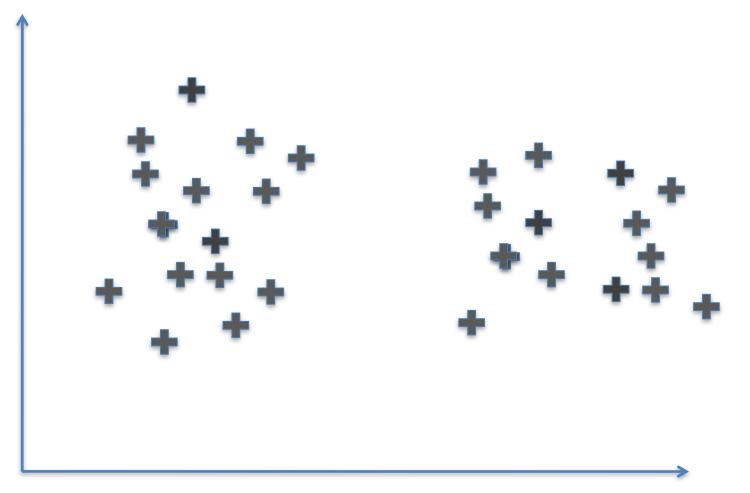
INTRO TO SEMI-SUPERVISED LEARNING (SSL)

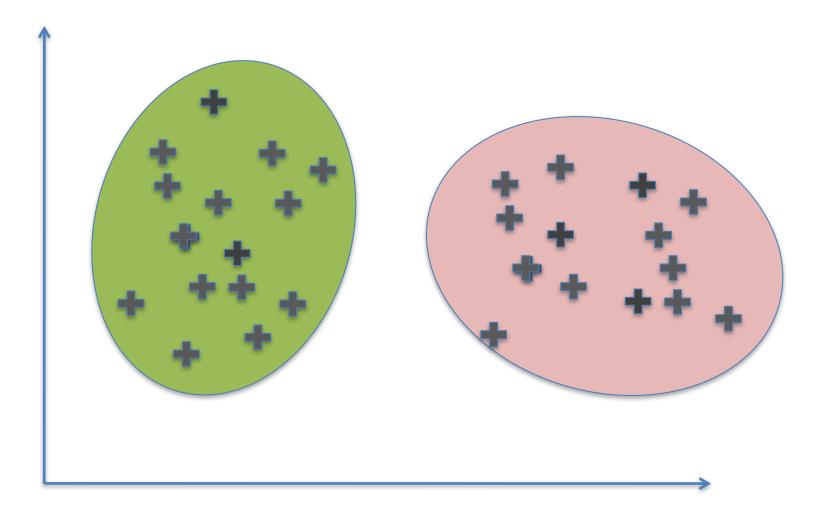
Semi-supervised learning

- Given:
 - A pool of labeled examples L
 - A (usually larger) pool of unlabeled examples U
- Option 1 for using L and U :
 - Ignore U and use supervised learning on L
- Option 2:
 - Ignore labels in L+U and use k-means, etc find clusters; then label each cluster using L
- Question:
 - Can you use both L and U to do better?

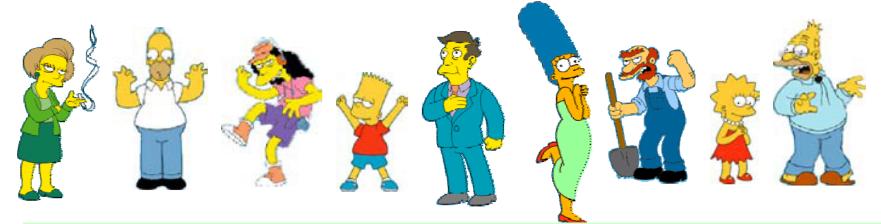
SSL is Somewhere Between Clustering and Supervised Learning



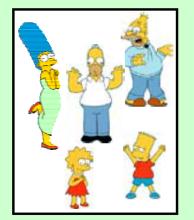
SSL is Between Clustering and SL



What is a natural grouping among these objects?

