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ADMINISTRIVIA



Who/What/Where/When
• Wiki:		google://”cohen CMU”àteachingà

– http://curtis.ml.cmu.edu/w/courses/index.php/Machine_Learning_with_L
arge_Datasets_10-405_in_Spring_2018

– this	should	point	to	everything	else	

• Office	Hours:		
– Still	TBA	for	all	of	us,	check	the	wiki

• Course	assistant:		Dorothy	Holland-Minkley
(dfh@cs)

• Instructor:
–William	W.		Cohen

• TAs:		
– Intros	coming	up….



Who/What/Where/When
• 10-405	is	a	brand	new	course!
• But	it’s	going	to	be	very	close	to	10-605	which	has	
been	happening	since	2012

• It’s	aimed	at	undergrads
–will	cover	about	the	same	topics
– not	a	project	course
– one	chance	to	do	an	open-ended	“extension	of	
an	assignment”

• Anyone	can	enroll	but	not	all	grad	programs	will	
give	you	full	credit	for	4xx	courses	so	read	the	
fine	print



Who/What/Where/When
• Who	is	here?



Who/What/Where/When
• Most	days	there	will	be	an	on-line	quiz	you	
should	do	after	lecture

• The	quizzes	will	usually	close	Friday	noon
• We	have	one	today	– see	the	wiki!
• They	don’t	count	for	a	lot	but	there	are	no	
makeups
–Quizzes	reinforce	the	lecture
–And	make	sure	you	keep	up



Who/What/Where/When
• William	W.		Cohen
– 1990-mid	1990’s:		AT&T	Bell	Labs	(working	on	ILP	
and	scalable	propositional	rule-learning	algorithms)

– Mid	1990’s—2000:		AT&T	Research	(text	
classification,	data	integration,		knowledge-as-text,		
information	extraction)

– 2000-2002:		Whizbang!	Labs	(info	extraction	from	
Web)

– 2002-2008,	2010-now:		CMU	(IE,	biotext,	social	
networks,	learning	in	graphs,	info	extraction	from	
Web,	scalable	first-order	learning)
• 2008-2009,	Jan-Jul	2017:		Visiting	Scientist	at	Google



TAs



I am a Masters Student in Information Networking 
Institute going to join Microsoft AI & Research Team
post this semester. My research interests are in the 
domains of Scalable Machine Learning and Deep Learning. 

I took the course last semester (Fall 2017) and learnt a lot. 

Hope you all have a great semester. See you at the office 
hours!

Vidhan Agarwal (MSIN)



Sarthak	Garg	- MS	in	CS
• I	am	a	first	year	Masters	student	
in	the	Computer	Science	
Department

• I	am	interested	in	Deep	
Generative	Models	and	
Distributed	Systems	for	Machine	
Learning

• I	took	10-605	last	fall	and	found	
it	very	interesting,	hope	you	
enjoy	the	course!



Nitish Kulkarni MS	in	MCDS
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I am a first year master's student 
in the Master of Computational 
Data Science program, LTI 
Department.

I’m interested in scalable 
machine learning algorithms and 
information retrieval. 

I took 10-805 in fall ‘17. The 
course was quite fun and 
incredibly useful. I’m glad to be a 
TA for the course this semester, 
and hope you have a similar 
experience.



Vivek	Shankar	– BS	in	SCS

• Vivek	Shankar	– BS	in	SCS

• I	am	a	fourth	year	undergraduate	in	the	
School	of	Computer	Science.

• This	summer,	I	interned	at	Google,	
Montreal	working	on	building	a	URL-
based	Machine	Learning	model	for	
detecting	malicious	Chrome	extensions.	
I’ll	be	joining	Google	full	time	in	
Pittsburgh.

• I	am	interested	in	designing	
parallelizable	machine	learning	
algorithms	that	scale	well	to	large	
datasets	– a	big	theme	in	10605.	I	took	
10605	in	Fall	'17,	and	it	was	one	of	my	
favorite	classes	thus	far	at	CMU!



