The Perceptron

William Cohen
10-601

Aside: Logistic Regression: Notational Differences

Logistic Regression

Defining a new

 function, $g$$$
\begin{aligned}
& p(y=0 \mid X ; \theta)=g(X ; w)=\frac{1}{1+e^{\mathrm{w}^{\mathrm{T}} X}} \\
& p(y=1 \mid X ; \theta)=1-g(X ; w)=\frac{e^{\mathrm{w}^{\mathrm{T}} X}}{1+e^{\mathrm{w}^{\mathrm{T}} X}}
\end{aligned}
$$

Data likelihood

$$
L(y \mid X ; w)=\prod_{i}\left(1-g\left(X_{i} ; w\right)\right)^{y_{i}} g\left(X_{i} ; w\right)^{\left(1-y_{i}\right)}
$$

$$
L L(y \mid X ; w)=\sum_{i=1}^{N} y_{i} \mathrm{w}^{\mathrm{T}} X_{i}-\ln \left(1+e^{w^{T} X_{i}}\right)
$$

log data likelihood

Logistic regression via gradient ascent: MLE for log likelihood

William's notation

1. Chose λ

$$
\frac{\partial}{\partial w^{j}} \log P(Y=y \mid X=\mathbf{x}, \mathbf{w})=(y-p) x^{j}
$$

2. Start with a guess for \mathbf{w}
3. For all j set

$$
w^{j} \leftarrow w^{j}+\varepsilon \sum_{i=1}^{N} X_{i}^{j}\left\{y_{i}-\left(1-g\left(X_{i} ; w\right)\right)\right\}
$$

4. If no improvement for

$$
L L(y \mid X ; w)=\sum_{i=1}^{N} y_{i} \ln \left(1-g\left(X_{i} ; w\right)\right)+\left(1-y_{i}\right) \ln g\left(X_{i} ; w\right)
$$

stop. Otherwise go to step 3

Logistic regression

$$
P\left(y_{i} \mid \mathbf{x}_{i}, \mathbf{w}\right) \equiv\left\{\begin{array}{cl}
\frac{1}{1+\exp \left(-\mathbf{x}_{i} \cdot \mathbf{w}\right)} & \text { if } y_{i}=1 \\
\left(1-\frac{1}{1+\exp \left(-\mathbf{x}_{i} \cdot \mathbf{w}\right)}\right) & \text { if } y_{i}=0
\end{array}\right\}
$$

$\operatorname{logistic}(u) \equiv \frac{1}{1+e^{-u}}$

Aside: Logistic Regression Stochastic vs "Batch" Gradient

Stochastic gradients (SGD) for logistic regression

1. $P(y \mid x)=\operatorname{logistic}(\mathbf{x} . \mathbf{w})$
2. Log conditional likelihood: $\mathrm{LCL}_{D}(\mathbf{w}) \equiv \sum_{i} \log P\left(y_{i} \mid \mathbf{x}_{i}, \mathbf{w}\right)$
3. Differentiate the LCL function and use gradient descent to minimize

- Start with \mathbf{w}_{0}
- For $\mathrm{t}=1, \ldots, \mathrm{~T}$ - until convergence
- For each example $\boldsymbol{x}, \boldsymbol{y}$ in D:
- $\mathbf{w}_{\mathrm{t}+1}=\mathbf{w}_{\mathrm{t}}+\lambda \mathrm{L}_{x, y}\left(\mathbf{w}_{\mathrm{t}}\right)$
where λ is small
More steps, noisier path toward the
 minimum, but each step is cheaper

Breaking it down: SGD for logistic regression

1. $\quad \mathrm{P}(\mathrm{y} \mid \mathbf{x})=\operatorname{logistic}(\mathbf{x} \cdot \mathbf{w})$
2. Define a function

$$
\operatorname{LCL}_{D}(\mathbf{w}) \equiv \sum_{i} \log P\left(y_{i} \mid \mathbf{x}_{i}, \mathbf{w}\right)
$$

