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1 The covariance matrix CX

Consider a data matrix X where the t-th row corresponds to an instance xt,
with n instances each with m features.

X =


x11 x12 . . . x1m
...

. . .
...

xn1 . . . xnm

 =


...

− xt −
...


Sometimes, to remind myself I’m talking about feature values, I will use f t

j

to denote the j-th feature of xt (aka, X(t, j)) Likewise I will use fi to denote
the i-th column vector of X: the vector of all values taken on by the i-th
feature of the examples.

X =


x11 x12 . . . x1m
...

. . .
...

xn1 . . . xnm

 =

 |
. . . fi . . .

|


If you like, fi is a “signature” of the i-th feature on the dataset X. Sometimes
I will use Fi for the corresponding random variable.

A first observation: consider the matrix CX = XTX, whose entries are the
pairwise inner products, not of the instances xt, but of the column vectors fi
of the matrix X. So the entries of CX measure the similarity of two features:

CX(i, j) =
∑
t

f t
i f

t
j

The notation CX is chosen because if X has a zero mean, then 1
n
CX(i, j) is

the sample covariance of features i and j on the sample X.
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if you’re happier thinking about discrete features, then another way of
thinking about this is the following: if the features fi are always +1 or −1,
then define

AGREE(i, j) = number of examples xt ∈ X where f t
i 6= f t

j

and define DISAGREE(i, j) analogously. It is also true that

CX(i, j) = AGREE(i, j)−DISAGREE(i, j)

and that
1

n
CX(i, j) = P (f t

i = f t
j )− P (f t

i 6= f t
j )

where the probabilities are the empirical probabilities taken over the sample
X. To summarize: CX(i, j) is (some sort of) measure of agreement be-
tween the features fi ande fj, and if for all the features f t

i ∈ {+1,−1}, then
CX(i, j) ∈ [−1,+1].

2 Eigenvectors of CX are “consistent predic-

tors”

Suppose I wanted to predict the likely value of Fi from another feature Fj.
This is easiest if CX(i, j) is close to an extreme; then the obvious cases are

• CX(i, j) ≈ +1 and Fj = +1: predict Fi = +1.

• CX(i, j) ≈ −1 and Fj = +1: predict Fi = −1.

• CX(i, j) ≈ +1 and Fj = −1: predict Fi = −1.

• CX(i, j) ≈ −1 and Fj = −1: predict Fi = +1.

On the other hand, if CX(i, j) ≈ 0, then it seems that no prediction for Fi

can be made confidently. So a simple formula for predicting Fi from Fj using
a single real number in [−1,+1], where small predicted values indicate low
confidence, might be

fi is predicted as CX(i, j) · fj
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Of course, fi could be predicted just as easily from fj′ for j′ 6= j. If I
wanted to combine all of these predictions I might weight them all equally
to get

fi is predicted as
1

n

∑
j 6=i

CX(i, j) · fj (1)

Now, suppose I want to predict an entire instance e that is “likely” accord-
ing to the sample X. A natural goal is a set of feature values e = 〈e1, . . . , em〉
that are internally consistent with respect to the (confidence-weighted) pre-
diction scheme of Equation 1, i.e., a potential instance e where

∀i, ei =
1

n

∑
j

CX(i, j)ej

A slightly weaker condition would be that there’s some constant λ so that

∀i, λei =
1

n

∑
j

CX(i, j)ej

or in other words
∃λ : λe = CXe

or in still other words, e is an eigenvector of CX .
To summarize: eigenvectors ei of CX are the same length as instances

x, and they have the nice property that their feature values are internally
consistent with respect to the (admittedly simple-minded) prediction scheme
of Equation 1.

The eigenvectors are thus broadly similar to clusters in k-means, or mix-
ture components in a generative model, in that some subsets of the features
can be used to predict the other features’ values.

