is	
 small	

LCLD (w) ≡ logP(yi | xi,w)
i
∑

€

= wt + λ(y − pi)x

€

pi = 1+ exp(−x⋅ w)()−1

10

Aside: Logistic Regression
and Regularization

Non-stochastic gradient descent

•  In batch gradient descent, average the gradient
over all the examples D={(x1,y1)…,(xn , yn)}

12

Non-stochastic gradient descent

•  This can be interpreted as a difference between the
expected value of y|xj=1 in the data and the
expected value of y|xj=1 as predicted by the model

•  Gradient ascent tries to make those equal

13

This LCL function “overfits”

•  This can be interpreted as a difference between the
expected value of y|xj=1 in the data and the
expected value of y|xj=1 as predicted by the model

•  Gradient ascent tries to make those equal

•  That’s impossible for some wj !

•  e.g., if wj =1 only in positive examples, the
gradient is always positive

14

Regularization
Ziv’s notation

Regularization

If we differentiate to get the new
gradient, we get the old MLE gradient
plus a new term:

Ziv’s notation

Naïve Bayes is also linear

Naïve Bayes
•  Given a new instance with Xi=xij compute the following for

each possible value y of Y

€

= argmaxyk P(X1 = x j,1 |Y = y) * ...*P(Xn = x j,n |Y = yk)P(Y = yk)

€

= argmaxyk P(Xi = x ji |Y = yk)
i
∏ P(Y = yk)

= argmaxk logq(i, ji,k)+ log p(k)i=1

n
∑

= sign logq(i, ji, pos)+ log p(pos)i=1

n
∑()− logq(i, ji, neg)+ log p(negi=1

n
∑()#

$%
&
'(

for two classes y1=pos, y2=neg

For two classes Naïve
Bayes is linear

More generally
the boundary for a
linear classifier is a

hyperplane

Predict “pos” on (x1,x2) iff
ax1 + bx2 + c >0

= sign(ax1 + bx2 + c)

LOGISTIC REGRESSION AND LINEAR
CLASSIFIERS

Linear classifiers we’ve seen so far
•  Naïve Bayes:

–  a generative linear classifier
–  can show the decision boundary is linear

•  Logistic regression:
–  a discriminative linear classifier
–  same functional form (linear) but optimize the LCL

log Pr(y|x), not the joint likelihood log Pr(x, y)
•  Do we need anything else?

Questions:
•  Why optimize LCL if we want to reduce errors on

the test data?
•  Assume there is a linear classifier: does that always

make learning “easy”? can we quantify how “easy”
a learning problem is?

Another analytic approach
•  Start with a simple learner and analyze what it

does
•  Goals:

– capture geometric intuitions about what
makes learning hard or easy

– analyze performance worst-case settings
– analyze existing plausible learning methods

•  e.g. in studying human learning, biology, …
•  This particular analysis is simple enough to

give some insight into “margin” learning
•  See: Freund & Schapire, 1998

MISTAKE BOUNDS FOR THE
PERCEPTRON

The perceptron

A B
instance xi Compute: yi = sign(vk . xi)

^

 yi
^

 yi

If mistake: vk+1 = vk + yi xi

[Rosenblatt, 1957]

• On-line setting:
•  Adversary A provides student B with an instance x
•  Student B predicts a class (+1, -1) according to a simple
linear classifier: sign(vk . x)
•  Adversary gives student the answer (+1,-1) for that
instance

• Will do a worst-case analysis of the mistakes made by the
student over any sequence of instances from the adversary

•  … that follow a few rules

The perceptron

A B
instance xi Compute: yi = sign(vk . xi)

^

 yi
^

 yi

If mistake: vk+1 = vk + yi xi

[Rosenblatt, 1957]

v

-v

•  Recall dot product definition:

• and intuition:

•  project vector x onto vector v
•  dot product is the distance from the
origin of that projection

•  So why does this algorithm make sense?

€

x • v = xivi
i
∑

x

cases: actual = +1/-1, predicted = +1/-1

The perceptron

A B
instance xi Compute: yi = sign(vk . xi)

^

 yi
^

 yi

If mistake: vk+1 = vk + yi xi

[Rosenblatt, 1957]

Logistic update: vk+1 = vk + ε(yi -pi)xi

 ε=1 è = vk + yi xi - pi xi

cases: actual = 1/0, predicted = 1/0

The perceptron

A B
instance xi Compute: yi = sign(vk . xi)

^

 yi
^

 yi

If mistake: vk+1 = vk + yi xi

[Rosenblatt, 1957]

u

-u

2γ

•  Amazingly simple algorithm
•  Quite effective
•  Very easy to understand if you do a little
linear algebra

• Two rules:
•  Examples are not too “big”
•  There is a “good” answer -- i.e. a
line that clearly separates the pos/
neg examples

The perceptron

A B
instance xi Compute: yi = sign(vk . xi)

^

 yi
^

 yi

If mistake: vk+1 = vk + yi xi

[Rosenblatt, 1957]

Rule 1: Radius R: A must
provide examples “near the
origin”