3. Differentiate the function and use gradient descent

- Start with \mathbf{w}_{0}
- For $\mathrm{t}=1, \ldots, \mathrm{~T}$ - until convergence
- For each example $\boldsymbol{x}, \boldsymbol{y}$ in D :

$$
p_{i}=(1+\exp (-\mathbf{x} \cdot \mathbf{w}))^{-1}
$$

- $\mathbf{w}_{\mathrm{t}+1}=\mathbf{w}_{\mathrm{t}}+\lambda \mathrm{L}_{\mathrm{x}_{\mathrm{y}}}\left(\mathbf{w}_{\mathrm{t}}\right)=\mathbf{w}_{t}+\lambda\left(y-p_{i}\right) \mathbf{x}$
where $\boldsymbol{\lambda}$ is small

Aside: Logistic Regression and Regularization

Non-stochastic gradient descent

$$
\frac{\partial}{\partial w^{j}} \log P(Y=y \mid X=\mathbf{x}, \mathbf{w})=(y-p) x^{j}
$$

- In batch gradient descent, average the gradient over all the examples $D=\left\{\left(x_{1}, y_{1}\right) \ldots,\left(x_{n}, y_{n}\right)\right\}$

$$
\begin{aligned}
& \frac{\partial}{\partial w^{j}} \log P(D \mid \mathbf{w})=\frac{1}{n} \sum_{i}\left(y_{i}-p_{i}\right) x_{i}^{j}= \\
&=\frac{1}{n} \sum_{i: x_{i}^{j}=1} y_{i}-\frac{1}{n} \sum_{i: x_{i}^{j}=1} p_{i}
\end{aligned}
$$

Non-stochastic gradient descent

- This can be interpreted as a difference between the expected value of $y \mid x^{j}=1$ in the data and the expected value of $y \mid x^{j}=1$ as predicted by the model
- Gradient ascent tries to make those equal

$$
\frac{\partial}{\partial w^{j}} \log P(D \mid \mathbf{w})=\frac{1}{n} \sum_{i}\left(y_{i}-p_{i}\right) x_{i}^{j}=
$$

$$
=\frac{1}{n} \sum_{i: x_{i}^{j}=1} y_{i}-\frac{1}{n} \sum_{i: x_{i}^{j}=1} p_{i}
$$

This LCL function "overfits"

- This can be interpreted as a difference between the expected value of $y \mid x^{j}=1$ in the data and the expected value of $y \mid x^{j}=1$ as predicted by the model
- Gradient ascent tries to make those equal

$$
\frac{\partial}{\partial w^{j}} \log P(D \mid \mathbf{w})=\frac{1}{n} \sum_{i}\left(y_{i}-p_{i}\right) x_{i}^{j}=\frac{1}{n} \sum_{i: x_{i}^{j}=1} y_{i}-\frac{1}{n} \sum_{i: x_{i}^{j}=1} p_{i}
$$

- That's impossible for some w^{j} !
- e.g., if $w^{j}=1$ only in positive examples, the gradient is always positive

Regularization

Ziv's notation

- For example, lets assume that wi comes from a Gaussian distribution with mean 0 and variance σ^{2} (where σ^{2} is a user defined parameter): wi~N(0, σ^{2})
- In that case we have a prior on the parameters and so:

$$
p(y=1, \theta \mid X) \propto p(y=1 \mid X ; \theta) p(\theta)
$$

- Here we use a Gaussian model for the prior.
- Thus, the log likelihood changes to :
$L L(y ; w \mid X)=\sum_{i=1}^{N} y_{i} \mathrm{w}^{\mathrm{T}} X_{i}-\ln \left(1+e^{w^{T} X_{i}}\right)-\sum_{j} \frac{\left(w^{j}\right)^{2}}{2 \sigma^{2}}$

Assuming mean
of 0 and
removing terms that are not dependent on w

Regularization

Ziv's notation

$$
p(y=1, \theta \mid X) \propto p(y=1 \mid X ; \theta) p(\theta)
$$

- Here we use a Gaussian model for the prior.
- Thus, the log likelihood changes to :

$$
L L(y ; w \mid X)=\sum_{i=1}^{N} y_{i} \mathrm{~W}^{\mathrm{T}} X_{i}-\ln \left(1+e^{w^{T} X_{i}}\right)-\sum_{j} \frac{\left(w^{j}\right)^{2}}{2 \sigma^{2}}
$$