3 Using the consistent predictors

Let e1, . . . , em be the eigenvectors of CX , in decreasing order by their eigen-
values, and let Λ be the diagonal matrix of eigenvalues. Let E be a matrix
where the row vectors are the ei’s, and let Ek be a matrix with just the first
k eigenvectors:

E =


e11 e12 . . . e1m
...

. . .
...

ek1 . . . ekm

 =


...

− ei −
...
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Let’s consider the matrix product Z = XET , or more interestingly perhaps,
the matrix Zk = XET

k :

Zk =


x11 x12 . . . x1m
...

. . .
...

xn1 . . . xnm

×

e11 e21 . . . e1k
e12 e22 . . . e2k
...

. . .
...

e1m . . . emk

 =


x1 · e1 x2 · e2 . . . x1 · ek
...

. . .
...

xn · e1 xn · e2 . . . xn · ek


This matrix has one row zt for each instance xt, but the columns (features)
are different. Instead of the original feature space, we now have the values

zt = 〈zt1, . . . , ztk〉 = 〈xt · e1, . . . ,xt · ek〉

If you think of dot-product as kind of similarity score (as I do) then the i-th
feature of zt is the similarity of xt to the i-th eigenvector ei. In otherwords,
the instances xt have been mapped to a new space where each dimension in-
dicates how similar/different the instance xt to some consistently-predictable
potential instance.

If you again think of the eigenvectors as similar to clusters, or mixture
components, the new space that xt has been mapped into is like a space of
posteriors for the components.

4 From PCA to SVD

We started out looking at the correlations between the variables of X, by
computing the dot-products of the “feature signatures” fi, via computing
CX = XTX. What if we do the same trick to Z? It turns out the an-
swer is “not much”: in particular, the corresponding signatures in Z are not
correlated.

Let’s use gi for the i-th column of Z:

Z = XET =


...

− zt −
...

 =

 |
. . . gi . . .

|


In CZ = ZTZ, what do the entries look like? Well,

CZ(i, j) = gi · gj
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and, treating ej as a column vector, gi = Xei. So

CZ(i, j) = gi · gj

= gT
i gj

= (Xei)
T (Xej)

= eTi X
TXej

= eTi (XTX)ej

= eTi λjej

= λje
T
i ej

the last step holding since ej is an eigenvector of XTX. If we assume we
have scaled the ei’s to unit L2 norm, and recall that the eigenvectors are all
orthogonal, then we finally get that

CZ(i, j) =

{
λi if i = j
0 else

So Z is a somewhat special transformation of X: in this transformed space,
the correlation coefficient between any pair of distinct variables is zero, and
the variance of each individual variable is λi.

If we like, we can also rescale Z so that it has unit variances as well. Let
Σ be a diagonal matrix with Σ(i, i) =

√
λi, and consider U = ZΣ−1. It’s

pretty simple to show that UTU = I.
So this suggests some alternative ways to represent the original matrix

X. Since Z = XET , and Z = UΣ, we have

XET = Z

X = ZE

X = UΣE

So now X is decomposed into a product of three factors,

• U , a unit-variance matrix with uncorrelated features, formed by pro-
jecting X using PCA and scaling;

• Σ, a diagonal matrix; and

• E, the matrix of eigenvectors of CX , aka “to self-consistent predic-
tions”.
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This is called SVD, the singular valued decomposition for X: the “decompo-
sition” is factoring X, and the “singular values” are the diagonal elements of
Σ. The more usual notation is

X = UΣV

An important point is that we can replace Z with Zk and Σ with Σk (the
first k rows and columns of Σ). The full decomposition then becomes

X ≈ ZkEk = UkΣkEk = UkΣkVk

Note here are Zk is a tall narrow matrix (n rows and k columns), and hence
so is Uk, Σk is a square matrix, and Ek (aka Vk) is a long wide matrix k
rows and n columns). Again, the rows of Zk (and hence Uk) corresponding
to instances xt, represented by their similarity to the first few eigenvectors
e1,. . . ,ek. The rows of Ek (aka Vk) correspond to hypothetical instances that
are “self-consistent” according to CX .
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