
INTRO TO SEMI-SUPERVISED LEARNING 
(SSL)



Semi-supervised learning
• Given:
– A	pool	of	labeled	examples	L
– A	(usually	larger)	pool	of	unlabeled	examples	U

• Option	1	for	using	L	and	U	:
– Ignore	U	and	use	supervised	learning	on	L

• Option	2:
– Ignore	labels	in	L+U	and	use	k-means,	etc find	
clusters;	then	label	each	cluster	using	L

• Question:
– Can	you	use	both	L	and	U	to	do	better?



SSL is Somewhere Between 
Clustering and Supervised Learning

3



SSL is Between Clustering and SL
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What is a natural grouping among 
these objects?

slides: Bhavana Dalvi



SSL is Between Clustering and SL
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clustering is unconstrained and may not 
give you what you want

maybe this clustering is as good as the other



SSL is Between Clustering and SL
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SSL is Between Clustering and SL
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SSL is Between Clustering and SL
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supervised learning with few labels 
is also unconstrained and may not give 

you what you want



SSL is Between Clustering and SL
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SSL is Between Clustering and SL
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This clustering isn’t 
consistent with the labels



SSL is Between Clustering and SL
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|Predicted Green|/|U| ~= 50%



SSL in Action: The NELL System



Type of SSL

–Margin-based:	transductive SVM
• Logistic	regression	with	entropic	regularization

–Generative:	seeded	k-means
–Nearest-neighbor	like:	graph-based	SSL
• Label	propagation



SSL via “Label Propagation”
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Seed labels



ASONAM-2010 (Advances in Social 
Networks Analysis and Mining)
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Network Datasets with Known Classes

•UBMCBlog
•AGBlog
•MSPBlog
•Cora
•Citeseer
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*

* *

Some intuition



RWR - fixpoint of:

Seed selection
1. order by PageRank, degree, or randomly
2. go down list until you have at least k examples/class
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u is uniform over the 
seeds for class c
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*

* *

Some intuition



Results – Blog data

Random Degree PageRank

We’ll discuss 
this soon….
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Results – More blog data

Random Degree PageRank
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Results – Citation data

Random Degree PageRank
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Seeding – MultiRankWalk

24



Seeding – HF/wvRN
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Back to Experiments: Network Datasets with 
Known Classes

•UBMCBlog
•AGBlog
•MSPBlog
•Cora
•Citeseer
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MultiRankWalk vs wvRN/HF/CoEM
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How well does MWR work?
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Parameter Sensitivity
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Harmonic Fields
aka coEM aka wvRN
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CoEM/HF/wvRN
• One	definition	[MacKassey &	Provost,	JMLR	2007]:…	

Another definition: A harmonic field (HF) – the score of each 
node in the graph is the harmonic (linearly weighted) average 
of its neighbors’ scores --- also sometimes called LP-ZGL

[X. Zhu, Z. Ghahramani, and J. Lafferty, ICML 2003] 31



Co-EM Learner: equivalent to HF on a 
bipartite graph (Ghani & Nigam, 2000)
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The HF Algorithm
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= labeled examples

= unlabeled examples

= graph = similarity between xi and xj

Optimization problem: minimize

subject to constraint that all labeled examples are classified 
correctly



The HF Loss In Matrix Form
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= graph = similarity between xi and xj  is symmetric
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The HF Algorithm
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= labeled examples

= unlabeled examples

= graph = similarity between xi and xj

Optimization problem: minimize

subject to

S[i,i]	=	1	for	all	seed	nodes	i<m+1



The HF Algorithm
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Optimization problem: minimize

subject to

This converges quickly: on Frank’s data usually 5-10 iterations was 
best (and more tends to overfit)



What is HF aka coEM aka wvRN?

Algorithmically:

• HF propagates weights and then resets the seeds to their 
initial value

• MRW propagates weights and does not reset seeds
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MultiRank Walk vs HF/wvRN/CoEM

Seeds are marked S

MRWHF
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MultiRank Walk vs HF/wvRN/CoEM
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SSL as optimization
and Modified Adsorption
slides from ParthaTalukdar
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yet another name for HF/wvRN/coEM
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match seeds smoothness
prior
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Adsorption SSL algorithm
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How to do this minimization?
First, differentiate to find min is at

The minimize with Jacobi method (which works for linear 
matrix equations like this one)
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precision-
recall break 
even point

/HF/…
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k-NN graph



/HF/…
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k-NN graph



/HF/…
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coupling graph



from mining 
patterns like 
“musicians such 
as Bob Dylan”

from HTML 
tables on the 
web that are 

used for data, 
not formatting
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Scaling up Graph SSL
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Followup work (AIStats 2014)
• Propagating	labels	requires	usually	small	number	
of	optimization	passes
– Basically	like	label	propagation	passes

• Each	is	linear	in	
– the	number	of	edges	
– and	the	number	of	labels	being	propagated

• Can	you	do	better?
– basic	idea:	store	labels	in	a	countmin sketch
–which	is	basically	an	compact	approximation	of	
an	objectàdouble mapping
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Count-min sketches

0 0 0 0 0 0 0 0 0

cm.inc(“fred flintstone”, 3):

0 3 0 3 0 0 0 3 0

h1 h2
h3

cm.inc(“barney rubble”,5):

5 3 0 8 0 0 5 3 0

h1 h2
h3
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add the value to 
each hash location

split a real vector into k ranges, one for each hash function



5 3 0 8 0 0 5 3 0

Count-min sketches

0 0 0 0 0 0 0 0 0

cm.get(“fred flintstone”):

h1 h2
h3

cm.get(“barney rubble):

5 3 0 8 0 0 5 3 0

h1 h2
h3
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take min when 
retrieving a value

split a real vector into k ranges, one for each hash function

3

5



Followup work (AIStats 2014)
• Propagating	labels	requires	usually	small	number	of	
optimization	passes
– Basically	like	label	propagation	passes

• Each	is	linear	in	
– the	number	of	edges	
– and	the	number	of	labels	being	propagated
– the	sketch	size
– sketches	can	be	combined	linearly	without	
“unpacking”	them:	sketch(av +	bw)	=	
a*sketch(v)+b*sketch(w)

– sketchs are	good	at	storing	skewed	distributions
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Followup work (AIStats 2014)

• Label	distributions	are	
often	very	skewed
– sparse	initial	labels
– community	structure:	
labels	from	other	
subcommunities have	
small	weight	
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Followup work (AIStats 2014)

Freebase Flick-10k

“self-injection”: similarity computation
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Followup work (AIStats 2014)

Freebase
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Followup work (AIStats 2014)

100 Gb available
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Even more recent work
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AIStats 2016



Differences: objective function
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seeds

smoothness

close to 
uniform label 
distribution

normalized 
predictions



Differences: scaling up

• Updates	done	in	parallel	with	Pregel
• Replace	count-min	sketch	with	“streaming	
approach”
–updates	from	neighbors	are	a	“stream”
• break	stream	into	“sections”
–maintain	a	list	of	(y,	Prob(y),	Δ)
–filter	out	labels	at	end	of	“section”	if	
Prob(y)+Δ is	small
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Results with EXPANDER


