Some Intuitions behind PCA

William W. Cohen

October 30, 2013

1 The covariance matrix C_{X}

Consider a data matrix X where the t-th row corresponds to an instance \mathbf{x}^{t}, with n instances each with m features.

$$
X=\left[\begin{array}{llll}
x_{1}^{1} & x_{2}^{1} & \ldots & x_{m}^{1} \\
\vdots & \ddots & & \vdots \\
x_{1}^{n} & \cdots & & x_{m}^{n}
\end{array}\right]=\left[\begin{array}{c}
\vdots \\
-\mathbf{x}^{t}- \\
\vdots
\end{array}\right]
$$

Sometimes, to remind myself I'm talking about feature values, I will use f_{j}^{t} to denote the j-th feature of \mathbf{x}^{t} (aka, $X(t, j)$) Likewise I will use \mathbf{f}_{i} to denote the i-th column vector of X : the vector of all values taken on by the i-th feature of the examples.

$$
X=\left[\begin{array}{llll}
x_{1}^{1} & x_{2}^{1} & \ldots & x_{m}^{1} \\
\vdots & \ddots & & \vdots \\
x_{1}^{n} & \ldots & & x_{m}^{n}
\end{array}\right]=\left[\begin{array}{lcl}
& \mid & \\
\ldots & \mathbf{f}_{i} & \ldots \\
& \mid &
\end{array}\right]
$$

If you like, \mathbf{f}_{i} is a "signature" of the i-th feature on the dataset X. Sometimes I will use F_{i} for the corresponding random variable.

A first observation: consider the matrix $C_{X}=X^{T} X$, whose entries are the pairwise inner products, not of the instances \mathbf{x}^{t}, but of the column vectors \mathbf{f}_{i} of the matrix X. So the entries of C_{X} measure the similarity of two features:

$$
C_{X}(i, j)=\sum_{t} f_{i}^{t} f_{j}^{t}
$$

The notation C_{X} is chosen because if X has a zero mean, then $\frac{1}{n} C_{X}(i, j)$ is the sample covariance of features i and j on the sample X.
if you're happier thinking about discrete features, then another way of thinking about this is the following: if the features f_{i} are always +1 or -1 , then define

$$
\operatorname{AGREE}(i, j)=\text { number of examples } \mathbf{x}^{t} \in X \text { where } f_{i}^{t} \neq f_{j}^{t}
$$

and define DISAGREE (i, j) analogously. It is also true that

$$
C_{X}(i, j)=\operatorname{AGREE}(i, j)-\operatorname{DISAGREE}(i, j)
$$

and that

$$
\frac{1}{n} C_{X}(i, j)=P\left(f_{i}^{t}=f_{j}^{t}\right)-P\left(f_{i}^{t} \neq f_{j}^{t}\right)
$$

where the probabilities are the empirical probabilities taken over the sample X. To summarize: $C_{X}(i, j)$ is (some sort of) measure of agreement between the features \mathbf{f}_{i} ande \mathbf{f}_{j}, and if for all the features $f_{i}^{t} \in\{+1,-1\}$, then $C_{X}(i, j) \in[-1,+1]$.

2 Eigenvectors of C_{X} are "consistent predictors"

Suppose I wanted to predict the likely value of F_{i} from another feature F_{j}. This is easiest if $C_{X}(i, j)$ is close to an extreme; then the obvious cases are

- $C_{X}(i, j) \approx+1$ and $F_{j}=+1$: predict $F_{i}=+1$.
- $C_{X}(i, j) \approx-1$ and $F_{j}=+1$: predict $F_{i}=-1$.
- $C_{X}(i, j) \approx+1$ and $F_{j}=-1$: predict $F_{i}=-1$.
- $C_{X}(i, j) \approx-1$ and $F_{j}=-1$: predict $F_{i}=+1$.

