Some Intuitions behind PCA

William W. Cohen

October 30, 2013

1 The covariance matrix C_X

Consider a data matrix X where the t-th row corresponds to an instance \mathbf{x}^t , with n instances each with m features.

$$X = \begin{bmatrix} x_1^1 & x_2^1 & \dots & x_m^1 \\ \vdots & \ddots & \vdots \\ x_1^n & \dots & x_m^n \end{bmatrix} = \begin{bmatrix} \vdots \\ -\mathbf{x}^t - \\ \vdots \end{bmatrix}$$

Sometimes, to remind myself I'm talking about feature values, I will use f_j^t to denote the *j*-th feature of \mathbf{x}^t (aka, X(t, j)) Likewise I will use \mathbf{f}_i to denote the *i*-th column vector of X: the vector of all values taken on by the *i*-th feature of the examples.

$$X = \begin{bmatrix} x_1^1 & x_2^1 & \dots & x_m^1 \\ \vdots & \ddots & & \vdots \\ x_1^n & \dots & & x_m^n \end{bmatrix} = \begin{bmatrix} & & | & \\ & & | & \\ & & | & \end{bmatrix}$$

If you like, \mathbf{f}_i is a "signature" of the *i*-th feature on the dataset X. Sometimes I will use F_i for the corresponding random variable.

A first observation: consider the matrix $C_X = X^T X$, whose entries are the pairwise inner products, not of the instances \mathbf{x}^t , but of the column vectors \mathbf{f}_i of the matrix X. So the entries of C_X measure the similarity of two features:

$$C_X(i,j) = \sum_t f_i^t f_j^t$$

The notation C_X is chosen because if X has a zero mean, then $\frac{1}{n}C_X(i,j)$ is the sample covariance of features i and j on the sample X.

if you're happier thinking about discrete features, then another way of thinking about this is the following: if the features f_i are always +1 or -1, then define

AGREE
$$(i, j)$$
 = number of examples $\mathbf{x}^t \in X$ where $f_i^t \neq f_j^t$

and define DISAGREE(i, j) analogously. It is also true that

$$C_X(i,j) = \text{AGREE}(i,j) - \text{DISAGREE}(i,j)$$

and that

$$\frac{1}{n}C_X(i,j) = P(f_i^t = f_j^t) - P(f_i^t \neq f_j^t)$$

where the probabilities are the empirical probabilities taken over the sample X. To summarize: $C_X(i, j)$ is (some sort of) measure of agreement between the features \mathbf{f}_i and \mathbf{f}_j , and if for all the features $f_i^t \in \{+1, -1\}$, then $C_X(i, j) \in [-1, +1]$.

2 Eigenvectors of C_X are "consistent predictors"

Suppose I wanted to predict the likely value of F_i from another feature F_j . This is easiest if $C_X(i, j)$ is close to an extreme; then the obvious cases are

- $C_X(i,j) \approx +1$ and $F_j = +1$: predict $F_i = +1$.
- $C_X(i,j) \approx -1$ and $F_j = +1$: predict $F_i = -1$.
- $C_X(i,j) \approx +1$ and $F_j = -1$: predict $F_i = -1$.
- $C_X(i,j) \approx -1$ and $F_j = -1$: predict $F_i = +1$.

On the other hand, if $C_X(i, j) \approx 0$, then it seems that no prediction for F_i can be made confidently. So a simple formula for predicting F_i from F_j using a single real number in [-1, +1], where small predicted values indicate low confidence, might be

 f_i is predicted as $C_X(i,j) \cdot f_j$

Of course, f_i could be predicted just as easily from $f_{j'}$ for $j' \neq j$. If I wanted to combine all of these predictions I might weight them all equally to get

$$f_i$$
 is predicted as $\frac{1}{n} \sum_{j \neq i} C_X(i, j) \cdot f_j$ (1)

