Semi-Supervised Learning

William Cohen

Outline

- The general idea and an example (NELL)
- Some types of SSL
 - Margin-based: transductive SVM
 - Logistic regression with entropic regularization
 - Generative: seeded k-means
 - Nearest-neighbor like: graph-based SSL

INTRO TO SEMI-SUPERVISED LEARNING (SSL)

Semi-supervised learning

- Given:
 - A pool of labeled examples L
 - A (usually larger) pool of unlabeled examples U
- Option 1 for using L and U :
 - Ignore U and use supervised learning on L
- Option 2:
 - Ignore labels in L+U and use k-means, etc find clusters; then label each cluster using L
- Question:
 - Can you use both L and U to do better?

SSL is Somewhere Between Clustering and Supervised Learning

SSL is Between <u>Clustering</u> and SL

What is a natural grouping among these objects?

Clustering is subjective

Simpson's Family

School Employees

slides: Bhavana Dalvi

SSL is Between <u>Clustering</u> and SL

maybe this clustering is as good as the other

SSL is Between Clustering and SL

SSL is Between Clustering and <u>SL</u>

SSL is Between Clustering and <u>SL</u>

SSL is <u>Between</u> Clustering and SL

SSL is <u>Between</u> Clustering and SL

SSL is <u>Between</u> Clustering and SL

SSL in Action: The NELL System

Outline

- The general idea and an example (NELL)
- Some types of SSL
 - Margin-based: transductive SVM
 - Logistic regression with entropic regularization
 - Generative: seeded k-means
 - Nearest-neighbor like: graph-based SSL

TRANSDUCTIVE SVM

Two Kinds of Learning

- Inductive SSL:
 - Input: training set
 - $(x_1, y_1), ..., (x_n, y_n)$
 - x_{n+1} , x_{n+2} ,..., x_{n+m}
 - Output: classifier
 - f(x) = y
 - Classifier can be run on any test example x

- Transductive SSL:
 - Input: training set
 - $(x_1, y_1), ..., (x_n, y_n)$
 - x_{n+1} , x_{n+2} ,..., x_{n+m}
 - Output: classifier
 - $f(x_i) = y$
 - Classifier is only defined for x_i's seen at training time

Instead of finding maximum margin between labelled points, optimize over both margin and labels of unlabelled points.

Instead of finding maximum margin between labelled points, optimize over both margin and labels of unlabelled points.

Instead of finding maximum margin between labelled points, optimize over both margin and labels of unlabelled points.

Instead of finding maximum margin between labelled points, optimize over both margin and labels of unlabelled points.

Not a convex problem – need to do some sort of search to guess the labels for the unlabeled examples

SSL using regularized SGD for logistic regression

- 1. $P(y|x) = logistic(x \cdot w)$
- 2. Define loss function

$$LCL_{D}(\mathbf{w}) = \sum_{i} \log P(y_{i} | \mathbf{x}_{i}, \mathbf{w}) - \mu \| \mathbf{w} \|_{2}^{2}$$

3. Differentiate the function and use gradient descent to learn

SSL using regularized SGD for logistic regression

- 1. $P(y|x) = logistic(x \cdot w)$
- 2. Define loss function

$$LCL_{D}(\mathbf{w}) \equiv \sum_{i} \log P(y_{i} | \mathbf{x}_{i}, \mathbf{w}) - \mu \| \mathbf{w} \|_{2}^{2}$$

$$-\sum_{j} \sum_{y'} P(y' | \mathbf{x}_{j}, \mathbf{w}) \log P(y' | \mathbf{x}_{j}, \mathbf{w})$$

Entropy of predictions on the unlabeled examples

3.

D

Sample Entropy of a Labeled Dataset

- *S* is a sample of training examples
- p_{\oplus} is the proportion of positive examples in S.
- p_{\ominus} is the proportion of negative examples in S.
- Entropy measures the impurity of *S*.