What/How
I	kind	of	like	language	tasks,	especially	for	this	task:
– The	data	(usually)	makes	sense
– The	models	(usually)	make	sense
– The	models	(usually)	are	complex,		so	
• More	data	actually	helps
• Learning	simple	models	vs complex	ones	is	sometimes	
computationally	different



What/How
• Programming	Languages	and	Systems:		
– Python
– Hadoop	and	Spark

• Resources:
– unix.andrew machines
– Stoat	hadoop cluster:	
• 104	worker	nodes,	with	8	cores,	16	GB	RAM,	4	1TB.
• 30	worker	nodes,	with	8	cores,	16	GB	RAM,	 250Gb+

– Amazon	Elastic	Cloud	
• Amazon	EC2	[http://aws.amazon.com/ec2/]
• Allocation:	$50	worth	of	time	per	student



What/How:	601	co-req
• You	should	have	as	a	prereq or	co-req one	of	
the	MLD’s	intro	ML	courses:	10-401,	10-601,	
10-701,	10-715

• Lectures	are	designed	to	complement	 that	
material
– computational	aspects	vs informational	
aspects



What/How:	cheating	vs working	together
• I	have	a	long	and	explicit	policy
– stolen	from	Roni Rosenfeld	- read	the	web	page
– tl;dr:	transmit	information	like	they	did	in	the	stone	age,	
brain-to-brain,	and	document	it

– do	not	copy	anything	digitally
– exceptions	(eg projects)	will	be	explicitly	stated

– everybody	involved	will	fail by	default
– every infraction	always	gets	reported	up	to	the	Office	of	
Academic	Integrity,	the	head	of	your	program,	the	dean	
of	your	school,	….

– a	second	offense	is	very	bad



BIG	DATA	HISTORY:	FROM	THE	DAWN	OF	
TIME	TO	THE	PRESENT
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Big ML c. 1993 (Cohen, “Efficient…Rule Learning”,  IJCAI 1993)

$ ripper ../tdata/talks
Final hypothesis is:
talk_announcement :- WORDS ~ talk, WORDS ~ Subject_talk (54/1).
talk_announcement :- WORDS ~ '2d416' (26/3).
talk_announcement :- WORDS ~ system, WORDS ~ 'To_1126@research' (4/0).
talk_announcement :- WORDS ~ mh, WORDS ~ time (5/1).
talk_announcement :- WORDS ~ talk, WORDS ~ used (3/0).
talk_announcement :- WORDS ~ presentations (2/1).
default non_talk_announcement (390/1).
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More	on	this	paper
Algorithm

• Phase	1:	build	rules
– Discrete	greedy	search:
– Starting	with	empty	rule	set,	add	conditions	greedily

• Phase	2:	prune	rules
– starting	with	phase	1	output,	remove	conditions

talk_announcement :- WORDS ~ talk, WORDS ~ Subject_talk, WORDS ~ p_comma.
talk_announcement :- WORDS ~ '2d416', WORDS ~ be.
talk_announcement :- WORDS ~ show, WORDS ~ talk (7/0).
talk_announcement :- WORDS ~ mh, WORDS ~ time, WORDS ~ research (4/0).
talk_announcement :- WORDS ~ system, WORDS ~ 'To_1126@research' (3/0).
talk_announcement :- WORDS ~ '2d416', WORDS ~ memory (3/0).
talk_announcement :- WORDS ~ interfaces, WORDS ~ From_p_exclaim_point (2/0).
talk_announcement :- WORDS ~ presentations, WORDS ~ From_att (2/0).
default non_talk_announcement .

20



More	on	this	paper
Algorithm

• Phase	1:	build	rules
– Discrete	greedy	search:
– Starting	with	empty	rule	set,	add	conditions	greedily

• Phase	2:	prune	rules
– starting	with	phase	1	output,	remove	conditions,	greedily

talk_announcement :- WORDS ~ talk, WORDS ~ Subject_talk, WORDS ~ p_comma (54/0).
talk_announcement :- WORDS ~ '2d416', WORDS ~ be  (19/0).
talk_announcement :- WORDS ~ show, WORDS ~ talk (7/0).
talk_announcement :- WORDS ~ mh, WORDS ~ time, WORDS ~ research (4/0).
talk_announcement :- WORDS ~ system, WORDS ~ 'To_1126@research' (3/0).
talk_announcement :- WORDS ~ '2d416', WORDS ~ memory (3/0).
talk_announcement :- WORDS ~ interfaces, WORDS ~ From_p_exclaim_point (2/0).
talk_announcement :- WORDS ~ presentations, WORDS ~ From_att (2/0).
default non_talk_announcement .
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More	on	this	paper
Algorithm

