William Cohen 10-601

Aside: Logistic Regression: Notational Differences

Ziv's notation Logistic Regression Defining a new function, g $p(y=0 | X; \theta) = g(X; w) = \frac{1}{1+e^{w^{T}X}}$ $p(y=1|X;\theta) = 1 - g(X;w) = \frac{e^{w^{T}X}}{1 + e^{w^{T}X}}$ Data likelihood $L(y | X; w) = \prod (1 - g(X_i; w))^{y_i} g(X_i; w)^{(1 - y_i)}$ Y=1 $LL(y|X;w) = \sum_{i=1}^{N} y_i w^{\mathrm{T}} X_i - \ln(1 + e^{w^{\mathrm{T}} X_i})$ aistic Regression Mode Linear Probability Mode log data likelihood

Logistic regression via gradient ascent: MLE for log likelihood

William's notation

1. Chose λ

$$\frac{\partial}{\partial w^j} \log P(Y = y | X = \mathbf{x}, \mathbf{w}) = (y - p)x^j$$

- 2. Start with a guess for w
- 3. For all j set $w^j \leftarrow w^j + \varepsilon \sum_{i=1}^N X_i^j \{y_i (1 g(X_i; w))\}$
- 4. If no improvement for

$$LL(y | X; w) = \sum_{i=1}^{N} y_i \ln(1 - g(X_i; w)) + (1 - y_i) \ln g(X_i; w)$$

stop. Otherwise go to step 3

William's notation

Logistic regression

$$P(y_i | \mathbf{x}_i, \mathbf{w}) = \begin{cases} \frac{1}{1 + \exp(-\mathbf{x}_i \cdot \mathbf{w})} & \text{if } y_i = 1 \\ \left(1 - \frac{1}{1 + \exp(-\mathbf{x}_i \cdot \mathbf{w})}\right) & \text{if } y_i = 0 \end{cases}$$

Aside: Logistic Regression Stochastic vs "Batch" Gradient

Stochastic gradients (SGD) for logistic regression

- 1. $P(y|x) = logistic(x \cdot w)$
- 2. Log conditional likelihood:

$$\text{LCL}_{D}(\mathbf{w}) \equiv \sum_{i} \log P(y_{i} | \mathbf{x}_{i}, \mathbf{w})$$

- 3. Differentiate the LCL function and use gradient descent to minimize
 - Start with \mathbf{w}_0
 - For t=1,...,T *until convergence*
 - For each example *x*, *y* in D:
 - $\mathbf{w}_{t+1} = \mathbf{w}_t + \lambda L_{x,y}(\mathbf{w}_t)$ where λ is small

More steps, noisier path toward the minimum, but each step is cheaper

Breaking it down: SGD for logistic regression

- 1. $P(y|x) = logistic(x \cdot w)$
- 2. Define a function

$$\text{LCL}_{D}(\mathbf{w}) \equiv \sum_{i} \log P(y_{i} | \mathbf{x}_{i}, \mathbf{w})$$

- 3. Differentiate the function and use gradient descent
 - Start with \mathbf{w}_0
 - For t=1,...,T *until convergence*
 - For each example **x**, y in D:

$$p_i = \left(1 + \exp(-\mathbf{x} \cdot \mathbf{w})\right)^{-1}$$

•
$$\mathbf{w}_{t+1} = \mathbf{w}_t + \lambda L_{x,y}(\mathbf{w}_t) = \mathbf{w}_t + \lambda(y - p_i)\mathbf{x}$$

where λ is small

Aside: Logistic Regression and Regularization

Non-stochastic gradient descent

$$\frac{\partial}{\partial w^j} \log P(Y = y | X = \mathbf{x}, \mathbf{w}) = (y - p) x^j$$