 $H(S) \equiv -p_{\oplus} \log_2 p_{\oplus} - p_{\ominus} \log_2 p_{\ominus}$

Logistic regression with entropic regularization High entropy Low example: entropy high example: (+)probability of very being in confident in either class one class

Again, a convex problem – need to do some sort of search to guess the labels for the unlabeled examples

SEMI-SUPERVISED K-MEANS AND MIXTURE MODELS

k-means

Common Heuristic: The Lloyd's method

Input: A set of n datapoints $x^1, x^2, ..., x^n$ in \mathbb{R}^d

Initialize centers $c_1, c_2, ..., c_k \in \mathbb{R}^d$ and clusters $C_1, C_2, ..., C_k$ in any way.

Repeat until there is no further change in the cost.

- For each j: $C_j \leftarrow \{x \in S \text{ whose closest center is } c_j\}$
- For each j: $c_i \leftarrow mean of C_i$

K-Means

Algorithm

- 1. Decide on a value for k.
- 2. Initialize the *k* cluster centers randomly if necessary.
- 3. Decide the class memberships of the *N* objects by assigning them to the nearest cluster centroids (aka the center of gravity or mean)

$$\vec{\mu}_k = \frac{1}{\mathcal{C}_k} \sum_{i \in \mathcal{C}_k} \vec{x}_i$$

- 4. Re-estimate the *k* cluster ce ders, by assuming the memberships found above are correct.
- 5. If none of the *N* objects changed membership in the last iteration, exit. Otherwise go to 3.

Seeded k-means

Algorithm

- 1. Decide on a value for k. k is the number of classes
- 2. Initialize the *k* cluster centers using the labeled "seed" data
- 3. Decide the class memberships of the *N* objects by assigning them to the nearest cluster centroids (aka the center of gravity or mean)

$$\vec{\mu}_k = \frac{1}{\mathcal{C}_k} \sum_{i \in \mathcal{C}_k} \vec{x}_i$$

except keep the seeds in the class they are *known* to belong to

- Re-estimate the k cluster centers, by assuming the memberships found above are correct.
- 5. If none of the *N* objects changed membership in the last iteration, exit. Otherwise go to 3.

Basu and Mooney ICML 2002

20 Newsgroups dataset

Outline

- The general idea and an example (NELL)
- Some types of SSL
 - Margin-based: transductive SVM
 - Logistic regression with entropic regularization
 - Generative: seeded k-means
 - Some recent extensions....
 - Nearest-neighbor like: graph-based SSL

Seeded k-means for a <u>hierarchical</u> classification tasks

Simple extension:

- 1. Don't assign to one of K classes: instead make a decision about *every* class in the ontology
 - example \rightarrow {1,...K} example \rightarrow 00010001
- 2. Pick "closest" bit vector consistent with constraints
 - this is an (ontology-sized) optimization problem that you solve independently for each example

with one

bit for each

category

Seeded k-means

Algorithm

- 1. Decide on a value for k. k is the number of classes
- 2. Initialize the *k* cluster centers using the labeled "seed" data
- 3. Decide the class memberships of the *N* objects by assigning them

to the best consistent set of categories from the ontology

$$ec{\mu}_k = rac{1}{\mathcal{C}_k} \sum_{i \in \mathcal{C}_k} ec{x}_i$$

except keep the seeds in the class<u>es</u> they are *known* to belong to

- Re-estimate the k cluster centers, by assuming the memberships found above are correct.
- 5. If none of the *N* objects changed membership in the last iteration, exit. Otherwise go to 3.

Automatic Gloss Finding for a Knowledge Base Glosses: Natural language definitions of named entities.

E.g. "Microsoft" is an American multinational corporation headquartered in *Redmond that develops, manufactures, licenses, supports and sells* computer software, consumer electronics and personal computers and services ...