Assuming mean of 0 and removing terms that are not dependent on w

If we differentiate to get the new gradient, we get the old MLE gradient plus a new term:

$$
w^{j} \leftarrow w_{\uparrow}^{j}+\varepsilon \sum_{i=1}^{N} X_{i}^{j}\left\{y_{i}-\left(1-g\left(X_{i} ; w\right)\right)\right\}-\varepsilon \frac{w^{j}}{\sigma^{2}}
$$

Also known as the MAP
The variance of our prior model estimate

Naïve Bayes is also linear

Naïve Bayes

- Given a new instance with $X_{i}=x_{i j}$ compute the following for each possible value y of Y

$$
\begin{gathered}
=\arg \max _{y_{k}} P\left(X_{1}=x_{j, 1} \mid Y=y\right) * \ldots * P\left(X_{n}=x_{j, n} \mid Y=y_{k}\right) P\left(Y=y_{k}\right) \\
=\arg \max _{y_{k}} \prod_{i} \underline{P\left(X_{i}=x_{j i} \mid Y=y_{k}\right)} P\left(Y=y_{k}\right)
\end{gathered}
$$

$$
=\arg \max _{k} \sum_{i=1}^{n} \underline{\log q\left(i, j_{i}, k\right)}+\underline{\log p(k)}
$$

$$
=\operatorname{sign}\left[\left(\sum_{i=1}^{n} \log q\left(i, j_{i}, \text { pos }\right)+\log p(\mathrm{pos})\right)-\left(\sum_{i=1}^{n} \log q\left(i, j_{i}, \text { neg }\right)+\log p(\text { neg })\right]\right.
$$ for two classes $\mathrm{y}_{1}=$ pos, $\mathrm{y}_{2}=$ neg

LOGISTIC REGRESSION AND LINEAR CLASSIFIERS

Linear classifiers we've seen so far

- Naïve Bayes:
- a generative linear classifier
- can show the decision boundary is linear
- Logistic regression:
- a discriminative linear classifier
- same functional form (linear) but optimize the LCL $\log \operatorname{Pr}(y \mid x)$, not the joint likelihood $\log \operatorname{Pr}(x, y)$
- Do we need anything else?

Questions:

- Why optimize LCL if we want to reduce errors on the test data?
- Assume there is a linear classifier: does that always make learning "easy"? can we quantify how "easy" a learning problem is?

Another analytic approach

- Start with a simple learner and analyze what it does
- Goals:
- capture geometric intuitions about what makes learning hard or easy
- analyze performance worst-case settings
- analyze existing plausible learning methods
- e.g. in studying human learning, biology, ...
- This particular analysis is simple enough to give some insight into "margin" learning
- See: Freund \& Schapire, 1998

MISTAKE BOUNDS FOR THE PERCEPTRON

The perceptron

[Rosenblatt, 1957]

- On-line setting:
- Adversary A provides student B with an instance \mathbf{x}
- Student B predicts a class $(+1,-1)$ according to a simple linear classifier: $\operatorname{sign}\left(\mathbf{v}_{\mathrm{k}} \cdot \mathbf{x}\right)$
- Adversary gives student the answer ($+1,-1$) for that instance
-Will do a worst-case analysis of the mistakes made by the student over any sequence of instances from the adversary
- ... that follow a few rules

The perceptron

[Rosenblatt, 1957]

- Recall dot product definition:

$$
\mathbf{x} \cdot \mathbf{v}=\sum_{\mathbf{i}} x_{i} v_{i}
$$

-and intuition:
 cases: actual $=+1 /-1$, predicted $=+1 /-1$

The perceptron

[Rosenblatt, 1957]

Logistic update: $\mathbf{v}_{k+1}=\mathbf{v}_{k}+\varepsilon\left(y_{i}-p_{i}\right) \mathbf{x}_{i}$

$$
\varepsilon=1 \quad \rightarrow \quad=\mathbf{v}_{k}+y_{i} \mathbf{x}_{i}-p_{i} \mathbf{x}_{i}
$$

cases: actual $=1 / 0$, predicted $=1 / 0$

The perceptron

[Rosenblatt, 1957]

- Amazingly simple algorithm
- Quite effective
- Very easy to understand if you do a little linear algebra
-Two rules:
- Examples are not too "big"
- There is a "good" answer -- i.e. a line that clearly separates the pos/ neg examples