Now, suppose I want to predict an entire instance \mathbf{e} that is "likely" according to the sample X. A natural goal is a set of feature values $\mathbf{e} = \langle e_1, \ldots, e_m \rangle$ that are internally consistent with respect to the (confidence-weighted) prediction scheme of Equation 1, i.e., a potential instance \mathbf{e} where

$$\forall i, e_i = \frac{1}{n} \sum_j C_X(i, j) e_j$$

A slightly weaker condition would be that there's some constant λ so that

$$\forall i, \lambda e_i = \frac{1}{n} \sum_j C_X(i, j) e_j$$

or in other words

$$\exists \lambda : \lambda \mathbf{e} = C_X \mathbf{e}$$

or in still other words, \mathbf{e} is an eigenvector of C_X .

To summarize: eigenvectors \mathbf{e}^i of C_X are the same length as instances \mathbf{x} , and they have the nice property that their feature values are internally consistent with respect to the (admittedly simple-minded) prediction scheme of Equation 1.

The eigenvectors are thus broadly similar to clusters in k-means, or mixture components in a generative model, in that some subsets of the features can be used to predict the other features' values.

3 Using the consistent predictors

Let $\mathbf{e}^1, \ldots, \mathbf{e}^m$ be the eigenvectors of C_X , in decreasing order by their eigenvalues, and let Λ be the diagonal matrix of eigenvalues. Let E be a matrix where the row vectors are the \mathbf{e}^i 's, and let E_k be a matrix with just the first k eigenvectors:

$$E = \begin{bmatrix} e_1^1 & e_2^1 & \dots & e_m^1 \\ \vdots & \ddots & \vdots \\ e_1^k & \dots & e_m^k \end{bmatrix} = \begin{bmatrix} \vdots \\ -\mathbf{e}^i - \\ \vdots \end{bmatrix}$$

Let's consider the matrix product $Z = XE^T$, or more interestingly perhaps, the matrix $Z_k = XE_k^T$:

$$Z_{k} = \begin{bmatrix} x_{1}^{1} & x_{2}^{1} & \dots & x_{m}^{1} \\ \vdots & \ddots & \vdots \\ x_{1}^{n} & \dots & x_{m}^{n} \end{bmatrix} \times \begin{bmatrix} e_{1}^{1} & e_{1}^{2} & \dots & e_{k}^{1} \\ e_{2}^{1} & e_{2}^{2} & \dots & e_{k}^{2} \\ \vdots & \ddots & \vdots \\ e_{m}^{1} & \dots & e_{k}^{m} \end{bmatrix} = \begin{bmatrix} \mathbf{x}^{1} \cdot \mathbf{e}^{1} & \mathbf{x}^{2} \cdot \mathbf{e}^{2} & \dots & \mathbf{x}^{1} \cdot \mathbf{e}^{k} \\ \vdots & \ddots & \vdots \\ \mathbf{x}^{n} \cdot \mathbf{e}^{1} & \mathbf{x}^{n} \cdot \mathbf{e}^{2} & \dots & \mathbf{x}^{n} \cdot \mathbf{e}^{k} \end{bmatrix}$$

This matrix has one row \mathbf{z}^t for each instance \mathbf{x}^t , but the columns (features) are different. Instead of the original feature space, we now have the values

 $\mathbf{z}^t = \langle z_1^t, \dots, z_k^t \rangle = \langle \mathbf{x}^t \cdot \mathbf{e}^1, \dots, \mathbf{x}^t \cdot \mathbf{e}^k \rangle$

If you think of dot-product as kind of similarity score (as I do) then the *i*-th feature of \mathbf{z}^t is the similarity of \mathbf{x}^t to the *i*-th eigenvector \mathbf{e}^i . In otherwords, the instances \mathbf{x}^t have been mapped to a new space where each dimension indicates how similar/different the instance \mathbf{x}^t to some consistently-predictable potential instance.