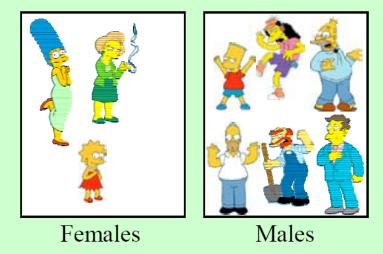


Clustering is subjective



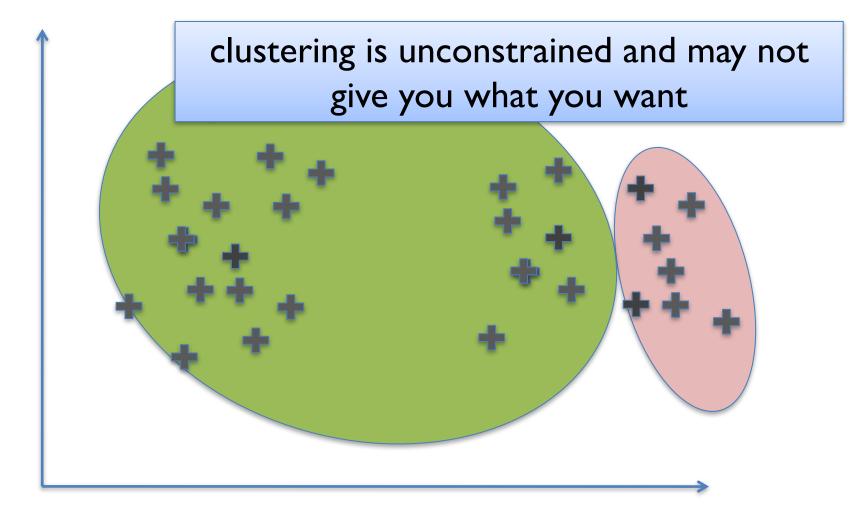
Simpson's Family

School Employees



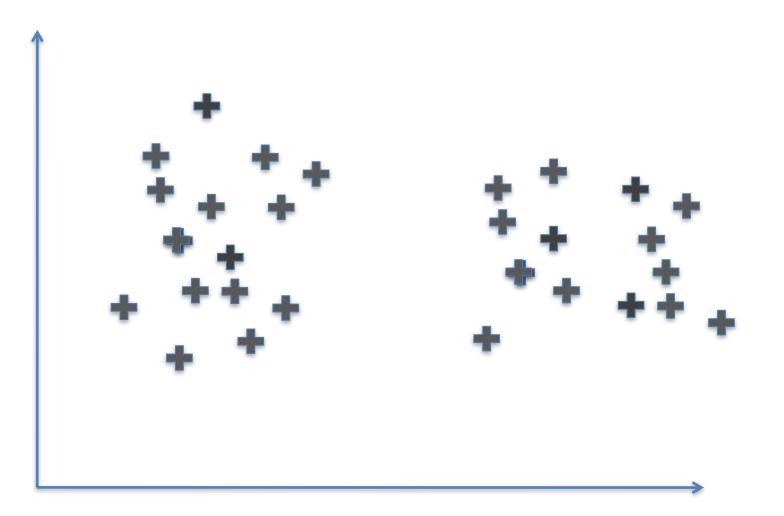
slides: Bhavana Dalvi

SSL is Between Clustering and SL

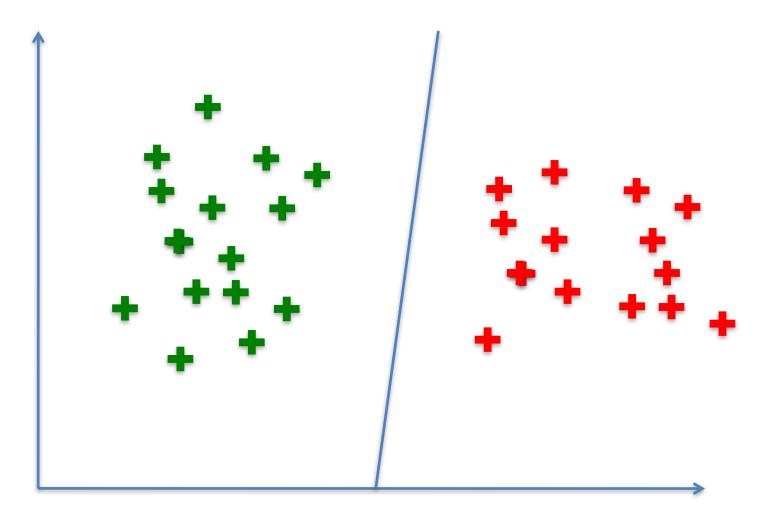


maybe this clustering is as good as the other

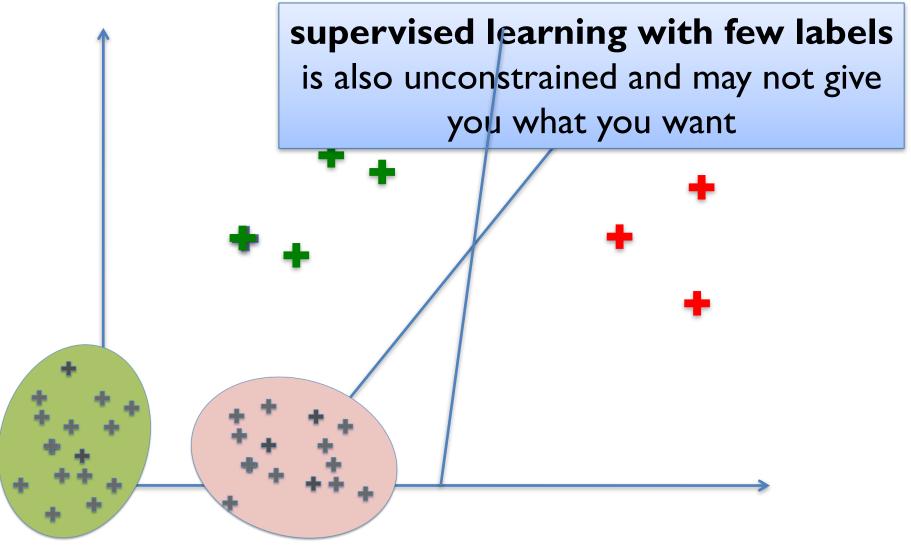
SSL is Between Clustering and SL



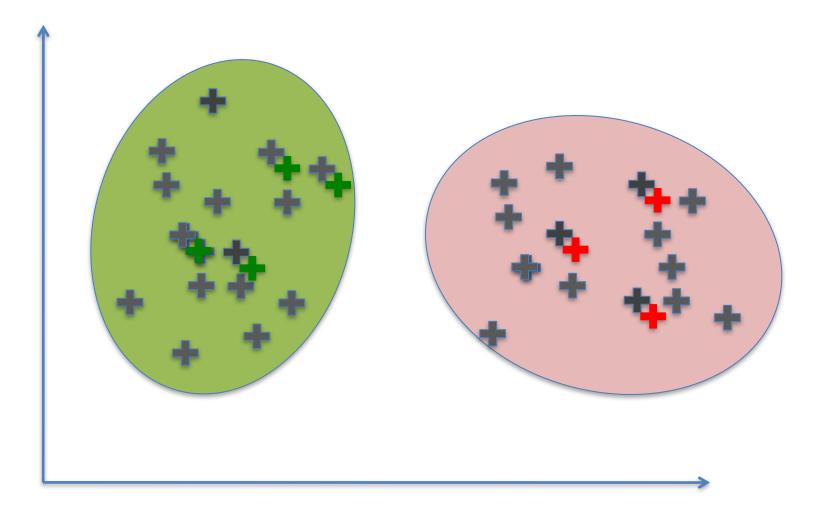
SSL is Between Clustering and <u>SL</u>



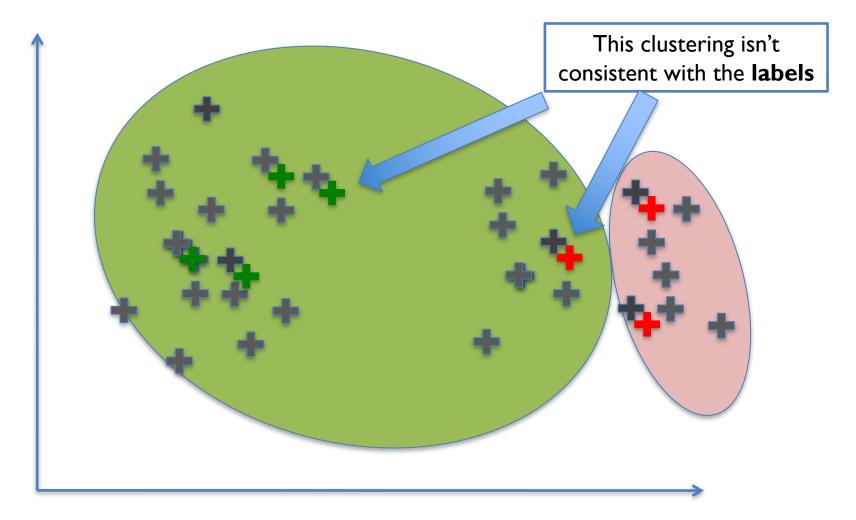
SSL is Between Clustering and <u>SL</u>



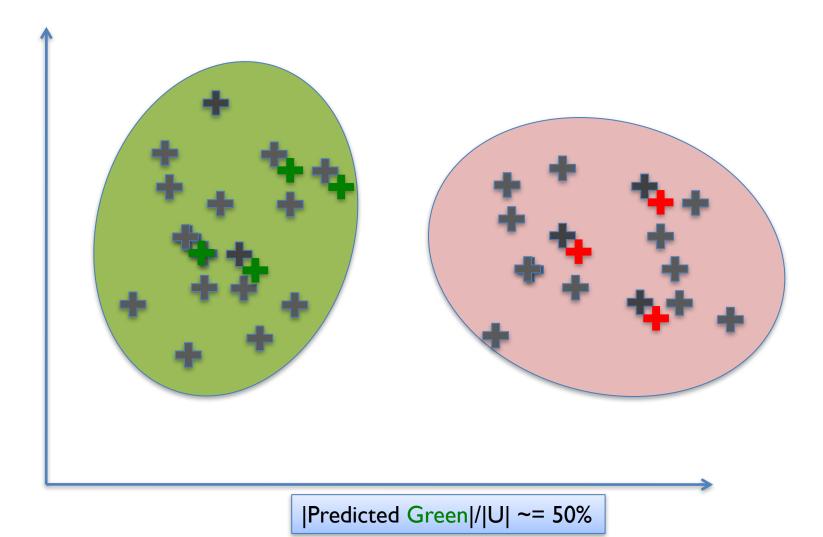
SSL is <u>Between</u> Clustering and SL



SSL is <u>Between</u> Clustering and SL



SSL is <u>Between</u> Clustering and SL

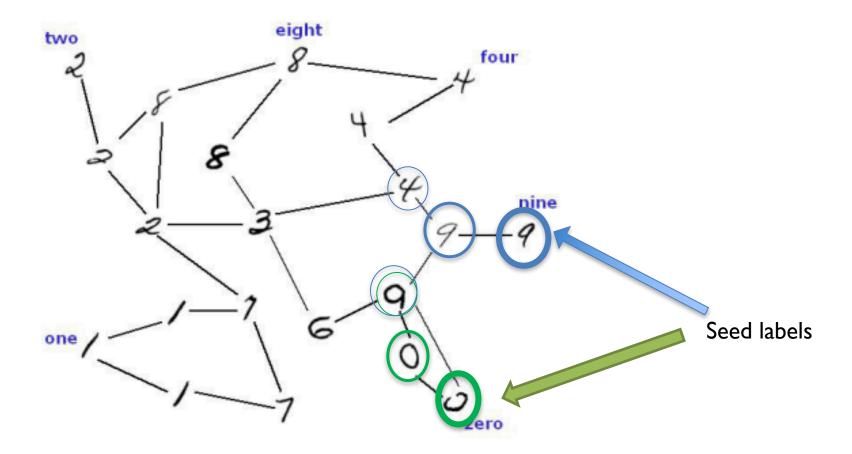


SSL in Action: The NELL System

Type of SSL

- Margin-based: transductive SVM
 - Logistic regression with entropic regularization
- Generative: seeded k-means
- Nearest-neighbor like: graph-based SSL
 - Label propagation

SSL via "Label Propagation"