The perceptron

[Rosenblatt, 1957]

Rule 1: Radius R: A must provide examples "near the origin"

Rule 2: Margin γ : A must provide examples that can be separated with some vector \mathbf{u} with margin $\gamma>0$ and unit norm
$\forall \mathbf{x}_{i}$ given by $\mathrm{A},\left\|\mathbf{x}_{i}\right\|_{2}^{2} \leq R^{2}$

$$
\|\mathbf{x}\|_{2}=\sqrt{\left(x_{1}^{2}+\ldots+x_{n}^{2}\right)}
$$

$\exists \mathbf{u}: \forall \mathbf{x}_{i}$ given by A, $\left(\mathbf{u} \cdot \mathbf{x}_{i}\right) y_{i}>\gamma$
and $\|\mathbf{u}\|_{2}=1$

$\forall \mathbf{x}_{i}$ given by $\mathrm{A},\left\|\mathbf{x}_{i}\right\|_{2} \leq R$

$\exists \mathbf{u}: \forall \mathbf{x}_{i}$ given by $\mathrm{A},\left(\mathbf{u}^{\bullet} \mathbf{x}_{i}\right) y_{i}>\gamma$
and $\|\mathbf{u}\|_{2}=1$
$\forall \mathbf{x}_{i}$ given by $\mathrm{A},\left\|\mathbf{x}_{i}\right\|_{2} \leq R$

The perceptron: after one positive x_{i}

The perceptron: after two positive x_{i}

The perceptron: after one positive x_{i}

The perceptron: after one pos + one neg x_{i}

The guess $\mathbf{v}_{\mathbf{2}}$ after the two positive examples: $\mathbf{v}_{2}=\mathbf{v}_{1}+\mathbf{x}_{2}$

The guess $\mathbf{v}_{\mathbf{2}}$ after the one positive and one negative example: $\mathbf{v}_{2}=\mathbf{v}_{1}-\mathbf{x}_{2}$

Lemma 1: the dot product between $\mathbf{v}_{\mathbf{k}}$ and \mathbf{u} increases with each mistake by at last γ : i.e.,
$\forall k: \mathbf{v}_{k} \cdot \mathbf{u} \geq k \gamma$

The guess $\mathbf{v}_{\mathbf{2}}$ after the two positive examples: $\mathbf{v}_{2}=\mathbf{v}_{1}+\mathbf{x}_{2}$

Lemma 1: the dot product between \mathbf{v}_{k} and \mathbf{u} increases with each mistake by at last γ : i.e.,

$$
\forall k: \mathbf{v}_{k} \cdot \mathbf{u} \geq k \gamma
$$

The guess $\mathbf{v}_{\mathbf{2}}$ after the one positive and one negative example: $\mathbf{v}_{2}=\mathbf{v}_{1}-\mathbf{x}_{2}$

$$
\begin{aligned}
\mathbf{v}_{k+1} \cdot \mathbf{u} & =\left(\mathbf{v}_{k}+y_{i} \mathbf{x}_{i}\right) \cdot \mathbf{u} \\
\mathbf{v}_{k+1} \cdot \mathbf{u} & =\left(\mathbf{v}_{k} \cdot \mathbf{u}\right)+y_{i}\left(\mathbf{x}_{i} \cdot \mathbf{u}\right) \\
\mathbf{v}_{k+1} \cdot \mathbf{u} & \geq\left(\mathbf{v}_{k} \cdot \mathbf{u}\right)+\gamma
\end{aligned}
$$

$$
\text { SO } \ldots \quad \exists \mathbf{u}: \forall \mathbf{x}_{i} \text { given by A, }\left(\mathbf{u} \cdot \mathbf{x}_{i}\right) y_{i}>\gamma
$$

$$
\mathbf{v}_{k} \cdot \mathbf{u} \geq k \gamma
$$

Some people see this more readily when \mathbf{u} is "up"

Lemma 1: the dot product between \mathbf{v}_{k} and \mathbf{u} increases with each mistake by at last γ : i.e.,

$$
\forall k: \mathbf{v}_{k} \cdot \mathbf{u} \geq k \gamma
$$

Another observation: increasing the dot product of \mathbf{v}_{k} with \mathbf{u} (going "up") doesn't mean we're converging to \mathbf{u}.
(3a) The guess v_{2} after the two positive examples: $\mathbf{v}_{2}=\mathbf{v}_{1}+\mathbf{x}_{2}$