On the other hand, if $C_{X}(i, j) \approx 0$, then it seems that no prediction for F_{i} can be made confidently. So a simple formula for predicting F_{i} from F_{j} using a single real number in $[-1,+1]$, where small predicted values indicate low confidence, might be

$$
f_{i} \text { is predicted as } C_{X}(i, j) \cdot f_{j}
$$

Of course, f_{i} could be predicted just as easily from $f_{j^{\prime}}$ for $j^{\prime} \neq j$. If I wanted to combine all of these predictions I might weight them all equally to get

$$
\begin{equation*}
f_{i} \text { is predicted as } \frac{1}{n} \sum_{j \neq i} C_{X}(i, j) \cdot f_{j} \tag{1}
\end{equation*}
$$

Now, suppose I want to predict an entire instance \mathbf{e} that is "likely" according to the sample X. A natural goal is a set of feature values $\mathbf{e}=\left\langle e_{1}, \ldots, e_{m}\right\rangle$ that are internally consistent with respect to the (confidence-weighted) prediction scheme of Equation 1, i.e., a potential instance e where

$$
\forall i, e_{i}=\frac{1}{n} \sum_{j} C_{X}(i, j) e_{j}
$$

A slightly weaker condition would be that there's some constant λ so that

$$
\forall i, \lambda e_{i}=\frac{1}{n} \sum_{j} C_{X}(i, j) e_{j}
$$

or in other words

$$
\exists \lambda: \lambda \mathbf{e}=C_{X} \mathbf{e}
$$

or in still other words, \mathbf{e} is an eigenvector of C_{X}.
To summarize: eigenvectors \mathbf{e}^{i} of C_{X} are the same length as instances \mathbf{x}, and they have the nice property that their feature values are internally consistent with respect to the (admittedly simple-minded) prediction scheme of Equation 1.

The eigenvectors are thus broadly similar to clusters in k-means, or mixture components in a generative model, in that some subsets of the features can be used to predict the other features' values.

3 Using the consistent predictors

Let $\mathbf{e}^{1}, \ldots, \mathbf{e}^{m}$ be the eigenvectors of C_{X}, in decreasing order by their eigenvalues, and let Λ be the diagonal matrix of eigenvalues. Let E be a matrix where the row vectors are the \mathbf{e}^{i} 's, and let E_{k} be a matrix with just the first k eigenvectors:

$$
E=\left[\begin{array}{llll}
e_{1}^{1} & e_{2}^{1} & \ldots & e_{m}^{1} \\
\vdots & \ddots & & \vdots \\
e_{1}^{k} & \cdots & & e_{m}^{k}
\end{array}\right]=\left[\begin{array}{c}
\vdots \\
-\mathbf{e}^{i}- \\
\vdots
\end{array}\right]
$$

Let's consider the matrix product $Z=X E^{T}$, or more interestingly perhaps, the matrix $Z_{k}=X E_{k}^{T}$:
$Z_{k}=\left[\begin{array}{llll}x_{1}^{1} & x_{2}^{1} & \ldots & x_{m}^{1} \\ \vdots & \ddots & & \vdots \\ x_{1}^{n} & \ldots & & x_{m}^{n}\end{array}\right] \times\left[\begin{array}{llll}e_{1}^{1} & e_{1}^{2} & \ldots & e_{k}^{1} \\ e_{2}^{1} & e_{2}^{2} & \ldots & e_{k}^{2} \\ \vdots & \ddots & & \vdots \\ e_{m}^{1} & \ldots & & e_{k}^{m}\end{array}\right]=\left[\begin{array}{llll}\mathbf{x}^{1} \cdot \mathbf{e}^{1} & \mathbf{x}^{2} \cdot \mathbf{e}^{2} & \ldots & \mathbf{x}^{1} \cdot \mathbf{e}^{k} \\ \vdots & \ddots & & \vdots \\ \mathbf{x}^{n} \cdot \mathbf{e}^{1} & \mathbf{x}^{n} \cdot \mathbf{e}^{2} & \ldots & \mathbf{x}^{n} \cdot \mathbf{e}^{k}\end{array}\right]$
This matrix has one row \mathbf{z}^{t} for each instance \mathbf{x}^{t}, but the columns (features) are different. Instead of the original feature space, we now have the values

$$
\mathbf{z}^{t}=\left\langle z_{1}^{t}, \ldots, z_{k}^{t}\right\rangle=\left\langle\mathbf{x}^{t} \cdot \mathbf{e}^{1}, \ldots, \mathbf{x}^{t} \cdot \mathbf{e}^{k}\right\rangle
$$

If you think of dot-product as kind of similarity score (as I do) then the i-th feature of \mathbf{z}^{t} is the similarity of \mathbf{x}^{t} to the i-th eigenvector \mathbf{e}^{i}. In otherwords, the instances \mathbf{x}^{t} have been mapped to a new space where each dimension indicates how similar/different the instance \mathbf{x}^{t} to some consistently-predictable potential instance.