Rule 2: Margin γ: A must
provide examples that can be
separated with some vector u
with margin γ>0 and unit
norm

∀xi given by A, xi
2

2
≤ R2

∃u :∀xi given by A, (u•x
i
)yi > γ

and u
2
=1

x
2
= (x1

2 +...+ xn
2)

“margin”

∀xi given by A, xi 2
≤ R

∃u :∀xi given by A, (u•x
i
)yi > γ

and u
2
=1

∀xi given by A, xi 2
≤ R

∃u :∀xi given by A, (u•x
i
)yi > γ

and u
2
=1

Comments:
1.  Scale shouldn’t matter to

“how hard learning is”
2.  Wide margin (compared to

R) means that we can afford
larger errors in our
estimation of u

The perceptron: after one positive xi

A B
instance xi Compute: yi = sign(vk . xi)

^

 yi
^

 yi

If mistake: vk+1 = vk + yi xi

What region
would cause a
mistake on a
positive example?

The perceptron: after two positive xi

A B
instance xi Compute: yi = sign(vk . xi)

^

 yi
^

 yi

If mistake: vk+1 = vk + yi xi

The perceptron: after one positive xi

A B
instance xi Compute: yi = sign(vk . xi)

^

 yi
^

 yi

If mistake: vk+1 = vk + yi xi

What region
would cause a
mistake on a
negative
example?

The perceptron: after one pos + one neg xi

A B
instance xi Compute: yi = sign(vk . xi)

^

 yi
^

 yi

If mistake: vk+1 = vk + yi xi

u

-u

2γ

u

-u

2γ

v1

+x2

v2

+x1 v1

-x2

v2

The guess v2 after the two positive
examples: v2=v1+x2

The guess v2 after the one positive and one
negative example: v2=v1-x2

>γ

Lemma 1: the dot product
between vk and u increases with
each mistake by at last γ: i.e.,

∀k : vk ⋅u ≥ kγ

u

-u

2γ

u

-u

2γ

v1

+x2

v2

+x1 v1

-x2

v2

The guess v2 after the two positive
examples: v2=v1+x2

The guess v2 after the one positive and one
negative example: v2=v1-x2

>γ

vk+1 ⋅u = (vk + yixi) ⋅u
vk+1 ⋅u = (vk ⋅u)+ yi (xi ⋅u)
vk+1 ⋅u ≥ (vk ⋅u)+γ

so ...
vk ⋅u ≥ kγ

Lemma 1: the dot product
between vk and u increases with
each mistake by at last γ: i.e.,

∀k : vk ⋅u ≥ kγ ∃u :∀xi given by A, (u•x
i
)yi > γ

Lemma 1: the dot product
between vk and u increases with
each mistake by at last γ: i.e.,

∀k : vk ⋅u ≥ kγ

Some people see
this more readily
when u is “up”

Another observation:
increasing the dot
product of vk with u
(going “up”) doesn’t
mean we’re converging
to u.

u

-u

2γ

u

-u

2γ

v1

+x2

v2

+x1 v1

-x2

v2

(3a) The guess v2 after the two
positive examples: v2=v1+x2

(3b) The guess v2 after the one positive and
one negative example: v2=v1-x2

vk+1 ⋅vk+1 = (vk + yixi) ⋅ (vk + yixi)

vk+1 2

2
= vk 2

2
+ 2yixi + yi

2 xi 2

2

vk+1 2

2
≤ vk 2

2
+1 xi 2

2

vk+1 2

2
≤ vk 2

2
+ R2

so ...

vk 2

2
≤ kR2

Lemma 2: The norm of vk grows
slowly with each mistake, i.e.,

∀k, vk 2

2
≤ kR2

∀xi given by A, xi
2

2
≤ R2

Lemma 1: the dot product
between vk and u increases with
each mistake by at last γ: i.e.,

∀k : vk ⋅u ≥ kγ

Lemma 2: The norm of vk grows
slowly with each mistake, i.e.,

∀k, vk 2

2
≤ kR2

kγ ≤ vk ⋅u and vk 2

2
≤ kR2

k2γ 2 ≤ vk ⋅u 2

2 and vk 2

2
≤ kR2

k2γ 2 ≤ vk 2

2
⋅ u

2

2 and vk 2

2
≤ kR2

k2γ 2 ≤ vk 2

2 and vk 2

2
≤ kR2

k2γ 2 ≤ vk 2

2
≤ kR2

k2γ 2 ≤ kR2

k < R
γ

#

$
%

&

'
(

2

...and u
2
=1

Remember that v
2

2
= v ⋅v

Summary
•  We have shown that

–  If : exists a u with unit norm that has margin γ on examples in the seq
(x1,y1),(x2,y2),….

–  Then : the perceptron algorithm makes < R2/ γ2 mistakes on the sequence
(where R >= ||xi||)

–  Independent of dimension of the data or classifier (!)

•  This is surprising in several ways:
–  You can bound errors in an adversarial setting

•  General case: you bound “regret”, i.e., how well you do on-line vs the
best fixed classifier

–  We’re making claims about generalization after a few examples
•  Statistical efficiency

–  We don’t care about how many features there are, only how “big”
the example is.