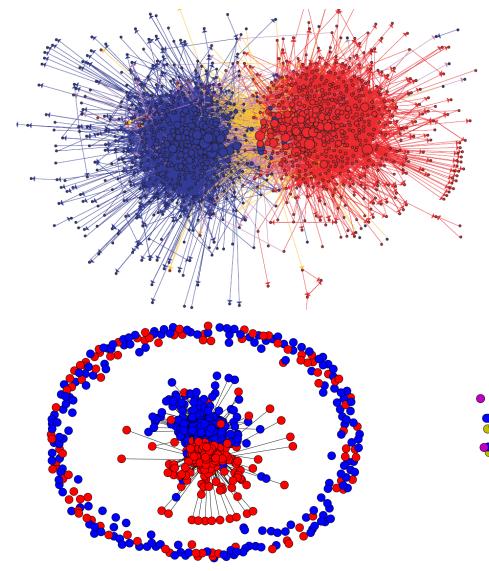


Semi-Supervised Classification of Network Data Using Very Few Labels

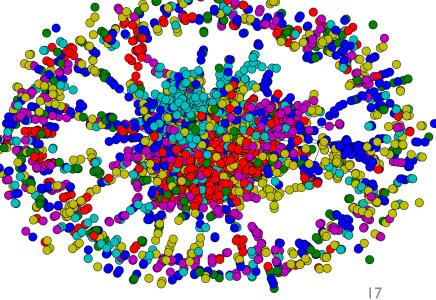
Frank Lin Carnegie Mellon University, Pittsburgh, Pennsylvania Email: frank@cs.cmu.edu William W. Cohen Carnegie Mellon University, Pittsburgh, Pennsylvania Email: wcohen@cs.cmu.edu

ASONAM-2010 (Advances in Social Networks Analysis and Mining)

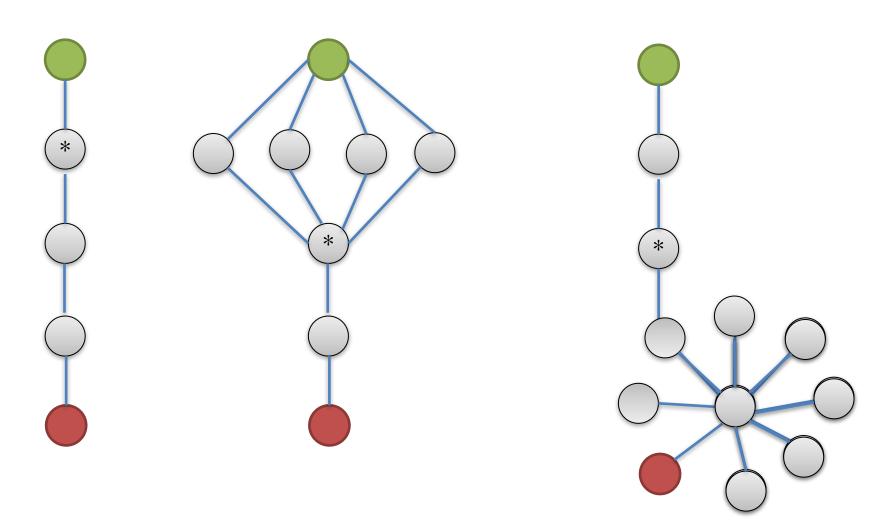
Network Datasets with Known Classes



- •UBMCBlog
- •AGBlog
- •MSPBlog
- •Cora
- •Citeseer



Some intuition



Given: A graph G = (V, E), corresponding to nodes in G are instances X, composed of unlabeled instances X^U and labeled instances X^L with corresponding labels Y^L , and a damping factor d **Returns:** Labels Y^U for unlabeled nodes X^U

For each class c

- 1) Set $\mathbf{u}_i \leftarrow 1, \forall Y_i^L = c$
- 2) Normalize **u** such that $||\mathbf{u}||_1 = 1$
- 3) Set $R_c \leftarrow RandomWalk(G, \mathbf{u}, d)$

For each instance *i*

• Set
$$X_i^U \leftarrow argmax_c(R_{ci})$$

Fig. 1. The MultiRankWalk algorithm.

Seed selection

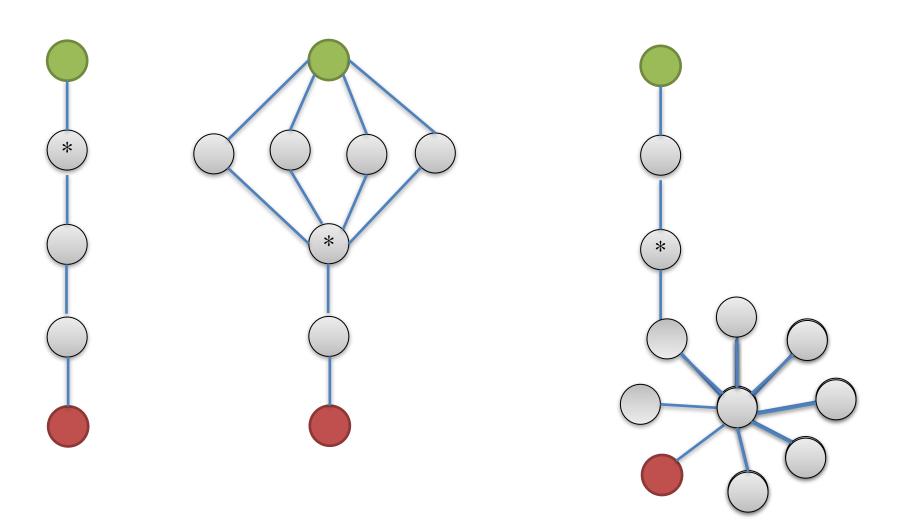
- I. order by PageRank, degree, or randomly
- 2. go down list until you have at least k examples/class

19

u is uniform over the <u>seeds</u> for class *c*

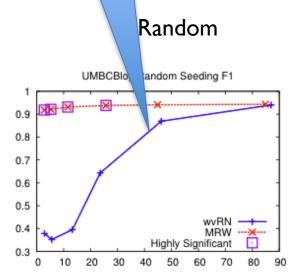
RWR - fixpoint of: $\mathbf{r} = (1 - d)\mathbf{u} + dW\mathbf{r}$

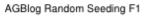
Some intuition



We'll discuss this soon....