In batch gradient descent, average the gradient over all the examples D={(x₁, y₁)..., (x_n, y_n)}

$$\frac{\partial}{\partial w^j} \log P(D|\mathbf{w}) = \frac{1}{n} \sum_i (y_i - p_i) x_i^j =$$
$$= \left[\frac{1}{n} \sum_{i:x_i^j = 1} y_i \right] - \left[\frac{1}{n} \sum_{i:x_i^j = 1} p_i \right]$$

Non-stochastic gradient descent

- This can be interpreted as a difference between the expected value of $y | x^{j=1}$ in the data and the expected value of $y | x^{j=1}$ as predicted by the model
- Gradient ascent tries to make those equal

$$\frac{\partial}{\partial w^j} \log P(D|\mathbf{w}) = \frac{1}{n} \sum_i (y_i - p_i) x_i^j =$$

This LCL function "overfits"

- This can be interpreted as a difference between the expected value of $y | x^{j=1}$ in the data and the expected value of $y | x^{j=1}$ as predicted by the model
- Gradient ascent tries to make those equal

$$\frac{\partial}{\partial w^j} \log P(D|\mathbf{w}) = \frac{1}{n} \sum_i (y_i - p_i) x_i^j = \frac{1}{n} \sum_{i:x_i^j = 1} y_i - \frac{1}{n} \sum_{i:x_i^j = 1} p_i$$

- That's impossible for some *w^j* !
 - e.g., if wⁱ =1 only in positive examples, the gradient is always positive

Regularization

Ziv's notation

- For example, lets assume that wⁱ comes from a Gaussian distribution with mean 0 and variance σ² (where σ² is a user defined parameter): w^j~N(0, σ²)
- In that case we have a prior on the parameters and so:

$$p(y=1, \theta | X) \propto p(y=1| X; \theta) p(\theta)$$

- Here we use a Gaussian model for the prior.
- Thus, the log likelihood changes to :

$$LL(y; w | X) = \sum_{i=1}^{N} y_i w^{\mathrm{T}} X_i - \ln(1 + e^{w^{\mathrm{T}} X_i}) - \sum_{j=1}^{N} \frac{(w^{j})^2}{2\sigma^2}$$

Assuming mean of 0 and removing terms that are not dependent on w

Regularization

Ziv's notation

$$p(y=1, \theta | X) \propto p(y=1 | X; \theta) p(\theta)$$

- Here we use a Gaussian model for the prior.
- Thus, the log likelihood changes to :

$$LL(y; w \mid X) = \sum_{i=1}^{N} y_i w^{\mathrm{T}} X_i - \ln(1 + e^{w^{\mathrm{T}} X_i}) - \sum_{i=1}^{N} \frac{(w^{i})^2}{2\sigma^2}$$

Assuming mean of 0 and removing terms that are not dependent on w

If we differentiate to get the new gradient, we get the old MLE gradient plus a new term:

$$w^{j} \leftarrow w^{j}_{1} + \varepsilon \sum_{i=1}^{N} X^{j}_{i} \{ y_{i} - (1 - g(X_{i}; w)) \} - \varepsilon \frac{w}{\sigma}$$

Also known as the MAP estimate

The variance of our prior model

Naïve Bayes is also linear

Naïve Bayes

• Given a new instance with $X_i = x_{ij}$ compute the following for each possible value *y* of Y

$$= \arg \max_{y_k} P(X_1 = x_{j,1} | Y = y)^* \dots^* P(X_n = x_{j,n} | Y = y_k) P(Y = y_k)$$

$$= \arg \max_{y_k} \prod_i P(X_i = x_{ji} | Y = y_k) P(Y = y_k)$$

$$= \arg \max_k \sum_{i=1}^n \log q(i, j_i, k) + \log p(k)$$

$$sign \Big[\Big(\sum_{i=1}^n \log q(i, j_i, pos) + \log p(pos) \Big) - \Big(\sum_{i=1}^n \log q(i, j_i, neg) + \log p(neg) \Big]$$

for two classes y_1 = pos, y_2 = neg

LOGISTIC REGRESSION AND LINEAR CLASSIFIERS

Linear classifiers we've seen so far

- Naïve Bayes:
 - a generative linear classifier
 - can show the decision boundary is linear
- Logistic regression:
 - a discriminative linear classifier
 - same functional form (linear) but optimize the LCL $\log Pr(y | x)$, not the joint likelihood $\log Pr(x, y)$
- Do we need anything else?