•  Important special case: for each example, only a few features have non-
zero values (sparse examples)

Summary
•  We have shown that

–  If : exists a u with unit norm that has margin γ on examples in
the seq (x1,y1),(x2,y2),….

–  Then : the perceptron algorithm makes < R2/ γ2 mistakes on the
sequence (where R >= ||xi||)

–  Independent of dimension of the data or classifier (!)

•  We don’t know if this algorithm could be better
–  There are many variants that rely on similar analysis (ROMMA,

Passive-Aggressive, MIRA, …)

•  We don’t know what happens if the data’s not separable
–  Unless I explain the “Δ trick” to you

•  We don’t know what classifier to use “after” training

The Δ Trick
•  The proof assumes the data is separable by a

wide margin
•  We can make that true by adding an “id” feature

to each example
– sort of like we added a constant feature

x1 = (x1
1, x2

1,..., xm
1)→ (x1

1, x2
1,..., xm

1 , Δ, 0,...., 0)
x2 = (x1

2, x2
2,..., xm

2)→ (x1
2, x2

2,..., xm
2 , 0,Δ,...., 0)

...
xn = (x1

n, x2
n,..., xm

n)→ (x1
n, x2

n,..., xm
n , 0, 0,...,Δ)

n new features

The Δ Trick
•  Replace xi with x’i so X becomes [X | I Δ]
•  Replace R2 in our bounds with R2 + Δ2

•  Let di = max(0, γ - yi xi u)
•  Let u’ = (u1,…,un, y1d1/Δ, … ymdm/Δ) * 1/Z

– So Z=sqrt(1 + D2/ Δ2), for D=sqrt(d1
2+…+dm

2)
–  Now [X|IΔ] is separable by u’ with margin γ

•  Mistake bound is (R2 + Δ2)Z2 / γ2

•  Let Δ = sqrt(RD) è k <= ((R + D)/ γ)2

•  Conclusion: a little noise is ok

THE VOTED PERCEPTRON

On-line to batch learning

Which vi should we use?

Maybe the last one?

Here it’s never gotten any
test cases right!
(Experimentally, the classifiers
move around a lot.)

Maybe the “best one”?

But we “improved” it with
later mistakes…

On-line to batch learning

1.  Pick a vk at random
according to mk/m, the
fraction of examples it
was used for.

2.  Predict using the vk you
just picked.

On-line to batch learning

1.  Disadvantage: we need
to keep around every v
used in learning. This
can be expensive.

2.  Better: use a
deterministic
approximation to this: a
sum of the vk’s, weighted
by mk/m

From Freund & Schapire, 1998:
Classifying digits with VP

Breaking it down: the perceptron

•  Let v0 be an all-zeros vector
•  Let k=0
•  For each “epoch” t=1,2,….T:

–  Randomly shuffle the examples -- voting proof wants them i.i.d.
•  For each example xi,yi :

–  If vk . xi yi < 0, then -- a mistake was made
»  vk+1 ß vk + xi yi -- update the perceptron
»  k ßk+1

Breaking it down: the perceptron

•  Let v be an all-zeros vector
•  For each “epoch” t=1,2,….T:

–  Randomly shuffle the examples -- voting proof wants them i.i.d.
•  For each example xi,yi :

–  If v . xi yi < 0, then -- a mistake was made
»  v ß v + xi yi -- update the perceptron

Breaking it down: the voted
perceptron
•  Let vo be an all-zeros vector; m0 = 0; k=0; m=0
•  Let a be an all-zeros vector
•  For each “epoch” t=1,2,….T:

–  Randomly shuffle the examples -- voting proof wants them i.i.d.
•  For each example xi,yi :

– mßm+1
–  If vk . xi yi < 0, then -- a mistake was made

»  a ß a + mk vk -- update the average
»  vk+1 ß vk + xi yi -- update the perceptron
» mk+1 ß 1 -- initialize the weight of k-th perceptron
»  k ß k + 1

–  Else: mk ß mk +1 -- upweight the k-th classifier

•  a = a + mk vk
•  a = a / m

ASIDE: SPARSE VECTORS

Voted perceptron and text

•  One important case: sparse examples, where
example example has only a few non-zero
features.

•  Example: x=(x1,x2,…,xn) represents an d-word
document
– xi = number of occurrences of word i

•  words #1: aaliyeh #2:aardvark … #46737: zymurgy

– Usually s << m
– 2-Norm of x < d … so R2 < d2

–  ….Most of the xi’s are zero

Voted perceptron and sparse
vectors
•  A (Java) vector is not a good representation for this:

•  Better: record only the indices and contents of the non-
zero values

•  This is a sparse vector
–  same API, different implementation

•  Matlab implements sparse vectors and matrices
–  they will be much faster when your data is sparse.

•  Another kind of sparsity we care about: sparse classifiers
(most weights are zero)

1 2 3 4 5 6 7 8 9 …

0 0 0 0 1 0 0 0 3 …

(5,1),(9,3),…