If you again think of the eigenvectors as similar to clusters, or mixture components, the new space that \mathbf{x}^t has been mapped into is like a space of posteriors for the components.

4 From PCA to SVD

We started out looking at the correlations between the variables of X, by computing the dot-products of the "feature signatures" \mathbf{f}_i , via computing $C_X = X^T X$. What if we do the same trick to Z? It turns out the answer is "not much": in particular, the corresponding signatures in Z are not correlated.

Let's use \mathbf{g}_i for the *i*-th column of Z:

$$Z = XE^{T} = \begin{bmatrix} \vdots \\ -\mathbf{z}^{t} \\ \vdots \end{bmatrix} = \begin{bmatrix} & | \\ \cdots \\ \mathbf{g}_{i} \\ & | \end{bmatrix}$$

In $C_Z = Z^T Z$, what do the entries look like? Well,

$$C_Z(i,j) = \mathbf{g}_i \cdot \mathbf{g}_j$$

and, treating \mathbf{e}^{j} as a column vector, $\mathbf{g}_{i} = X\mathbf{e}_{i}$. So

$$C_Z(i,j) = \mathbf{g}_i \cdot \mathbf{g}_j$$

= $\mathbf{g}_i^T \mathbf{g}_j$
= $(X \mathbf{e}_i)^T (X \mathbf{e}_j)$
= $\mathbf{e}_i^T X^T X \mathbf{e}_j$
= $\mathbf{e}_i^T (X^T X) \mathbf{e}_j$
= $\mathbf{e}_i^T \lambda_j \mathbf{e}_j$
= $\lambda_j \mathbf{e}_i^T \mathbf{e}_j$

the last step holding since \mathbf{e}_j is an eigenvector of $X^T X$. If we assume we have scaled the \mathbf{e}_i 's to unit L2 norm, and recall that the eigenvectors are all orthogonal, then we finally get that

$$C_Z(i,j) = \begin{cases} \lambda_i & \text{if } i = j \\ 0 & else \end{cases}$$

So Z is a somewhat special transformation of X: in this transformed space, the correlation coefficient between any pair of distinct variables is zero, and the variance of each individual variable is λ_i .

If we like, we can also rescale Z so that it has unit variances as well. Let Σ be a diagonal matrix with $\Sigma(i, i) = \sqrt{\lambda_i}$, and consider $U = Z\Sigma^{-1}$. It's pretty simple to show that $U^T U = I$.

So this suggests some alternative ways to represent the original matrix X. Since $Z = XE^T$, and $Z = U\Sigma$, we have

$$\begin{array}{rcl} XE^T &=& Z\\ X &=& ZE\\ X &=& U\Sigma E \end{array}$$

So now X is decomposed into a product of three factors,

- U, a unit-variance matrix with uncorrelated features, formed by projecting X using PCA and scaling;
- Σ , a diagonal matrix; and
- E, the matrix of eigenvectors of C_X , aka "to self-consistent predictions".

This is called SVD, the singular valued decomposition for X: the "decomposition" is factoring X, and the "singular values" are the diagonal elements of Σ . The more usual notation is

$$X = U\Sigma V$$

An important point is that we can replace Z with Z_k and Σ with Σ_k (the first k rows and columns of Σ). The full decomposition then becomes

$$X \approx Z_k E_k = U_k \Sigma_k E_k = U_k \Sigma_k V_k$$

Note here are Z_k is a tall narrow matrix (*n* rows and *k* columns), and hence so is U_k , Σ_k is a square matrix, and E_k (aka V_k) is a long wide matrix *k* rows and *n* columns). Again, the rows of Z_k (and hence U_k) corresponding to instances \mathbf{x}^t , represented by their similarity to the first few eigenvectors $\mathbf{e}_1, \ldots, \mathbf{e}_k$. The rows of E_k (aka V_k) correspond to hypothetical instances that are "self-consistent" according to C_X .