Semi-Supervised Learning

William Cohen
Outline

• The general idea and an example (NELL)
• Some types of SSL
 – Margin-based: transductive SVM
 • Logistic regression with entropic regularization
 – Generative: seeded k-means
 – Nearest-neighbor like: graph-based SSL
INTRO TO SEMI-SUPERVISED LEARNING (SSL)
Semi-supervised learning

• Given:
 – A pool of labeled examples L
 – A (usually larger) pool of unlabeled examples U

• Option 1 for using L and U:
 – Ignore U and use supervised learning on L

• Option 2:
 – Ignore labels in L+U and use k-means, etc find clusters; then label each cluster using L

• Question:
 – Can you use both L and U to do better?
SSL is Somewhere Between Clustering and Supervised Learning
SSL is Between Clustering and SL
What is a natural grouping among these objects?

Clustering is subjective

Simpson's Family School Employees Females Males

slides: Bhavana Dalvi
SSL is Between Clustering and SL

Clustering is unconstrained and may not give you what you want.

Maybe this clustering is as good as the other.
SSL is Between Clustering and SL
SSL is Between Clustering and SL
SSL is Between Clustering and SL

supervised learning with few labels is also unconstrained and may not give you what you want
SSL is **Between** Clustering and SL
SSL is *Between* Clustering and SL

This clustering isn’t consistent with the labels.
SSL is **Between** Clustering and SL

|Predicted Green|/|U| ~ 50%
SSL in Action: The NELL System
Outline

• The general idea and an example (NELL)
• Some types of SSL
 – Margin-based: transductive SVM
 • Logistic regression with entropic regularization
 – Generative: seeded k-means
 – Nearest-neighbor like: graph-based SSL
TRANSDUCTIVE SVM
Two Kinds of Learning

• **Inductive SSL:**
 – Input: training set
 • \((x_1,y_1),\ldots,(x_n,y_n)\)
 • \(x_{n+1}, x_{n+2}, \ldots, x_{n+m}\)
 – Output: classifier
 • \(f(x) = y\)
 – Classifier can be run on any test example \(x\)

• **Transductive SSL:**
 – Input: training set
 • \((x_1,y_1),\ldots,(x_n,y_n)\)
 • \(x_{n+1}, x_{n+2}, \ldots, x_{n+m}\)
 – Output: classifier
 • \(f(x_i) = y\)
 – Classifier is only defined for \(x_i\)'s *seen at training time*
Transductive Support Vector Machines

Instead of finding maximum margin between labelled points, optimize over both margin and labels of unlabelled points.
Transductive Support Vector Machines

Instead of finding maximum margin between labelled points, optimize over both margin and labels of unlabelled points.

\[
\text{minimize}_w \quad w \cdot w \\
(w \cdot x_j + b) \quad y_j \geq 1, \quad \forall j
\]
Transductive Support Vector Machines

Instead of finding maximum margin between labelled points, optimize over both margin and labels of unlabelled points.

\[
\begin{align*}
\text{minimize}_{w, \{\hat{y}_1, \ldots, \hat{y}_{n_U}\}} & \quad w^T w \\
(w^T x_j + b) y_j & \geq 1, \quad \forall j = 1, \ldots, n_L \\
(w^T x_u + b) \hat{y}_u & \geq 1, \quad \forall u = 1, \ldots, n_U \\
\hat{y}_u & \in \{-1, +1\}, \quad \forall u = 1, \ldots, n_U
\end{align*}
\]

Tranductive SVM
Transductive Support Vector Machines

Instead of finding maximum margin between labelled points, optimize over both margin and labels of unlabelled points.

Not a convex problem – need to do some sort of search to guess the labels for the unlabeled examples
SSL using regularized SGD for logistic regression

1. \(P(y \mid x) = \text{logistic}(x \cdot w) \)

2. Define loss function

\[
L_{CLD}(w) \equiv \sum_i \log P(y_i \mid x_i, w) - \mu \|w\|^2
\]

3. Differentiate the function and use gradient descent to learn
SSL using regularized SGD for logistic regression

1. $P(y|x) = \text{logistic}(x \cdot w)$

2. Define loss function

$$L_{CL_D}(w) = \sum_i \log P(y_i | x_i, w) - \mu \|w\|^2 - \sum_j \sum_{y'} P(y' | x_j, w) \log P(y' | x_j, w)$$

3. **Sample Entropy of a Labeled Dataset**

- S is a sample of training examples
- p_Θ is the proportion of positive examples in S.
- p_Θ is the proportion of negative examples in S.
- Entropy measures the impurity of S.

$$H(S) \equiv -p_\Theta \log_2 p_\Theta - p_\Theta \log_2 p_\Theta$$
Logistic regression with entropic regularization

Again, a convex problem – need to do some sort of search to guess the labels for the unlabeled examples.
SEMI-SUPERVISED
K-MEANS AND MIXTURE MODELS
k-means

Common Heuristic: The Lloyd's method

Input: A set of n datapoints $x^1, x^2, ..., x^n$ in \mathbb{R}^d

Initialize centers $c_1, c_2, ..., c_k \in \mathbb{R}^d$ and clusters $C_1, C_2, ..., C_k$ in any way.