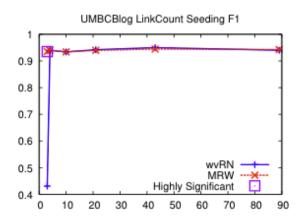
Results – Blog data

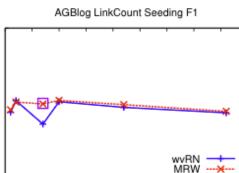






Degree





40

0.9

0

10

20 30

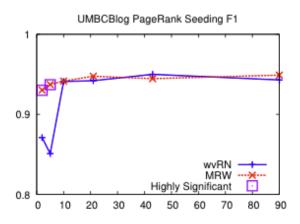
Highly Significant

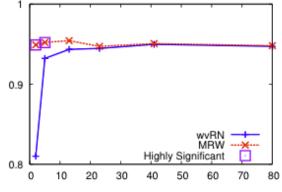
70

80 90

50 60

PageRank





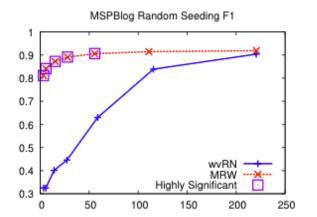
21

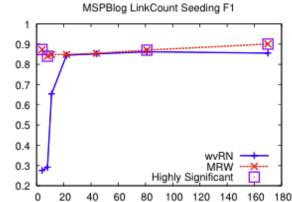
Results – More blog data

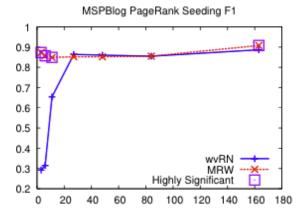
Random

Degree

PageRank





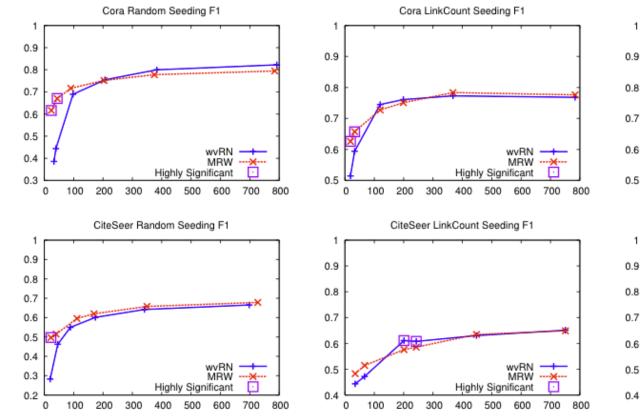


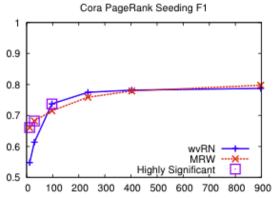
Results – Citation data

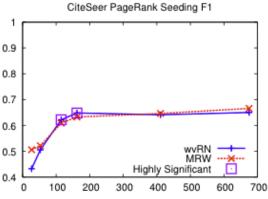
Random

Degree

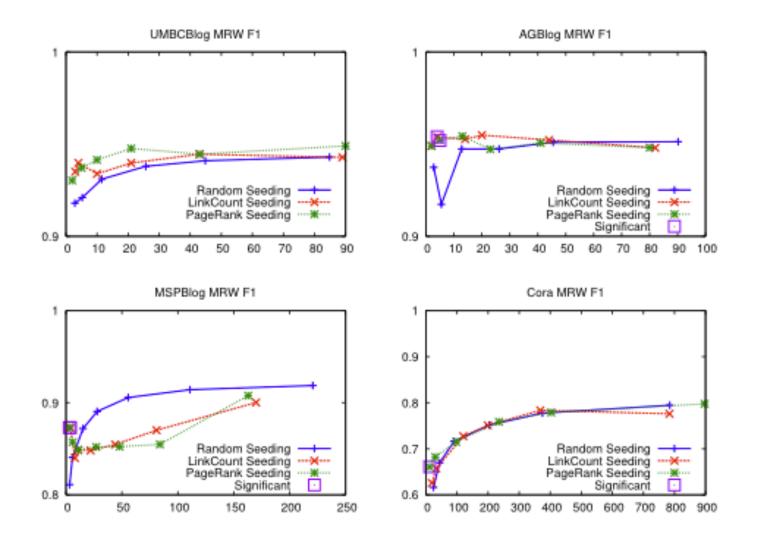
PageRank



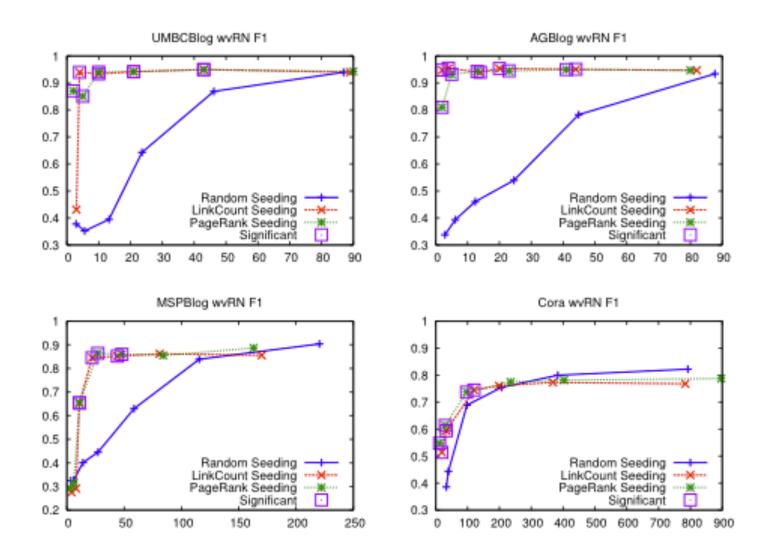




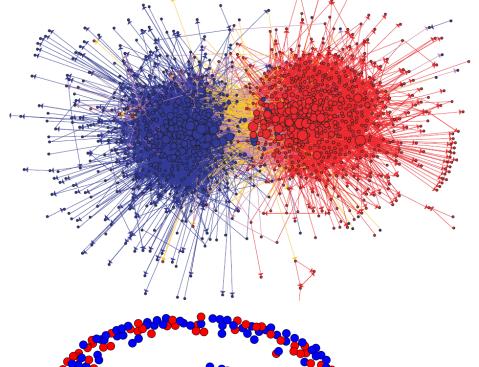
Seeding – MultiRankWalk



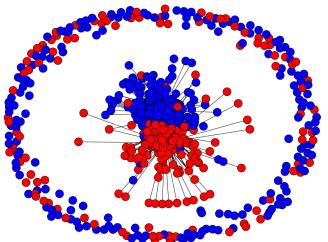
Seeding – HF/wvRN

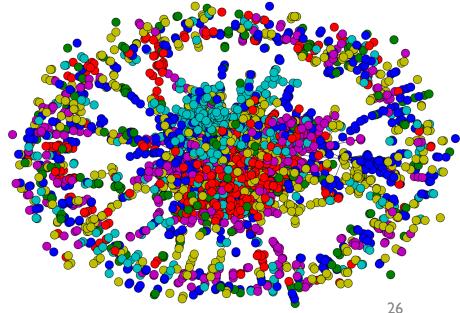


Back to Experiments: Network Datasets with Known Classes



- •UBMCBlog
- •AGBlog
- •MSPBlog
- •Cora
- •Citeseer





MultiRankWalk vs wvRN/HF/CoEM

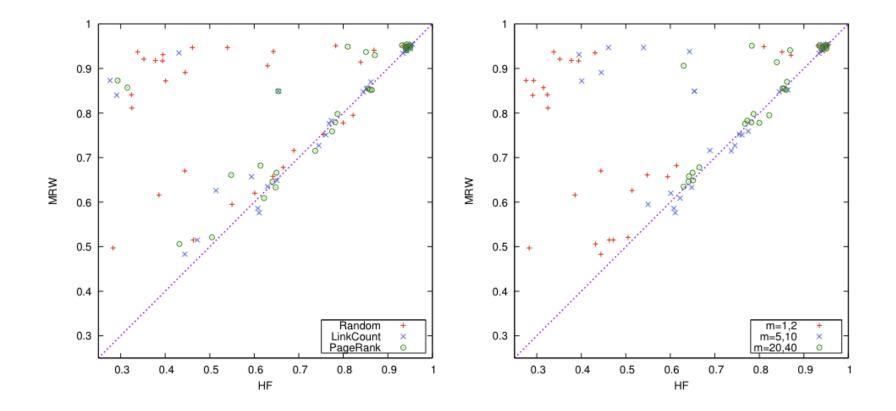


Figure 2.6: Scatter plots of HF F1 score versus MRW F1 score. The left plot marks different seeding preferences and the right plot marks varying amount of training labels determined by m.

How well does MWR work?

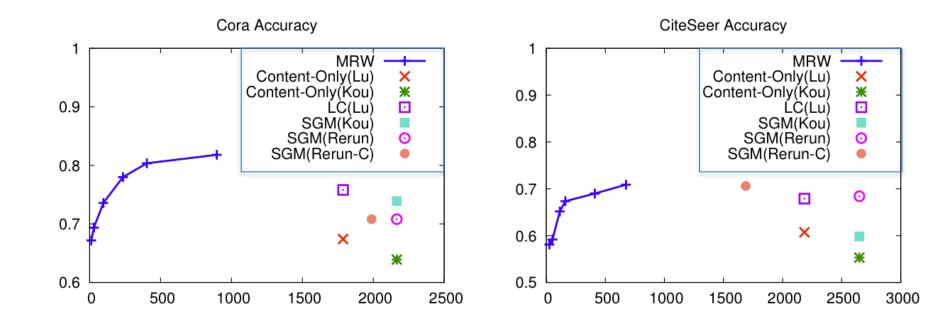


Fig. 5. Citation datasets results compared to supervised relational learning methods. The x-axis indicates number of labeled instances and y-axis indicates labeling accuracy.