Lemma 2: The norm of \mathbf{v}_{k} grows slowly with each mistake, i.e.,

$$
\forall k,\left\|\mathbf{v}_{k}\right\|_{2}^{2} \leq k R^{2}
$$

(3b) The guess v_{2} after the one positive and one negative example: $\mathbf{v}_{2}=\mathbf{v}_{1}-\mathbf{x}_{2}$

$$
\mathbf{v}_{k+1} \cdot \mathbf{v}_{k+1}=\left(\mathbf{v}_{k}+y_{i} \mathbf{x}_{i}\right) \cdot\left(\mathbf{v}_{k}+y_{i} \mathbf{x}_{i}\right)
$$

$$
\left\|\mathbf{v}_{k+1}\right\|_{2}^{2}=\left\|\mathbf{v}_{k}\right\|_{2}^{2}+2 y_{i} \mathbf{x}_{i}+y_{i}^{2}\left\|\mathbf{x}_{i}\right\|_{2}^{2}
$$

$$
\left\|\mathbf{v}_{k+1}\right\|_{2}^{2} \leq\left\|\mathbf{v}_{k}\right\|_{2}^{2}+1\left\|\mathbf{x}_{i}\right\|_{2}^{2}
$$

$$
\left\|\mathbf{v}_{k+1}\right\|_{2}^{2} \leq\left\|\mathbf{v}_{k}\right\|_{2}^{2}+R^{2}
$$

$$
\forall \mathbf{x}_{i} \text { given by } \mathrm{A},\left\|\mathbf{x}_{i}\right\|_{2}^{2} \leq R^{2} \quad \text { so } \ldots
$$

Lemma 1: the dot product between \mathbf{v}_{k} and \mathbf{u} increases with each mistake by at last γ : i.e.,

Lemma 2: The norm of \mathbf{v}_{k} grows slowly with each mistake, i.e.,

$$
\begin{gathered}
\forall k: \mathbf{v}_{k} \cdot \mathbf{u} \geq k \gamma \\
k \gamma \leq \mathbf{v}_{k} \cdot \mathbf{u} \text { and }\left\|\mathbf{v}_{k}\right\|_{2}^{2} \leq k R^{2} \quad \text { Remember that }\|\mathbf{v}\|_{2}^{2}=\mathbf{v} \cdot \mathbf{v} \\
k^{2} \gamma^{2} \leq\left\|\mathbf{v}_{k} \cdot \mathbf{u}\right\|_{2}^{2} \text { and }\left\|\mathbf{v}_{k}\right\|_{2}^{2} \leq k R^{2} \\
k^{2} \gamma^{2} \leq\left\|\mathbf{v}_{k}\right\|_{2}^{2} \cdot\|\mathbf{u}\|_{2}^{2} \text { and }\left\|\mathbf{v}_{k}\right\|_{2}^{2} \leq k R^{2} \\
k^{2} \gamma^{2} \leq\left\|\mathbf{v}_{k}\right\|_{2}^{2} \text { and }\left\|\mathbf{v}_{k}\right\|_{2}^{2} \leq k R^{2} \quad \ldots \text { and } \| \mathbf{u}_{2}=1 \\
k^{2} \gamma^{2} \leq\left\|\mathbf{v}_{k}\right\|_{2}^{2} \leq k R^{2} \\
k^{2} \gamma^{2} \leq k R^{2} \\
k<\left(\frac{R}{\gamma}\right)^{2}
\end{gathered}
$$

Summary

- We have shown that
- If : exists a \mathbf{u} with unit norm that has margin γ on examples in the seq $\left(\mathbf{x}_{1}, \mathrm{y}_{1}\right),\left(\mathbf{x}_{2}, \mathrm{y}_{2}\right), \ldots$.
- Then : the perceptron algorithm makes $<R^{2} / Y^{2}$ mistakes on the sequence (where $\mathrm{R}>=\left\|\mathbf{x}_{\mathrm{i}}\right\|$)
- Independent of dimension of the data or classifier (!)
- This is surprising in several ways:
- You can bound errors in an adversarial setting
- General case: you bound "regret", i.e., how well you do on-line vs the best fixed classifier
- We're making claims about generalization after a few examples
- Statistical efficiency
- We don't care about how many features there are, only how "big" the example is.
- Important special case: for each example, only a few features have nonzero values (sparse examples)