Questions:

- Why optimize LCL if we want to reduce errors on the test data?
- Assume there is a linear classifier: does that always make learning "easy"? can we quantify how "easy" a learning problem is?

Another analytic approach

- Start with a simple learner and analyze what it does
- Goals:
 - capture *geometric* intuitions about what makes learning hard or easy
 - analyze performance worst-case settings
 - analyze existing plausible learning methods
 - e.g. in studying human learning, biology, ...
- This particular analysis is simple enough to give some insight into "margin" learning
- See: Freund & Schapire, 1998

MISTAKE BOUNDS FOR THE PERCEPTRON

[Rosenblatt, 1957]

Compute: $y_i = \text{sign}(\mathbf{v}_k \cdot \mathbf{x}_i)$ If mistake: $\mathbf{v}_{k+1} = \mathbf{v}_k + y_i \mathbf{x}_i$

Λ

•On-line setting:

- Adversary A provides student B with an *instance* **x**
- Student B predicts a class (+1, -1) according to a simple linear classifier: sign(**v**_k. **x**)
- Adversary gives student the answer (+1,-1) for that instance
- •Will do a *worst-case* analysis of the mistakes made by the student over *any* sequence of instances from the adversary
 - ... that follow a few rules

[Rosenblatt, 1957]

[Rosenblatt, 1957]

Compute: $\dot{\mathbf{y}}_i = \operatorname{sign}(\mathbf{v}_k \cdot \mathbf{x}_i)$ If mistake: $\mathbf{v}_{k+1} = \mathbf{v}_k + y_i \mathbf{x}_i$

Logistic update: $\mathbf{v}_{k+1} = \mathbf{v}_k + \varepsilon(y_i - p_i)\mathbf{x}_i$

 $\varepsilon = 1 \rightarrow = \mathbf{v}_k + y_i \mathbf{x}_i - p_i \mathbf{x}_i$

cases: actual = 1/0, predicted = 1/0

[Rosenblatt, 1957]

[Rosenblatt, 1957]

Compute:
$$\dot{\mathbf{y}}_i = \operatorname{sign}(\mathbf{v}_k \cdot \mathbf{x}_i)$$

If mistake: $\mathbf{v}_{k+1} = \mathbf{v}_k + y_i \mathbf{x}_i$

Rule 1: Radius R: A must provide examples "near the origin"

$$\forall \mathbf{x}_i \text{ given by } \mathbf{A}, \|\mathbf{x}_i\|_2^2 \le R^2$$

 $\|\mathbf{x}\|_2 = \sqrt{(x_1^2 + \dots + x_n^2)}$

Rule 2: Margin γ : A must provide examples that can be separated with some vector **u** with margin $\gamma > 0$ and unit norm

 $\exists \mathbf{u} : \forall \mathbf{x}_i \text{ given by } \mathbf{A}, (\mathbf{u} \bullet \mathbf{x}_i) y_i > \gamma$ and $\|\mathbf{u}\|_2 = 1$ "margin"

$\forall \mathbf{x}_i \text{ given by } \mathbf{A}, \|\mathbf{x}_i\|_2 \leq R$

Comments:

- 1. Scale shouldn't matter to "how hard learning is"
- 2. Wide margin (compared to R) means that we can afford larger errors in our estimation of **u**

$$\exists \mathbf{u} : \forall \mathbf{x}_i \text{ given by } \mathbf{A}, (\mathbf{u} \cdot \mathbf{x}_i) y_i > \gamma$$

and $\|\mathbf{u}\|_2 = 1$

-11

 2γ

The perceptron: after one positive x_i

The perceptron: after two positive x_i

The perceptron: after one positive x_i

The perceptron: after one pos + one neg x_i

The guess v_2 after the two positive examples: $v_2=v_1+x_2$

The guess v_2 after the one positive and one negative example: $v_2=v_1-x_2$

Lemma 1: the dot product between \mathbf{v}_k and \mathbf{u} increases with each mistake by at last γ : i.e.,

$$\forall k : \mathbf{v}_k \cdot \mathbf{u} \ge k\gamma$$

The guess v_2 after the two positive examples: $v_2=v_1+x_2$

The guess v_2 after the one positive and one negative example: $v_2=v_1-x_2$

Lemma 1: the dot product between \mathbf{v}_k and \mathbf{u} increases with each mistake by at last γ : i.e.,

$$\forall k : \mathbf{v}_k \cdot \mathbf{u} \ge k\gamma$$

 $\mathbf{v}_{k+1} \cdot \mathbf{u} = (\mathbf{v}_k + y_i \mathbf{x}_i) \cdot \mathbf{u}$ $\mathbf{v}_{k+1} \cdot \mathbf{u} = (\mathbf{v}_k \cdot \mathbf{u}) + y_i (\mathbf{x}_i \cdot \mathbf{u})$ $\mathbf{v}_{k+1} \cdot \mathbf{u} \ge (\mathbf{v}_k \cdot \mathbf{u}) + \gamma$ $\text{SO } \dots \qquad \exists \mathbf{u} : \forall \mathbf{x}_i \text{ given by } \mathbf{A}, (\mathbf{u} \cdot \mathbf{x}_i) y_i > \gamma$

 $\mathbf{v}_k \cdot \mathbf{u} \ge k\gamma$

Lemma 2: The norm of \mathbf{v}_k grows slowly with each mistake, i.e.,

$$\forall k, \left\| \mathbf{v}_k \right\|_2^2 \le kR^2$$

(3b) The guess v_2 after the one positive and one negative example: $v_2=v_1-x_2$

$$\mathbf{v}_{k+1} \cdot \mathbf{v}_{k+1} = (\mathbf{v}_k + y_i \mathbf{x}_i) \cdot (\mathbf{v}_k + y_i \mathbf{x}_i)$$
$$\|\mathbf{v}_{k+1}\|_2^2 = \|\mathbf{v}_k\|_2^2 + 2y_i \mathbf{x}_i + y_i^2 \|\mathbf{x}_i\|_2^2$$
$$\|\mathbf{v}_{k+1}\|_2^2 \le \|\mathbf{v}_k\|_2^2 + 1\|\mathbf{x}_i\|_2^2$$
$$\|\mathbf{v}_{k+1}\|_2^2 \le \|\mathbf{v}_k\|_2^2 + R^2$$
$$\forall \mathbf{x}_i \text{ given by } \mathbf{A}, \|\mathbf{x}_i\|_2^2 \le R^2 \qquad \text{so } \dots$$
$$\|\mathbf{v}_k\|_2^2 \le kR^2$$

Lemma 1: the dot product between \mathbf{v}_k and \mathbf{u} increases with each mistake by at last γ : i.e.,