• Phase	1:	build	rules
– Discrete	greedy	search:
– Starting	with	empty	rule	set,	add	conditions	greedily

• Phase	2:	prune	rules
– starting	with	phase	1	output,	remove	conditions,	greedily

talk_announcement :- WORDS ~ talk, WORDS ~ Subject_talk (54/1).
talk_announcement :- WORDS ~ '2d416' (26/3).
talk_announcement :- WORDS ~ system, WORDS ~ 'To_1126@research' (4/0).
talk_announcement :- WORDS ~ mh, WORDS ~ time (5/1).
talk_announcement :- WORDS ~ talk, WORDS ~ used (3/0).
talk_announcement :- WORDS ~ presentations (2/1).
default non_talk_announcement (390/1).
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More	on	this	paper
Algorithm

• Fit	the	POS,NEG	example
• While	POS	isn’t	empty:

– Let	R be	“if	True	è pos”
– While	NEG	isn’t	empty:

• Pick	the	“best”	[i]	condition	c of	
the	form	“xi=True”	or	“xi=false”

• Add	c to	the	LHS	of	R
• Remove	examples	that	don’t	
satisfy	c from	NEG

• Add	R	to	the	rule	set	[ii]
• Remove	examples	that	satisfy	R	from	
POS

• Prune	the	rule	set:
– …

Analysis

[i] “Best” is wrt some statistics on c’s coverage of POS,NEG

[ii] R is now of the form “if xi1=_ and xi2=_ and … è pos”

• The	total	number	of	iterations	of	
L1	is	the	number	of	conditions	in	
the	rule	set	– call	it	m

• Picking	the	“best”	condition	
requires	looking	at	all	examples	
– say	there	are	n of	these

• Time	is	at	least	m*n
• The	problem:

– When	there	are	noisy	
positive	examples	the	
algorithm	builds	rules	that	
cover	just	1-2	of	them

– So	with	huge	noisy	datasets	
you	build	huge	rulesets

L1

quadratic

cubic!
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Related 
paper from  
1995…
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So	in	mid	1990’s…..
• Experimental	datasets	were	small
• Many	commonly	used	algorithms	were	
asymptotically “slow”

• Not	many	people	really	cared
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Big ML c. 2001 (Banko & Brill, “Scaling to Very Very Large…”, ACL 2001)

Task: distinguish pairs of easily-confused words 
(“affect” vs “effect”) in context
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Big ML c. 2001 (Banko & Brill, “Scaling to Very Very Large…”, ACL 2001)
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Why	More	Data	Helps:	A	Demo
• Data:
–All	5-grams	that	appear	>=	40	times	in	a	
corpus	of	1M	English	books
• approx 80B	words
• 5-grams:	30Gb	compressed,	250-300Gb	
uncompressed
• Each	5-gram	contains	frequency	distribution	
over	years

28
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http://xkcd.com/ngram-charts/
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Why	More	Data	Helps:	A	Demo
• Data:
– All	5-grams	that	appear	>=	40	times	in	a	corpus	of	
1M	English	books
• approx 80B	words
• 5-grams:	30Gb	compressed,	250-300Gb	uncompressed
• Each	5-gram	contains	frequency	distribution	over	years

– Wrote	code	to	compute	
• Pr(A,B,C,D,E|C=affect	or	C=effect)	
• Pr(any	subset	of	A,…,E|any other	fixed	values	of	A,…,E	
with	C=affect	V	effect)

– Demo:
• /Users/wcohen/Documents/code/pyhack/bigml
• eg:	python	ngram-query.py data/aeffect-train.txt _	_B	effect	_	_
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Big ML c. 2001 (Banko & Brill, “Scaling to Very Very Large…”, ACL 2001)