Summary

- We have shown that
- If: exists a \mathbf{u} with unit norm that has margin y on examples in the seq $\left(\mathbf{x}_{1}, y_{1}\right),\left(\mathbf{x}_{2}, y_{2}\right), \ldots$
- Then : the perceptron algorithm makes $<R^{2} / Y^{2}$ mistakes on the sequence (where $\mathrm{R}>=\left\|\mathbf{x}_{\mathrm{i}}\right\|$)
- Independent of dimension of the data or classifier (!)
- We don't know if this algorithm could be better
- There are many variants that rely on similar analysis (ROMMA, Passive-Aggressive, MIRA, ...)
- We don't know what happens if the data's not separable - Unless I explain the " Δ trick" to you
- We don't know what classifier to use "after" training

The Δ Trick

- The proof assumes the data is separable by a wide margin
- We can make that true by adding an "id" feature to each example
- sort of like we added a constant feature
$\mathbf{x}^{1}=\left(x_{1}^{1}, x_{2}^{1}, \ldots, x_{m}^{1}\right) \rightarrow(x_{1}^{1}, x_{2}^{1}, \ldots, x_{m}^{1}, \overbrace{\Delta, 0, \ldots, 0)}^{n \text { new features }}$
$\mathbf{x}^{2}=\left(x_{1}^{2}, x_{2}^{2}, \ldots, x_{m}^{2}\right) \rightarrow\left(x_{1}^{2}, x_{2}^{2}, \ldots, x_{m}^{2}, 0, \Delta, \ldots, 0\right)$
\ldots
$\mathbf{x}^{n}=\left(x_{1}^{n}, x_{2}^{n}, \ldots, x_{m}^{n}\right) \rightarrow\left(x_{1}^{n}, x_{2}^{n}, \ldots, x_{m}^{n}, 0,0, \ldots, \Delta\right)$

The Δ Trick

- Replace \mathbf{x}_{i} with \mathbf{x}_{i}, so \mathbf{X} becomes $[\mathbf{X} \mid \mathbf{I} \Delta]$
- Replace R^{2} in our bounds with $\mathrm{R}^{2}+\Delta^{2}$
- Let $\mathrm{d}_{\mathrm{i}}=\max \left(0, \gamma-\mathrm{y}_{\mathrm{i}} \mathbf{x}_{\mathrm{i}} \mathbf{u}\right)$
- Let $\mathbf{u}^{\prime}=\left(\mathrm{u}_{1}, \ldots, \mathrm{u}_{\mathrm{n}}, \mathrm{y}_{1} \mathrm{~d}_{1} / \Delta, \ldots \mathrm{y}_{\mathrm{m}} \mathrm{d}_{\mathrm{m}} / \Delta\right)^{*} 1 / Z$ - So $Z=\operatorname{sqrt}\left(1+D^{2} / \Delta^{2}\right)$, for $D=\operatorname{sqrt}\left(d_{1}{ }^{2}+\ldots+d_{m}{ }^{2}\right)$
- Now $[\mathrm{X} \mid \Delta \mathrm{\Delta}]$ is separable by u^{\prime} with margin γ
- Mistake bound is $\left(R^{2}+\Delta^{2}\right) Z^{2} / Y^{2}$
- Let $\Delta=\operatorname{sqrt}(R D) \rightarrow \mathrm{k}<=((\mathrm{R}+\mathrm{D}) / \mathrm{y})^{2}$
- Conclusion: a little noise is ok

THE VOTED PERCEPTRON

On-line to batch learning

Imagine we run the on-line perceptron and see this result.