Parameter Sensitivity

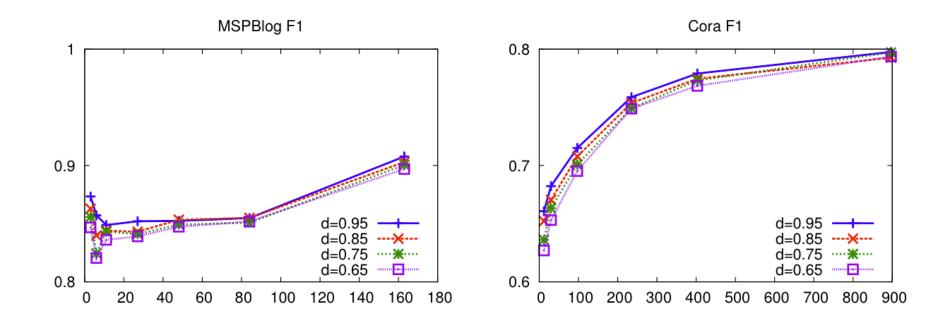


Fig. 7. Results on three datasets varying the damping factor. The x-axis indicates number of labeled instances and y-axis indicates labeling macro-averaged F1 score.

Harmonic Fields aka coEM aka wvRN

CoEM/HF/wvRN

• One definition [MacKassey & Provost, JMLR 2007]:...

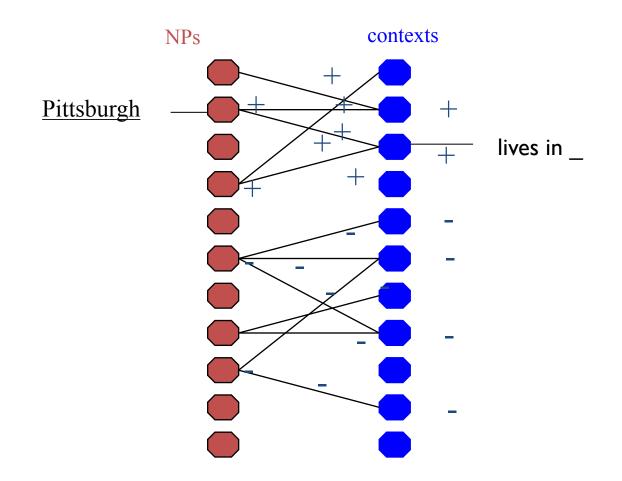
Definition. Given $v_i \in \mathbf{V}^U$, the weighted-vote relational-neighbor classifier (wvRN) estimates $P(x_i | \mathcal{N}_i)$ as the (weighted) mean of the class-membership probabilities of the entities in \mathcal{N}_i :

$$P(x_i = c | \mathcal{N}_i) = \frac{1}{Z} \sum_{v_j \in \mathcal{N}_i} w_{i,j} \cdot P(x_j = c | \mathcal{N}_j),$$

Another definition: A *harmonic field (HF)* – the score of each node in the graph is the harmonic (linearly weighted) average of its neighbors' scores --- also sometimes called LP-ZGL

[X. Zhu, Z. Ghahramani, and J. Lafferty, ICML 2003]

<u>Co-EM</u> Learner: equivalent to HF on a bipartite graph (Ghani & Nigam, 2000)



The HF Algorithm

 $\{(\mathbf{x}^{1}, y^{1}), \dots, (\mathbf{x}^{m}, y^{m})\} = \text{labeled examples} \\ \{\mathbf{x}^{m+1}, \dots, \mathbf{x}^{m+n}\} = \text{unlabeled examples} \\ W[i, j] = \text{graph} = \text{similarity between } \mathbf{x}_{i} \text{ and } \mathbf{x}_{j}$

Optimization problem: minimize

$$Loss = \sum_{i>m,j>m} W[i,j](\hat{y}_i - \hat{y}_j)^2$$

subject to constraint that all labeled examples are classified correctly

The HF Loss In Matrix Form

 $W[i, j] = \text{graph} = \text{similarity between } \mathbf{x}_i \text{ and } \mathbf{x}_j \text{ is symmetric}$

$$\begin{split} Loss &= \sum_{i,j} w_{i,j} (\hat{y}_i - \hat{y}_j)^2 \\ &= \sum_{i,j} w_{i,j} \hat{y}_i^2 + \sum_{i,j} w_{i,j} \hat{y}_j^2 - 2 \sum_{i,j} w_{i,j} \hat{y}_i \hat{y}_j \\ &= \sum_i (\sum_j w_{i,j}) \hat{y}_i^2 + \sum_j (\sum_i w_{i,j}) \hat{y}_j^2 - 2 \sum_{i,j} w_{i,j} \hat{y}_i \hat{y}_j \\ &= \sum_i d_i \hat{y}_i^2 + \sum_j d_j \hat{y}_j^2 - 2 \sum_{i,j} w_{i,j} \hat{y}_i \hat{y}_j \\ &= 2 \sum_i d_i \hat{y}_i^2 - 2 \sum_{i,j} w_{i,j} \hat{y}_i \hat{y}_j \\ &= 2 (\sum_i d_i \hat{y}_i^2 - \sum_{i,j} w_{i,j} \hat{y}_i \hat{y}_j) \\ &= 2 (\hat{\mathbf{y}}^T D \hat{\mathbf{y}} - \hat{\mathbf{y}}^T W \hat{\mathbf{y}}) \\ &= 2 \hat{\mathbf{y}}^T (D - W) \hat{\mathbf{y}} \end{split}$$

The HF Algorithm

 $\{(\mathbf{x}^{1}, y^{1}), \dots, (\mathbf{x}^{m}, y^{m})\} = \text{labeled examples} \\ \{\mathbf{x}^{m+1}, \dots, \mathbf{x}^{m+n}\} = \text{unlabeled examples} \\ W[i, j] = \text{graph} = \text{similarity between } \mathbf{x}_{i} \text{ and } \mathbf{x}_{j} \\ S[i,i] = 1 \text{ for all seed nodes } i < m+1 \end{cases}$

Optimization problem: minimize $\hat{\mathbf{y}}^T (D-W) \hat{\mathbf{y}}$ subject to $S \hat{\mathbf{y}} = S \mathbf{y}$

The HF Algorithm

Optimization problem: minimize $\hat{\mathbf{y}}^T (D - W) \hat{\mathbf{y}}$ subject to $S \hat{\mathbf{y}} = S \mathbf{y}$

- 1. Let $\hat{\mathbf{y}}^0$ be any label assignment consistent with the seed labels.
- 2. For t = 0, ..., T:
 - (a) For every unlabeled node i > m, let $\hat{y}_i^{t+1} = \frac{1}{d_i} \sum_j w_{i,j} \hat{y}_j^t$
 - (b) For every labeled node $i \leq m$, let $\hat{y}_i^{t+1} = y_i$ (where y_i is the seed label for example i).

This converges quickly: on Frank's data usually 5-10 iterations was best (and more tends to overfit)

What is HF aka coEM aka wvRN?

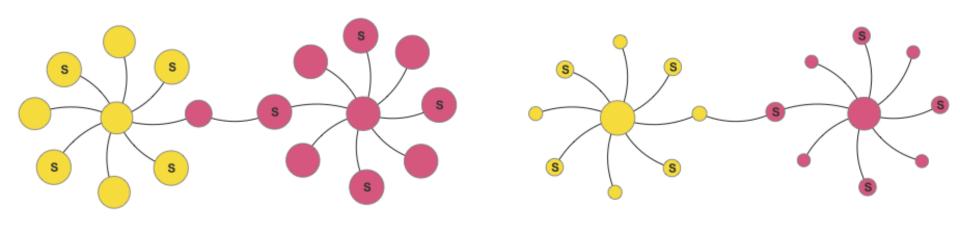
$$P(x_i = c | \mathcal{N}_i) = \frac{1}{Z} \sum_{v_j \in \mathcal{N}_i} w_{i,j} \cdot P(x_j = c | \mathcal{N}_j),$$

Algorithmically:

- HF propagates weights and then resets the seeds to their initial value
- MRW propagates weights and does not reset seeds