Repeat until there is no further change in the cost.

- For each j: $C_j \leftarrow \{x \in S \text{ whose closest center is } c_j\}$
- For each j: $c_j \leftarrow \text{mean of } C_j$
K-means Clustering: Step 1
K-means Clustering: Step 2
K-means Clustering: Step 3
K-means Clustering: Step 4
K-means Clustering: Step 5
K-Means

Algorithm

1. Decide on a value for k.
2. Initialize the k cluster centers randomly if necessary.
3. Decide the class memberships of the N objects by assigning them to the nearest cluster centroids (aka the center of gravity or mean)

$$\bar{\mu}_k = \frac{1}{C_k} \sum_{i \in C_k} \bar{x}_i$$

4. Re-estimate the k cluster centers, by assuming the memberships found above are correct.
5. If none of the N objects changed membership in the last iteration, exit. Otherwise go to 3.
Seeded k-means

Algorithm

1. Decide on a value for k.
2. Initialize the k cluster centers using the labeled “seed” data.
3. Decide the class memberships of the N objects by assigning them to the nearest cluster centroids (aka the center of gravity or mean) except keep the seeds in the class they are known to belong to.

\[\bar{\mu}_k = \frac{1}{C_k} \sum_{i \in C_k} x_i \]

4. Re-estimate the k cluster centers, by assuming the memberships found above are correct.
5. If none of the N objects changed membership in the last iteration, exit. Otherwise go to 3.

k is the number of classes
Seeded k-means (constrained k-means)

Just use labeled data to initialize the clusters

Some old baseline I'm not going to even talk about

Unsupervised k-means

20 Newsgroups dataset
Outline

• The general idea and an example (NELL)
• Some types of SSL
 – Margin-based: transductive SVM
 • Logistic regression with entropic regularization
 – Generative: seeded k-means
 • Some recent extensions....
 – Nearest-neighbor like: graph-based SSL
Seeded k-means for a hierarchical classification tasks

Simple extension:
1. Don’t assign to one of K classes: instead make a decision about every class in the ontology
 • example $\rightarrow \{1, \ldots, K\}$ example $\rightarrow 00010001$
2. Pick “closest” bit vector consistent with constraints
 • this is an (ontology-sized) optimization problem that you solve independently for each example
Seeded k-means

Algorithm

1. Decide on a value for k.
2. Initialize the k cluster centers.
3. Decide the class memberships of the N objects by assigning them to the best consistent set of categories from the ontology except keep the seeds in the classes they are known to belong to.

$$
\overline{\mu}_k = \frac{1}{C_k} \sum_{i \in C_k} \overline{x}_i
$$

4. Re-estimate the k cluster centers, by assuming the memberships found above are correct.
5. If none of the N objects changed membership in the last iteration, exit. Otherwise go to 3.
Automatic Gloss Finding for a Knowledge Base

- **Glosses**: Natural language definitions of named entities.

 E.g. “Microsoft” is an American multinational corporation headquartered in Redmond that develops, manufactures, licenses, supports and sells computer software, consumer electronics and personal computers and services ...

- **Input**: Knowledge Base i.e. a set of concepts (e.g. company) and entities belonging to those concepts (e.g. Microsoft), and a set of potential glosses.

- **Output**: Candidate glosses matched to relevant entities in the KB. “Microsoft is an American multinational corporation headquartered in Redmond ...” is mapped to entity “Microsoft” of type “Company”.

Example: Gloss finding
Example: Gloss finding
Example: Gloss finding
Example: Gloss finding

G1: Banana is a fruit that is green and becomes yellow when ripe.

G2: Apple is a fruit from apple tree. Apple peels contain ursolic acid.

G3: Apple. Formerly Apple computer Inc. is an american company headquarted in Cupertino.

G4: Microsoft is a software company headquarted in Redmond and released Windows OS.....
Training a clustering model

G1: Banana is a fruit that is green and becomes yellow when ripe.

G2: Apple is a fruit from apple tree. Apple peels contain ursolic acid.

G3: Apple, Formerly Apple computer Inc, is an American company headquartered in Cupertino.