i	guess	input	result
1	\mathbf{v}_{0}	\mathbf{x}_{1}	X (a mistake)
2	\mathbf{v}_{1}	\mathbf{x}_{2}	$\sqrt{ }$ (correct!)
3	\mathbf{v}_{1}	\mathbf{x}_{3}	$\sqrt{ }$
4	\mathbf{v}_{1}	\mathbf{x}_{4}	X (a mistake)
5	\mathbf{v}_{2}	\mathbf{x}_{5}	$\sqrt{ }$
6	\mathbf{v}_{2}	\mathbf{x}_{6}	$\sqrt{ }$
7	\mathbf{v}_{2}	\mathbf{x}_{7}	$\sqrt{ }$
8	\mathbf{v}_{2}	\mathbf{x}_{8}	X
9	\mathbf{v}_{3}	\mathbf{x}_{9}	$\sqrt{ }$
10	\mathbf{v}_{3}	\mathbf{x}_{10}	X

Which $\mathbf{v}_{\mathbf{i}}$ should we use?
Maybe the last one?
Here it's never gotten any test cases right!
(Experimentally, the classifiers move around a lot.)

Maybe the "best one"?
But we "improved" it with later mistakes...
$P($ error in $\mathbf{x})=\sum_{k} P\left(\right.$ error on $\mathbf{x} \mid$ picked $\left.\mathbf{v}_{k}\right) P\left(\right.$ picked $\left.\mathbf{v}_{k}\right)$

$$
=\sum_{k} \frac{1}{m_{k}} \frac{m_{k}}{m}=\sum_{k} \frac{1}{m}=\frac{k}{m}
$$

Imagine we run the on-line perceptron and see this result.

i	guess	input	result
1	\mathbf{v}_{0}	\mathbf{x}_{1}	X (a mistake)
2	\mathbf{v}_{1}	\mathbf{x}_{2}	$\sqrt{ }$ (correct!)
3	\mathbf{v}_{1}	\mathbf{x}_{3}	$\sqrt{ }$
4	\mathbf{v}_{1}	\mathbf{x}_{4}	X (a mistake)
5	\mathbf{v}_{2}	\mathbf{x}_{5}	$\sqrt{ }$
6	\mathbf{v}_{2}	\mathbf{x}_{6}	$\sqrt{ }$
7	\mathbf{v}_{2}	\mathbf{x}_{7}	$\sqrt{ }$
8	\mathbf{v}_{2}	\mathbf{x}_{8}	X
9	\mathbf{v}_{3}	\mathbf{x}_{9}	$\sqrt{ }$
10	\mathbf{v}_{3}	\mathbf{x}_{10}	X

1. Pick $a \mathbf{v}_{\mathrm{k}}$ at random according to m_{k} / m, the fraction of examples it was used for.
2. Predict using the \mathbf{v}_{k} you just picked.
$P($ error in $\mathbf{x})=\sum_{k} P\left(\right.$ error on $\mathbf{x} \mid$ picked $\left.\mathbf{v}_{k}\right) P\left(\right.$ picked $\left.\mathbf{v}_{k}\right)$

$$
=\sum_{k} \frac{1}{m_{k}} \frac{m_{k}}{m}=\sum_{k} \frac{1}{m}=\frac{k}{m}
$$

Imagine we run the on-line perceptron and see this result.

i	guess	input	result
1	\mathbf{v}_{0}	\mathbf{x}_{1}	X (a mistake)
2	\mathbf{v}_{1}	\mathbf{x}_{2}	$\sqrt{ }$ (correct!)
3	\mathbf{v}_{1}	\mathbf{x}_{3}	$\sqrt{ }$
4	\mathbf{v}_{1}	\mathbf{x}_{4}	X (a mistake)
5	\mathbf{v}_{2}	\mathbf{x}_{5}	$\sqrt{ }$
6	\mathbf{v}_{2}	\mathbf{x}_{6}	$\sqrt{ }$
7	\mathbf{v}_{2}	\mathbf{x}_{7}	$\sqrt{ }$
8	\mathbf{v}_{2}	\mathbf{x}_{8}	X
9	\mathbf{v}_{3}	\mathbf{x}_{9}	$\sqrt{ }$
10	\mathbf{v}_{3}	\mathbf{x}_{10}	X

1. Disadvantage: we need to keep around every \mathbf{v} used in learning. This can be expensive.
2. Better: use a deterministic approximation to this: a sum of the \boldsymbol{v}_{k} 's, weighted by m_{k} / m