MultiRank Walk vs HF/wvRN/CoEM

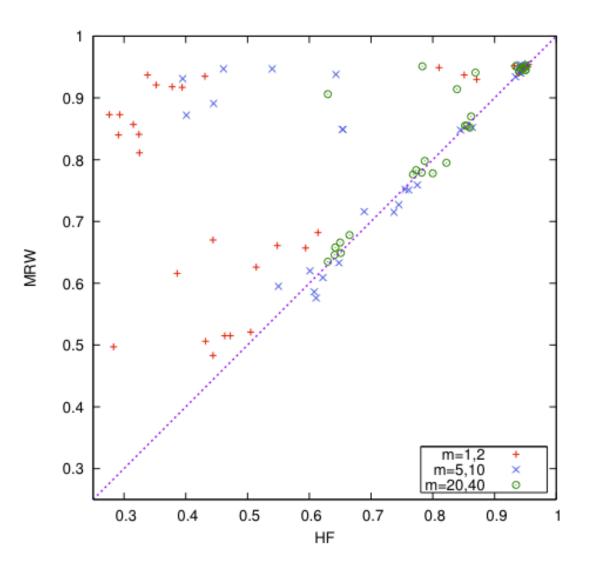
Seeds are marked S



HF

MRW

MultiRank Walk vs HF/wvRN/CoEM

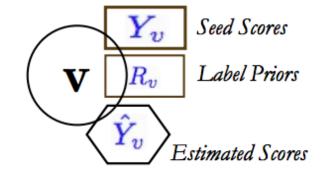


SSL as optimization and Modified Adsorption slides from Partha Talukdar

Notations

 $\hat{Y}_{v,l}$: score of estimated label I on node v

 $Y_{v,l}$: score of seed label I on node v



 $R_{v,l}$: regularization target for label I on node v

S : seed node indicator (diagonal matrix)

 W_{uv} : weight of edge (u, v) in the graph

LP-ZGL (Zhu et al., ICML 2003)

yet another name for HF/wvRN/coEM

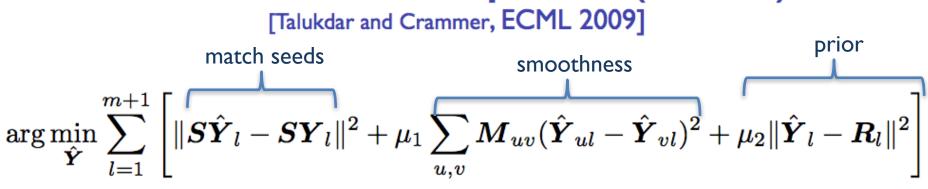
$$\begin{split} & \text{Smooth} \\ & \arg\min_{\hat{Y}} \left[\sum_{l=1}^{m} W_{uv} (\hat{Y}_{ul} - \hat{Y}_{vl})^2 \right] = \sum_{l=1}^{m} \hat{Y}_l^T L \hat{Y}_l \\ & \text{such that} \quad \underbrace{Y_{ul} = \hat{Y}_{ul}, \ \forall S_{uu} = 1}_{\text{Match Seeds (hard)}} \\ \end{split}$$

Smoothness

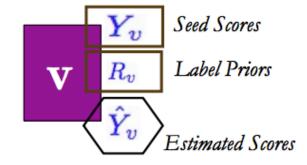
 two nodes connected by an edge with high weight should be assigned similar labels

Solution satisfies harmonic property

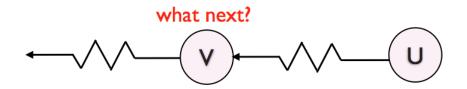
Modified Adsorption (MAD)



- m labels, +1 dummy label
- $\boldsymbol{M} = \boldsymbol{W}^{\dagger} + \boldsymbol{W}^{\prime}$ is the symmetrized weight matrix
- \hat{Y}_{vl} : weight of label l on node v
- \boldsymbol{Y}_{vl} : seed weight for label l on node v
- S: diagonal matrix, nonzero for seed nodes
- \mathbf{R}_{vl} : regularization target for label l on node v



• $\boldsymbol{M} = \boldsymbol{W}^{\prime \uparrow} + \boldsymbol{W}^{\prime}$ is the symmetrized weight matrix



- \bullet Continue walk with prob. p_v^{cont}
- Assign V's seed label to U with prob. p_v^{inj}
- \bullet Abandon random walk with prob. p_v^{abnd}
 - assign U a dummy label

• $\boldsymbol{M} = \boldsymbol{W}^{\dagger} + \boldsymbol{W}'$ is the symmetrized weight matrix

Random Walk View

- \bullet Continue walk with prob. p_v^{cont}
- Assign V's seed label to U with prob. p_v^{inj}
- Abandon random walk with prob. p_v^{abnd}
 assign U a dummy label

$$W_{uv}^{'} = p_{u}^{cont} \times W_{uv}$$

New Edge Weight

$$S_{uu} = \sqrt{p_u^{inj}}$$

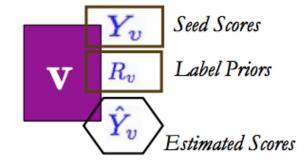
 $R_{u op} = p_u^{abnd}$, and 0 for non-dummy labels

Modified Adsorption (MAD)

[Talukdar and Crammer, ECML 2009]

$$rgmin_{\hat{m{Y}}} \sum_{l=1}^{m+1} \left[\|m{S}\hat{m{Y}}_l - m{S}m{Y}_l\|^2 + \mu_1 \sum_{u,v} m{M}_{uv} (\hat{m{Y}}_{ul} - \hat{m{Y}}_{vl})^2 + \mu_2 \|\hat{m{Y}}_l - m{R}_l\|^2
ight]^2
ight]^2$$

- m labels, +1 dummy label
- $\boldsymbol{M} = \boldsymbol{W}^{\dagger} + \boldsymbol{W}^{\prime}$ is the symmetrized weight matrix
- \hat{Y}_{vl} : weight of label l on node v
- \boldsymbol{Y}_{vl} : seed weight for label l on node v
- S: diagonal matrix, nonzero for seed nodes
- \mathbf{R}_{vl} : regularization target for label l on node v



Modified Adsorption (MAD)

[Talukdar and Crammer, ECML 2009]

$$rgmin_{\hat{m{Y}}} \sum_{l=1}^{m+1} \left[\|m{S}\hat{m{Y}}_l - m{S}m{Y}_l\|^2 + \mu_1 \sum_{u,v} m{M}_{uv} (\hat{m{Y}}_{ul} - \hat{m{Y}}_{vl})^2 + \mu_2 \|\hat{m{Y}}_l - m{R}_l\|^2
ight]^2$$

How to do this minimization? First, differentiate to find min is at

$$(\mu_1 \mathbf{S} + \mu_2 \mathbf{L} + \mu_3 \mathbf{I}) \ \hat{\mathbf{Y}}_l = (\mu_1 \mathbf{S} \mathbf{Y}_l + \mu_3 \mathbf{R}_l) \ .$$

The minimize with *Jacobi method* (which works for linear matrix equations like this one)

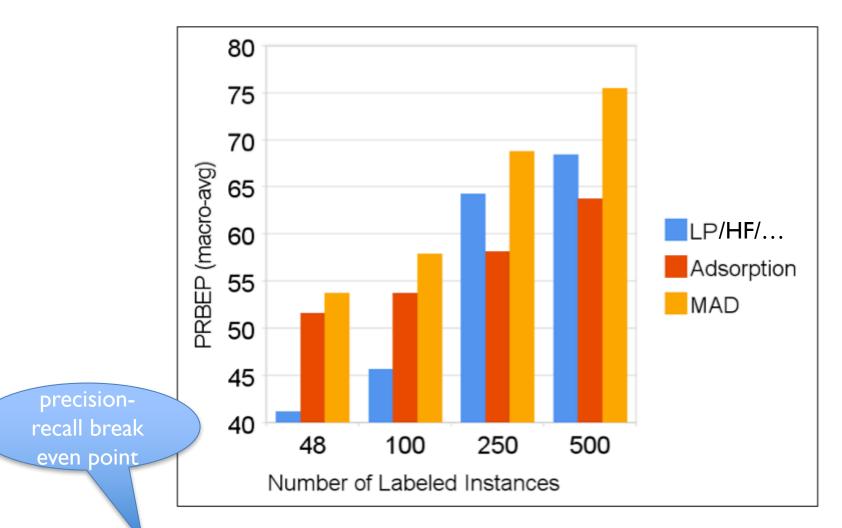
MapReduce Implementation of MAD

- Map
 - Each node send its current label assignments to its neighbors
- Reduce
 - Each node updates its own label assignment using messages received from neighbors, and its own information (e.g., seed labels, reg. penalties etc.)
- Repeat until convergence