Lemma 2: The norm of \mathbf{v}_k grows slowly with each mistake, i.e.,

$$\begin{aligned} \forall k : \mathbf{v}_{k} \cdot \mathbf{u} \geq k\gamma & \forall k, \|\mathbf{v}_{k}\|_{2}^{2} \leq kR^{2} \\ k\gamma \leq \mathbf{v}_{k} \cdot \mathbf{u} \quad \text{and} \quad \|\mathbf{v}_{k}\|_{2}^{2} \leq kR^{2} \quad \text{Remember that} \quad \|\mathbf{v}\|_{2}^{2} = \mathbf{v} \cdot \mathbf{v} \\ k^{2}\gamma^{2} \leq \|\mathbf{v}_{k} \cdot \mathbf{u}\|_{2}^{2} \quad \text{and} \quad \|\mathbf{v}_{k}\|_{2}^{2} \leq kR^{2} \\ k^{2}\gamma^{2} \leq \|\mathbf{v}_{k}\|_{2}^{2} \cdot \|\mathbf{u}\|_{2}^{2} \quad \text{and} \quad \|\mathbf{v}_{k}\|_{2}^{2} \leq kR^{2} \\ k^{2}\gamma^{2} \leq \|\mathbf{v}_{k}\|_{2}^{2} \quad \text{and} \quad \|\mathbf{v}_{k}\|_{2}^{2} \leq kR^{2} \\ k^{2}\gamma^{2} \leq \|\mathbf{v}_{k}\|_{2}^{2} \quad \text{and} \quad \|\mathbf{v}_{k}\|_{2}^{2} \leq kR^{2} \\ k^{2}\gamma^{2} \leq \|\mathbf{v}_{k}\|_{2}^{2} \leq kR^{2} \\ k^{2}\gamma^{2} \leq \|\mathbf{v}_{k}\|_{2}^{2} \leq kR^{2} \\ k^{2}\gamma^{2} \leq kR^{2} \\ k^{2}\gamma^{2} \leq kR^{2} \\ k < \left(\frac{R}{\gamma}\right)^{2} \end{aligned}$$

Summary

- We have shown that
 - If : exists a u with unit norm that has margin γ on examples in the seq (x₁,y₁),(x₂,y₂),....
 - Then : the perceptron algorithm makes < R²/ γ² mistakes on the sequence (where R >= ||x_i||)
 - Independent of dimension of the data or classifier (!)
- This is surprising in several ways:
 - You can bound errors in an adversarial setting
 - General case: you bound "regret", i.e., how well you do on-line vs the best fixed classifier
 - We're making claims about generalization after a few examples
 - Statistical efficiency
 - We don't care about how many features there are, only how "big" the example is.
 - Important special case: for each example, only a few features have nonzero values (*sparse* examples)

Summary

- We have shown that
 - If : exists a **u** with unit norm that has margin γ on examples in the seq (**x**₁,y₁),(**x**₂,y₂),....
 - Then : the perceptron algorithm makes < R²/ γ² mistakes on the sequence (where R >= ||x_i||)
 - Independent of dimension of the data or classifier (!)
- We *don't* know if this algorithm could be better
 - There are many variants that rely on similar analysis (ROMMA, Passive-Aggressive, MIRA, …)
- We don't know what happens if the data's not separable
 Unless I explain the "Δ trick" to you
- We *don't* know what classifier to use "after" training

The Δ Trick

- The proof assumes the data is separable by a wide margin
- We can *make* that true by adding an "id" feature to each example
 - sort of like we added a constant feature

$$\mathbf{x}^{1} = (x_{1}^{1}, x_{2}^{1}, ..., x_{m}^{1}) \rightarrow (x_{1}^{1}, x_{2}^{1}, ..., x_{m}^{1}, \Delta, 0, ..., 0)$$

$$\mathbf{x}^{2} = (x_{1}^{2}, x_{2}^{2}, ..., x_{m}^{2}) \rightarrow (x_{1}^{2}, x_{2}^{2}, ..., x_{m}^{2}, 0, \Delta, ..., 0)$$

...

$$\mathbf{x}^{n} = (x_{1}^{n}, x_{2}^{n}, ..., x_{m}^{n}) \rightarrow (x_{1}^{n}, x_{2}^{n}, ..., x_{m}^{n}, 0, 0, ..., \Delta)$$

The Δ Trick

- Replace \mathbf{x}_i with $\mathbf{x'}_i$ so \mathbf{X} becomes $[\mathbf{X} \mid \mathbf{I} \Delta]$
- Replace R^2 in our bounds with $R^2 + \Delta^2$
- Let $d_i = max(0, \gamma y_i \mathbf{x}_i \mathbf{u})$
- Let u' = (u₁,...,u_n, y₁d₁/Δ, ... y_md_m/Δ) * 1/Z