- Input: Knowledge Base i.e. a set of concepts (e.g. company) and entities belonging to those concepts (e.g. Microsoft), and a set of potential glosses.
- **Output:** Candidate glosses matched to relevant entities in the KB. "Microsoft is an American multinational corporation headquartered *in Redmond ..."* is mapped to **entity "Microsoft" of type "Company"**.

[Automatic Gloss Finding for a Knowledge Base using Ontological] **Constraints**, Bhavana Dalvi Mishra, Einat Minkov, Partha Pratim Talukdar, and William W. Cohen, 2014, Under submission]

Training a clustering model

GLOFIN on NELL Dataset

275 categories, 247K candidate glosses, #train=20K, #test=227K

Outline

- The general idea and an example (NELL)
- Some types of SSL
 - Margin-based: transductive SVM
 - Logistic regression with entropic regularization
 - Generative: seeded k-means
 - Nearest-neighbor like: graph-based SSL

- Idea: construct a graph connecting the most similar examples (k-NN graph)
- Intuition: nearby points should have similar labels – labels should "propagate" through the graph
- Formalization: try and minimize "energy" defined as:

energy: $E(\mathbf{y}) = \frac{1}{2} \sum_{i,j} w_{ij} \left(y_i - y_j \right)^2$

Harmonic fields – Gharamani, Lafferty and Zhu

 Result 1: at the minimal energy state, each node's value is a weighted average of its neighbor's weights:

$$\Delta \mathbf{f} = 0 \text{ or } f_i = rac{\sum_{j \sim i} w_{ij} f_j}{\sum_{j \sim i} w_{ij}}, \ i \in U$$

energy: $E(\mathbf{y}) = \frac{1}{2} \sum_{i,j} w_{ij} (y_i - y_j)^2$

"Harmonic field" LP algorithm

- Result 2: you can reach the minimal energy state with a simple iterative algorithm:
 - -Step 1: For each seed example (x_i, y_i) :

• Let
$$V^0(i,c) = [|y_i = c|]$$

- -Step 2: for t=1,...,T --- *T* is about 5
 - Let V^{t+1}(i,c) =weighted average of V^{t+1}(j,c) for all j that are linked to i, and renormalize

$$V^{t+1}(i,c) = \frac{1}{Z} \sum_{j} w_{i,j} V^{t}(j,c)$$

• For seeds, reset $V^{t+1}(i,c) = [|y_i = c|]$

Harmonic fields – Gharamani, Lafferty and Zhu

This family of techniques is called "Label propagation"

Harmonic fields – Gharamani, Lafferty and Zhu

This family of techniques is called "Label propagation"

This experiment points out some of the issues with LP:

- 1. What distance metric do you use?
- 2. What energy function do you minimize?
- 3. What is the right value for K in your K-NN graph? Is a K-NN graph right?
- 4. If you have lots of data, how expensive is it to build the graph?

NELL: Uses Co-EM $\sim =$ HF

Semi-Supervised Bootstrapped Learning via Label Propagation

Semi-Supervised Bootstrapped Learning via Label Propagation

Difference: graph construction is not instanceto-instance but instance-to-feature

Some other general issues with SSL

- How much unlabeled data do you want?
 - Suppose you're optimizing $J = J_L(L) + J_U(U)$
 - If |U| >> |L| does J_U dominate J?
 - If so you're basically just clustering
 - Often we need to balance J_L and J_U
- Besides L, what other information about the task is useful (or necessary)?
 - Common choice: relative frequency of classes
 - Various ways of incorporating this into the optimization problem

Key and not-so-key points

- The general idea : what is SSL and when do you want to use it?
 - NELL as an example of SSL
- Different SSL methods:
 - margin-based approach: start with a supervised learner
 - transductive SVM: what's optimized and why
 - logistic reg with entropic regularization
 - k-means versus seeded k-means: start with clustering
 - The core algorithm and what
 - Extension to hierarchical case and GLOFIN
 - nearest-neighbor like: graph-based SSL and LP
 - The HF algorithm and the energy function being minimized