Code in Junto Label Propagation Toolkit (includes Hadoop-based implementation) <u>http://code.google.com/p/junto/</u> 49

k-NN graph

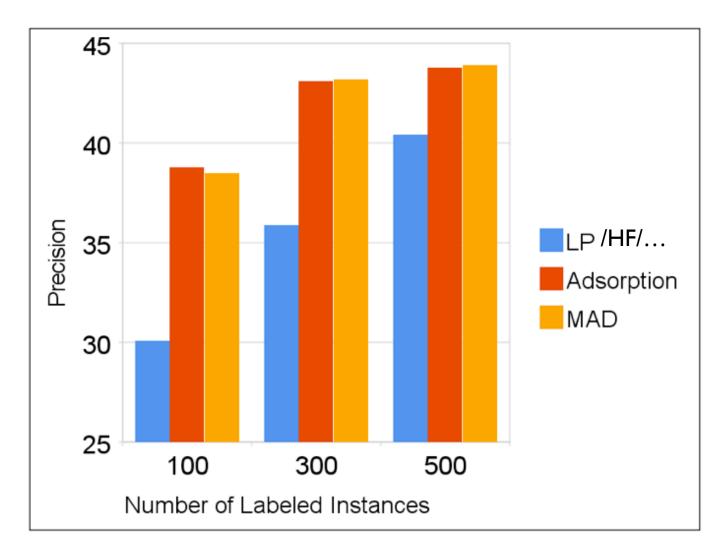
Text Classification



PRBEP (macro-averaged) on WebKB Dataset, 3148 test instances

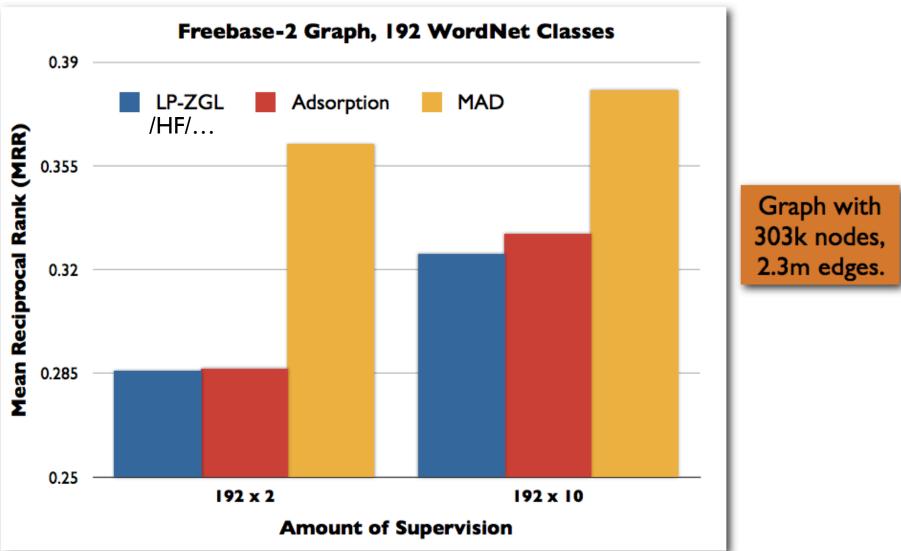
k-NN graph

Sentiment Classification



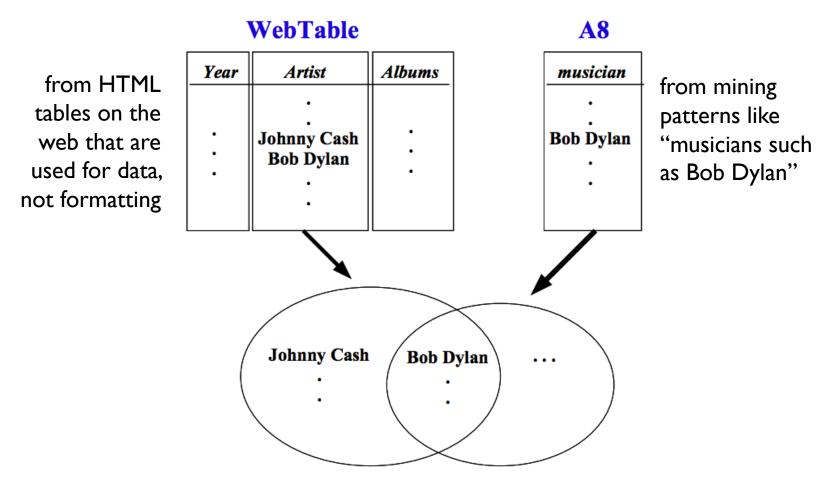
Precision on 3568 Sentiment test instances

Class-Instance Acquisition

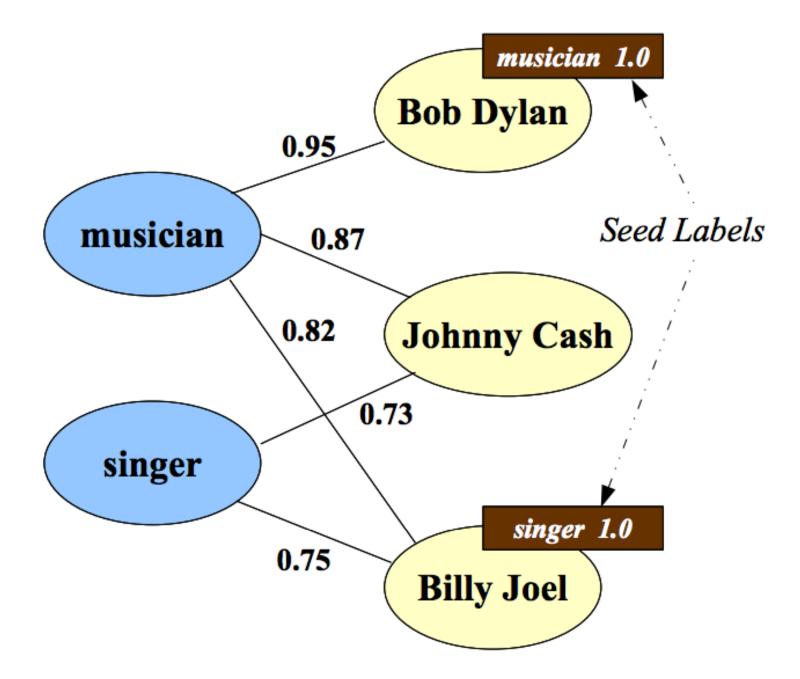


coupling graph

Assigning class labels to WebTable instances



Score (musician, Johnny Cash) = 0.87



New (Class, Instance) Pairs Found

Class	A few non-seed Instances found by Adsorption
Scientific Journals	Journal of Physics, Nature, Structural and Molecular Biology, Sciences Sociales et sante, Kidney and Blood Pressure Research, American Journal of Physiology-Cell Physiology,
NFL Players	Tony Gonzales, Thabiti Davis, Taylor Stubblefield, Ron Dixon, Rodney Hannan,
Book Publishers	Small Night Shade Books, House of Ansari Press, Highwater Books, Distributed Art Publishers, Cooper Canyon Press,

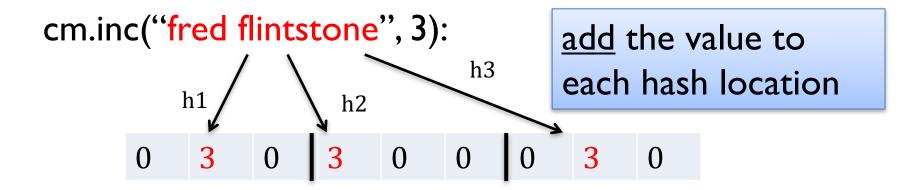
Scaling up Graph SSL

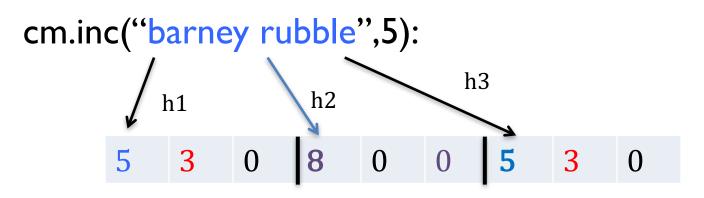
- Propagating labels requires usually small number of optimization passes
 - Basically like label propagation passes
- Each is linear in
 - the number of edges
 - and the number of labels being propagated
- Can you do better?
 - basic idea: store labels in a countmin sketch
 - which is basically an compact approximation of an object→double mapping