G4: Microsoft is a software company headquarter in Redmond and released Windows OS....
GLOFIN: Clustering glosses

Gloss for "Banana"

Gloss for "Microsoft"

- Green: Vegetable
- Diamond: Fruit
- Triangles: Company
- Square: University
GLOFIN: Clustering glosses

Gloss for "Apple a Fruit"

Gloss for "Apple a Company"

Vegetable
Fruit
Company
University
GLOFIN: Clustering glosses
GLOFIN: Clustering glosses
GLOFIN: Clustering glosses
GLOFIN: Clustering glosses
GLOFIN on NELL Dataset

275 categories, 247K candidate glosses, #train=20K, #test=227K
Outline

• The general idea and an example (NELL)
• Some types of SSL
 — Margin-based: transductive SVM
 • Logistic regression with entropic regularization
 — Generative: seeded k-means
 — Nearest-neighbor like: graph-based SSL
Idea: construct a graph connecting the most similar examples (k-NN graph)

Intuition: nearby points should have similar labels – labels should “propagate” through the graph

Formalization: try and minimize “energy” defined as:

\[E(y) = \frac{1}{2} \sum_{i,j} w_{ij} (y_i - y_j)^2 \]

In this example \(y \) is a length-10 vector

happy, low energy

unhappy, high energy

Harmonic fields – Gharamani, Lafferty and Zhu
Result 1: at the minimal energy state, each node’s value is a **weighted average** of its neighbor’s weights:

$$\Delta f = 0 \text{ or } f_i = \frac{\sum_{j \sim i} w_{ij} f_j}{\sum_{j \sim i} w_{ij}}, \; i \in U$$

energy: $$E(y) = \frac{1}{2} \sum_{i,j} w_{ij} (y_i - y_j)^2$$

- Happy, low energy
- Unhappy, high energy

Harmonic fields – Gharamani, Lafferty and Zhu
“Harmonic field” LP algorithm

• Result 2: you can reach the minimal energy state with a simple iterative algorithm:
 – Step 1: For each seed example \((x_i, y_i)\):
 • Let \(V^0(i, c) = || y_i = c ||\)
 – Step 2: for \(t=1,\ldots,T\) --- \(T\) is about 5
 • Let \(V^{t+1}(i, c) = \text{weighted average of } V^{t+1}(j, c)\) for all \(j\) that are linked to \(i\), and renormalize
 \[
 V^{t+1}(i, c) = \frac{1}{Z} \sum_j w_{i,j} V^t(j, c)
 \]
 • For seeds, reset \(V^{t+1}(i, c) = || y_i = c ||\)
This family of techniques is called “Label propagation”
This family of techniques is called “Label propagation.”

This experiment points out some of the issues with LP:
1. What distance metric do you use?
2. What energy function do you minimize?
3. What is the right value for K in your K-NN graph? Is a K-NN graph right?
4. If you have lots of data, how expensive is it to build the graph?
NELL: Uses Co-EM $\sim=$ HF

Extract cities:
- Paris
- Pittsburgh
- Seattle
- Cupertino

Examples
- San Francisco, Austin, denial
- is home of traits such as
- anxiety, selfishness, Berlin

Features
- mayor of
- live in
- is home of traits such as
Semi-Supervised Bootstrapped Learning via Label Propagation
Semi-Supervised Bootstrapped Learning via Label Propagation

Information from other categories tells you “how far” (when to stop propagating)

Nodes “near” seeds

Paris

mayor of \textit{arg1}

Pittsburgh

live in \textit{arg1}

San Francisco

Austin

Nodes “far from” seeds

Seattle

denial

denial

traits such as \textit{arg1}

arrogance

selfishness

selfishness
Difference: graph construction is not instance-to-instance but instance-to-feature
Some other general issues with SSL

• How much unlabeled data do you want?
 – Suppose you’re optimizing $J = J_L(L) + J_U(U)$
 – If $|U| >> |L|$ does J_U dominate J?
 • If so you’re basically just clustering
 – Often we need to balance J_L and J_U

• Besides L, what other information about the task is useful (or necessary)?
 – Common choice: relative frequency of classes
 – Various ways of incorporating this into the optimization problem
Key and not-so-key points

• The general idea: what is SSL and when do you want to use it?
 – NELL as an example of SSL

• Different SSL methods:
 – margin-based approach: start with a supervised learner
 • transductive SVM: what’s optimized and why
 • logistic reg with entropic regularization
 – k-means versus seeded k-means: start with clustering
 • The core algorithm and what
 • Extension to hierarchical case and GLOFIN
 – nearest-neighbor like: graph-based SSL and LP
 • The HF algorithm and the energy function being minimized