From Freund \& Schapire, 1998: Classifying digits with VP

Breaking it down: the perceptron

- Let $\mathbf{v}_{\mathbf{0}}$ be an all-zeros vector
- Let $\mathrm{k}=0$
- For each "epoch" $\mathrm{t}=1,2, \ldots$. T:
- Randomly shuffle the examples -- voting proof wants them i.i.d.
- For each example $\mathbf{x}_{\mathrm{i}} \mathrm{y}_{i}$:

$$
\begin{array}{ll}
\text { - If } \mathbf{v}_{\mathbf{k}} \cdot \mathbf{x}_{\mathbf{i}} \mathrm{y}_{\mathrm{i}}<0 \text {, then } & -- \text { a mistake was made } \\
\quad \geqslant \mathbf{v}_{\mathbf{k}+1} \leftarrow \mathbf{v}_{\mathbf{k}}+\mathbf{x}_{\mathrm{i}} \mathrm{y}_{\mathrm{i}} & \text {-- update the perceptron } \\
\quad \geqslant k \leftarrow \mathrm{k}+1
\end{array}
$$

Breaking it down: the perceptron

- Let \mathbf{v} be an all-zeros vector
- For each "epoch" $\mathrm{t}=1,2, \ldots$. T:
- Randomly shuffle the examples -- voting proof wants them i.i.d.
- For each example \mathbf{x}_{i}, y_{i} :
- If $\mathbf{v} . \mathbf{x}_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}<0$, then -- a mistake was made
" $\mathbf{v} \leftarrow \mathbf{v}+\mathbf{x}_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}$-- update the perceptron

Breaking it down: the voted perceptron

- Let \mathbf{v}_{o} be an all-zeros vector; $\mathrm{m}_{0}=0 ; \mathrm{k}=0 ; \mathrm{m}=0$
- Let a be an all-zeros vector
- For each "epoch" $t=1,2, \ldots$. T:
- Randomly shuffle the examples -- voting proof wants them i.i.d.
- For each example $\mathbf{x}_{i} y_{i}$:
$-\mathrm{m} \leftarrow \mathrm{m}+1$
- If $\mathbf{v}_{\mathrm{k}} \cdot \mathbf{x}_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}<0$, then -- a mistake was made
$» \mathbf{a} \leftarrow \mathbf{a}+\mathrm{m}_{\mathrm{k}} \mathbf{v}_{\mathrm{k}} \quad-$ update the average
» $\mathbf{v}_{\mathrm{k}+1} \leftarrow \mathbf{v}_{\mathrm{k}+} \mathbf{x}_{\mathrm{i}} \mathrm{y}_{\mathrm{i}} \quad-$ update the perceptron
$» \mathrm{~m}_{\mathrm{k}+1} \leftarrow 1 \quad-$ initialize the weight of k-th perceptron
» $k \leftarrow k+1$
- Else: $\mathrm{m}_{\mathrm{k}} \leftarrow \mathrm{m}_{\mathrm{k}}+1 \quad--$ upweight the k-th classifier
- $\mathbf{a}=\mathbf{a}+\mathrm{m}_{\mathrm{k}} \mathbf{v}_{\mathrm{k}}$
- $\mathbf{a}=\mathbf{a} / \mathrm{m}$

ASIDE: SPARSE VECTORS

Voted perceptron and text

- One important case: sparse examples, where example example has only a few non-zero features.
- Example: $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ represents an d-word document
$-x_{i}=$ number of occurrences of word i
- words \#1: aliyeh \#2:aardvark ... \#46737: zymurgy
- Usually $s \ll m$
-2-Norm of $\mathbf{x}<d \ldots$ so $R^{2}<d^{2}$
- Most of the x_{i}^{\prime} s are zero

BOOLE ORDERS LUNCH

Voted perceptron and sparse

 vectors- A (Java) vector is not a good representation for this:

1	2	3	4	5	6	7	8	9
\ldots								
0	0	0	0	1	0	0	0	3

- Better: record only the indices and contents of the nonzero values

$$
(5,1),(9,3), \ldots
$$

- This is a sparse vector
- same API, different implementation
- Matlab implements sparse vectors and matrices
- they will be much faster when your data is sparse.
- Another kind of sparsity we care about: sparse classifiers (most weights are zero)