Count-min sketches

split a <u>real</u> vector into k ranges, one for each hash function

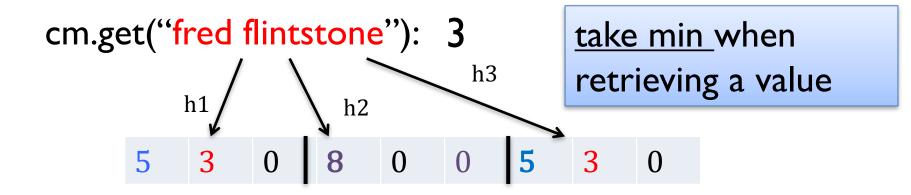
0 0 0 0 0 0 0 0 0

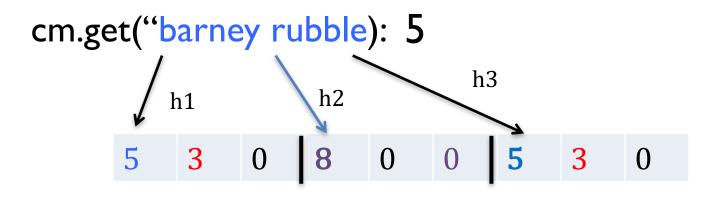




Count-min sketches

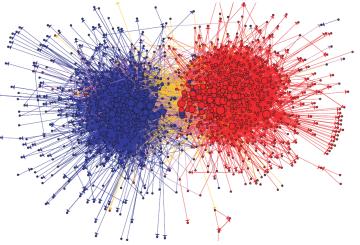
split a <u>real</u> vector into k ranges, one for each hash function





- Propagating labels requires usually small number of optimization passes
 - Basically like label propagation passes
- Each is linear in
 - the number of edges
 - and the number of labels being propagated
 - the sketch size
 - sketches can be combined linearly without "unpacking" them: sketch(av + bw) = a*sketch(v)+b*sketch(w)
 - sketchs are good at storing *skewed distributions*

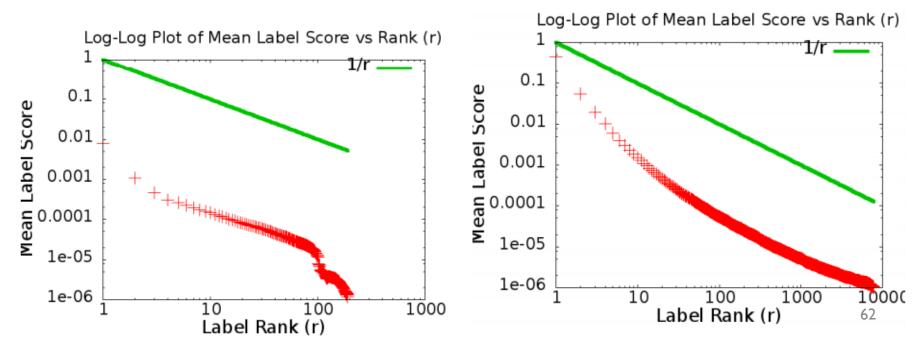
- Label distributions are often very skewed
 - -sparse initial labels
 - community structure:
 labels from other
 subcommunities have
 small weight



"self-injection": similarity computation

Name	Nodes (n)	Edges	Labels (m)	Seed Nodes	k-Sparsity	$\left\lceil \frac{ek}{\epsilon} \right\rceil$	$\left\lceil \ln \frac{m}{\delta} \right\rceil$
Freebase	301,638	1,155,001	192	1917	2	109	8
Flickr-10k	41,036	73,191	10,000	10,000	1	55	12
Flickr-1m	$1,\!281,\!887$	7,545,451	1,000,000	1,000,000	1	55	17

Freebase



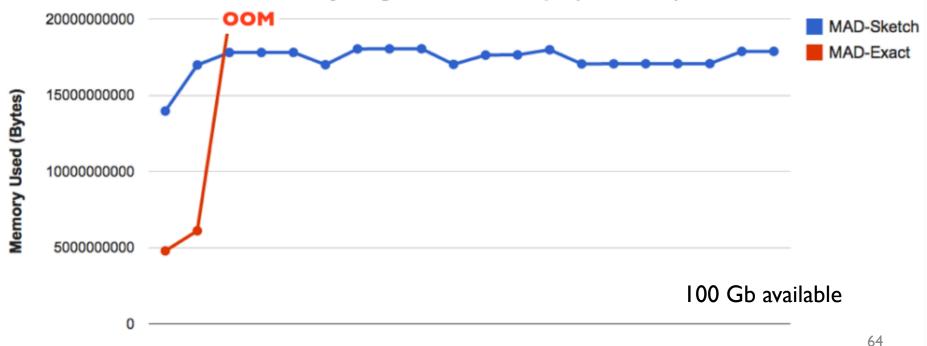
Name	Nodes (n)	Edges	Labels (m)	Seed Nodes	k-Sparsity	$\left\lceil \frac{ek}{\epsilon} \right\rceil$	$\left\lceil \ln \frac{m}{\delta} \right\rceil$
Freebase	301,638	1,155,001	192	1917	2	109	8
Flickr-10k	41,036	73,191	10,000	10,000	1	55	12
Flickr-1m	1,281,887	7,545,451	1,000,000	1,000,000	1	55	17

	Average Memory	Total Runtime (s)	MRR
	Usage (GB)	[Speedup w.r.t. MAD-Exact]	
MAD-Exact	3.54	$516.63 \ [1.0]$	0.28
MAD-SKETCH ($w = 109, d = 8$)	2.68	110.42 [4.7]	0.28
MAD-SKETCH ($w = 109, d = 3$)	1.37	54.45 [9.5]	0.29
MAD-SKETCH ($w = 20, d = 8$)	1.06	47.72 [10.8]	0.28
MAD-SKETCH $(w = 20, d = 3)$	1.12	48.03 [10.8]	0.23

Freebase

Name	Nodes (n)	Edges	Labels (m)	Seed Nodes	k-Sparsity	$\left\lceil \frac{ek}{\epsilon} \right\rceil$	$\left\lceil \ln \frac{m}{\delta} \right\rceil$
Freebase	301,638	1,155,001	192	1917	2	109	8
Flickr-10k	41,036	73,191	10,000	10,000	1	55	12
Flickr-1m	1,281,887	7,545,451	1,000,000	1,000,000	1	55	17

Per Iteration Memory usage over Flickr Graph (1m Labels)



Even more recent work

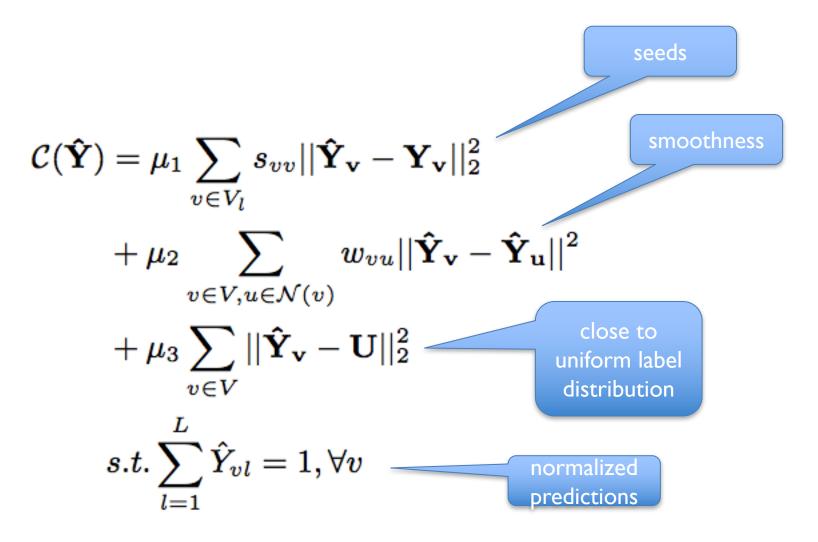
Large Scale Distributed Semi-Supervised Learning Using Streaming Approximation

Sujith Ravi Google Inc., Mountain View, CA, USA sravi@google.com

Qiming Diao¹ Carnegie Mellon University, Pittsburgh, PA, USA Singapore Mgt. University, Singapore qiming.ustc@gmail.com

AlStats 2016

Differences: objective function



Differences: scaling up

- Updates done in parallel with Pregel
- Replace count-min sketch with "streaming approach"
 - -updates from neighbors are a "stream"
 - break stream into "sections"
 - -maintain a list of $(y, Prob(y), \Delta)$
 - -filter out labels at end of "section" if $Prob(y)+\Delta$ is small

Results with EXPANDER