 So Z=sqrt(1 + D²/Δ²), for D=sqrt(d₁²+...+d_m²)
 Now [X|IΔ] is separable by u' with margin γ
- Mistake bound is $(R^2 + \Delta^2)Z^2 / \gamma^2$
- Let $\Delta = \operatorname{sqrt}(RD) \rightarrow k \leq ((R + D)/\gamma)^2$
- Conclusion: a little noise is ok

THE VOTED PERCEPTRON

On-line to batch learning

Imaging we run the on line percentron and see this result.

magne we fun the on-me perception and see this result.									
i	guess	input	result						
1	\mathbf{v}_0	\mathbf{x}_1	X (a mistake)	Which v , should we use?					
2	\mathbf{v}_1	\mathbf{x}_2	$\sqrt{(\text{correct!})}$	Maybe the last one?					
3	\mathbf{v}_1	\mathbf{X}_3		Maybe the last one:					
4	\mathbf{v}_1	\mathbf{x}_4	X (a mistake)	Here it's never gotten any					
5	\mathbf{v}_2	\mathbf{X}_5	\checkmark	test cases right!					
6	\mathbf{v}_2	\mathbf{x}_6	\checkmark	move around a lot.)					
7	\mathbf{v}_2	\mathbf{X}_7	\checkmark	Maybe the "best one"?					
8	\mathbf{v}_2	\mathbf{x}_8	Х						
9	\mathbf{v}_3	\mathbf{x}_9	\checkmark	But we "improved" it with					
10	\mathbf{v}_3	\mathbf{x}_{10}	Х	later mistakes					

 $P(\text{error in } \mathbf{x}) = \sum_{k} P(\text{error on } \mathbf{x}|\text{picked } \mathbf{v}_{k})P(\text{picked } \mathbf{v}_{k})$ $= \sum_{k} \frac{1}{m_{k}} \frac{m_{k}}{m} = \sum_{k} \frac{1}{m} = \frac{k}{m}$

Imagine we run the on-line perceptron and see this result.

	2		<u> </u>	
i	guess	input	result	
1	\mathbf{v}_0	\mathbf{x}_1	X (a mistake)	1. P
2	\mathbf{v}_1	\mathbf{x}_2	$\sqrt{(\text{correct!})}$	at fr:
3	\mathbf{v}_1	\mathbf{X}_3	\checkmark	W
4	\mathbf{v}_1	\mathbf{x}_4	X (a mistake)	2 P
5	\mathbf{v}_2	\mathbf{X}_5	\checkmark	iu
6	\mathbf{v}_2	\mathbf{x}_6	\checkmark	,
7	\mathbf{v}_2	\mathbf{X}_7	\checkmark	
8	\mathbf{v}_2	\mathbf{x}_8	Х	
9	\mathbf{v}_3	\mathbf{x}_9	\checkmark	
10	\mathbf{v}_3	\mathbf{x}_{10}	Х	

- Pick a v_k at random according to m_k/m, the fraction of examples it was used for.
- 2. Predict using the \mathbf{v}_k you just picked.

 $P(\text{error in } \mathbf{x}) = \sum_{k} P(\text{error on } \mathbf{x}|\text{picked } \mathbf{v}_{k})P(\text{picked } \mathbf{v}_{k})$ $= \sum_{k} \frac{1}{m_{k}} \frac{m_{k}}{m} = \sum_{k} \frac{1}{m} = \frac{k}{m}$

Imagine we run the on-line perceptron and see this result.