If you again think of the eigenvectors as similar to clusters, or mixture components, the new space that \mathbf{x}^{t} has been mapped into is like a space of posteriors for the components.

4 From PCA to SVD

We started out looking at the correlations between the variables of X, by computing the dot-products of the "feature signatures" \mathbf{f}_{i}, via computing $C_{X}=X^{T} X$. What if we do the same trick to Z ? It turns out the answer is "not much": in particular, the corresponding signatures in Z are not correlated.

Let's use \mathbf{g}_{i} for the i-th column of Z :

$$
Z=X E^{T}=\left[\begin{array}{c}
\vdots \\
-\mathbf{z}^{t}- \\
\vdots
\end{array}\right]=\left[\begin{array}{ccc}
& \mid & \\
\cdots & \mathbf{g}_{i} & \cdots \\
& \mid &
\end{array}\right]
$$

In $C_{Z}=Z^{T} Z$, what do the entries look like? Well,

$$
C_{Z}(i, j)=\mathbf{g}_{i} \cdot \mathbf{g}_{j}
$$

and, treating \mathbf{e}^{j} as a column vector, $\mathbf{g}_{i}=X \mathbf{e}_{i}$. So

$$
\begin{aligned}
C_{Z}(i, j) & =\mathbf{g}_{i} \cdot \mathbf{g}_{j} \\
& =\mathbf{g}_{i}^{T} \mathbf{g}_{j} \\
& =\left(X \mathbf{e}_{i}\right)^{T}\left(X \mathbf{e}_{j}\right) \\
& =\mathbf{e}_{i}^{T} X^{T} X \mathbf{e}_{j} \\
& =\mathbf{e}_{i}^{T}\left(X^{T} X\right) \mathbf{e}_{j} \\
& =\mathbf{e}_{i}^{T} \lambda_{j} \mathbf{e}_{j} \\
& =\lambda_{j} \mathbf{e}_{i}^{T} \mathbf{e}_{j}
\end{aligned}
$$

the last step holding since \mathbf{e}_{j} is an eigenvector of $X^{T} X$. If we assume we have scaled the \mathbf{e}_{i} 's to unit L2 norm, and recall that the eigenvectors are all orthogonal, then we finally get that

$$
C_{Z}(i, j)= \begin{cases}\lambda_{i} & \text { if } i=j \\ 0 & \text { else }\end{cases}
$$

So Z is a somewhat special transformation of X : in this transformed space, the correlation coefficient between any pair of distinct variables is zero, and the variance of each individual variable is λ_{i}.

If we like, we can also rescale Z so that it has unit variances as well. Let Σ be a diagonal matrix with $\Sigma(i, i)=\sqrt{\lambda_{i}}$, and consider $U=Z \Sigma^{-1}$. It's pretty simple to show that $U^{T} U=I$.

So this suggests some alternative ways to represent the original matrix X . Since $Z=X E^{T}$, and $Z=U \Sigma$, we have

$$
\begin{aligned}
X E^{T} & =Z \\
X & =Z E \\
X & =U \Sigma E
\end{aligned}
$$

So now X is decomposed into a product of three factors,

- U, a unit-variance matrix with uncorrelated features, formed by projecting X using PCA and scaling;
- Σ, a diagonal matrix; and
- E, the matrix of eigenvectors of C_{X}, aka "to self-consistent predictions".

This is called SVD, the singular valued decomposition for X : the "decomposition" is factoring X, and the "singular values" are the diagonal elements of Σ. The more usual notation is

$$
X=U \Sigma V
$$

An important point is that we can replace Z with Z_{k} and Σ with Σ_{k} (the first k rows and columns of Σ). The full decomposition then becomes

$$
X \approx Z_{k} E_{k}=U_{k} \Sigma_{k} E_{k}=U_{k} \Sigma_{k} V_{k}
$$

Note here are Z_{k} is a tall narrow matrix (n rows and k columns), and hence so is U_{k}, Σ_{k} is a square matrix, and $E_{k}\left(\right.$ aka $\left.V_{k}\right)$ is a long wide matrix k rows and n columns). Again, the rows of Z_{k} (and hence U_{k}) corresponding to instances \mathbf{x}^{t}, represented by their similarity to the first few eigenvectors $\mathbf{e}_{1}, \ldots, \mathbf{e}_{k}$. The rows of E_{k} (aka V_{k}) correspond to hypothetical instances that are "self-consistent" according to C_{X}.