			<u> </u>		
i	guess	input	result	4	
1	\mathbf{v}_0	\mathbf{x}_1	X (a mistake)	1.	Disadvantage: we need
2	\mathbf{v}_1	\mathbf{x}_2	$\sqrt{(\text{correct!})}$		used in learning. This
3	\mathbf{v}_1	\mathbf{X}_3	\checkmark		can be expensive.
4	\mathbf{v}_1	\mathbf{x}_4	X (a mistake)	2	Retter: use a
5	\mathbf{v}_2	\mathbf{X}_5	\checkmark	<i>–</i> 1	deterministic
6	\mathbf{v}_2	\mathbf{x}_6	\checkmark		approximation to this: a
7	\mathbf{v}_2	\mathbf{X}_7	\checkmark		sum of the \mathbf{v}_k 's, weighted
8	\mathbf{v}_2	\mathbf{x}_8	Х		by m _k /m
9	\mathbf{v}_3	\mathbf{x}_9	\checkmark		
10	\mathbf{V}_3	\mathbf{X}_{10}	Х		

From Freund & Schapire, 1998: Classifying digits with VP

Test Erori

Breaking it down: the perceptron

- Let \mathbf{v}_0 be an all-zeros vector
- Let k=0
- For each "epoch" t=1,2,....T:
 - Randomly shuffle the examples -- voting proof wants them i.i.d.
 - For each example **x**_i, y_i :
 - $\text{ If } \mathbf{v_k} \cdot \mathbf{x_i} \, y_i < 0, \text{ then } -- a \text{ mistake was made} \\ * \mathbf{v_{k+1}} \leftarrow \mathbf{v_k} + \mathbf{x_i} \, y_i & -- update \text{ the perceptron} \\ * k \leftarrow k+1 \\ \end{array}$

Breaking it down: the perceptron

- Let **v** be an all-zeros vector
- For each "epoch" t=1,2,....T:
 - Randomly shuffle the examples -- voting proof wants them i.i.d.
 - For each example **x**_i, y_i:

- If $\mathbf{v} \cdot \mathbf{x}_i y_i < 0$, then -- a mistake was made $\mathbf{v} \leftarrow \mathbf{v} + \mathbf{x}_i y_i$ -- update the perceptron

Breaking it down: the voted perceptron

- Let \mathbf{v}_0 be an all-zeros vector; $\mathbf{m}_0 = 0$; k=0; m=0
- Let **a** be an all-zeros vector
- For each "epoch" t=1,2,....T:
 - Randomly shuffle the examples -- voting proof wants them i.i.d.
 - For each example **x**_i, y_i:

 $m_{k+1} \leftarrow 1$

 $\gg k \leftarrow k + 1$

- m←m+1
- If $\mathbf{v}_k \cdot \mathbf{x}_i \mathbf{y}_i < 0$, then *--- a mistake was made*
 - » \mathbf{a} ← \mathbf{a} + \mathbf{m}_k \mathbf{v}_k -- update the average
 - » $\mathbf{v}_{k+1} \leftarrow \mathbf{v}_{k+1} \mathbf{x}_i y_i$ -- update the perceptron
 - -- initialize the weight of k-th perceptron
- Else: $m_k \leftarrow m_k + 1$ -- upweight the k-th classifier
- $\mathbf{a} = \mathbf{a} + \mathbf{m}_k \mathbf{v}_k$
- **a** = **a** / m

ASIDE: SPARSE VECTORS

Voted perceptron and text

- One important case: *sparse* examples, where example example has only a few non-zero features.
- Example: $\mathbf{x}=(x_1, x_2, \dots, x_n)$ represents an *d*-word document
 - $-x_i$ = number of occurrences of word *i*
 - words #1: *aaliyeh* #2:*aardvark* ... #46737: *zymurgy*
 - -Usually $s \ll m$
 - $-2\text{-Norm of } \mathbf{x} < d \dots \text{ so } R^2 < d^2$
 - Most of the x_i 's are zero

Voted perceptron and sparse vectors

• A (Java) vector is not a good representation for this:

1	2	3	4	5	6	7	8	9	•••
0	0	0	0	1	0	0	0	3	•••

• Better: record only the indices and contents of the nonzero values

(5,1),(9,3),...

- This is a *sparse vector* same API, different implementation
- Matlab implements sparse vectors and matrices
 they will be much faster when your data is sparse.
- Another kind of sparsity we care about: sparse *classifiers* (most *weights* are zero)