Task: distinguish pairs of easily-confused words 
(“affect” vs “effect”) in context
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Why	More	Data	Helps
• Data:

– All	5-grams	that	appear	>=	40	times	in	a	corpus	of	1M	English	
books
• approx 80B	words
• 5-grams:	30Gb	compressed,	250-300Gb	uncompressed
• Each	5-gram	contains	frequency	distribution	over	years

– Wrote	code	to	compute	
• Pr(A,B,C,D,E|C=affect	or	C=effect)	
• Pr(any	subset	of	A,…,E|any other	fixed	values	of	A,…,E	with	
C=affect	V	effect)

• Observations [from	playing	with	data]:
– Mostly	effect not	affect
– Most	common	word	before	affect is	not
– After not	effect	most	common	word	is	a
– …
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So	in	2001…..
• We’re	learning:
– “there’s	no	data	like	more	data”
–For	many	tasks,	there’s	no	real	substitute	for	
using	lots	of	data
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…and	in	2009
Eugene Wigner’s article “The Unreasonable Effectiveness of Mathematics in 
the Natural Sciences” examines why so much of physics can be neatly 
explained with simple mathematical formulas such as f = ma or e = mc2. 
Meanwhile, sciences that involve human beings rather than elementary 
particles have proven more resistant to elegant mathematics.  Economists 
suffer from physics envy over their inability to neatly model human 
behavior.  An informal, incomplete grammar of the English language runs 
over 1,700 pages. 

Perhaps when it comes to natural language processing and related fields, 
we’re doomed to complex theories that will never have the elegance of 
physics equations. But if that’s so, we should stop acting as if our goal is to 
author extremely elegant theories, and instead embrace complexity and 
make use of the best ally we have: the unreasonable effectiveness of data.

Norvig, Pereira, Halevy, “The Unreasonable Effectiveness of Data”, 2009
36



…and	in	2012

Dec 2011
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…and	in	2013
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…and	in	2014
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Bengio,	Foundations	&	Trends,	2009
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naïve vs
clever 
optimization

1M	vs
10M

examples

2.5M	examples	
for	“pretraining”
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Today….
• Commonly	used	deep	learning	datasets:
– Images/videos:
• ImageNet:	20k+	categories,	14M+	images
• MS	COCO:	91	categories,	2.5M	labels,	328k	images
• YouTube-M:	8M	urls,	4800	classes,	0.5M	hours

– Reading	comprehension:
• Children’s	book	test:	600k	+	context/query	pairs
• CNN/Daily	mail:	~300k	docs,	1.2M	cloze	questions

–Other:
• Ubuntu	dialog:	7M+	utterances,	1M+	dialogs
• …
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REVIEW:	ASYMPTOTIC	COMPLEXITY
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How	do	we	use	very	large	amounts	of	data?
• Working	with	big	data	is	not about	
– code	optimization
– learning	details	of	todays hardware/software:
• GraphLab,	Hadoop,	Spark,	parallel	hardware,	….

• Working	with	big	data	is	about	
– Understanding	the	cost	of	what	you	want	to	do
– Understanding	what	the	tools	that	are	available	offer
– Understanding	how	much	can	be	accomplished	with	
linear	or	nearly-linear	operations	(e.g.,	sorting,	…)

– Understanding	how	to	organize	your	computations	
so	that	they	effectively	use	whatever’s	fast

– Understanding	how	to	test/debug/verify	with	large	
data

*

* according to William
44



Asymptotic	Analysis:	Basic	Principles

)()(,:,  iff  ))(()( 00 ngkxfnnnkngOnf ×£>"$Î

)()(,:,  iff  ))(()( 00 ngkxfnnnkngnf ×³>"$WÎ

Usually we only care about positive f(n), g(n), n here…
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Asymptotic	Analysis:	Basic	Principles

)()(,:,  iff  ))(()( 00 ngkxfnnnkngOnf ×£>"$=

)()(,:,  iff  ))(()( 00 ngkxfnnnkngnf ×³>"$W=

Less pedantically:

Some useful rules:

)O(   )( 434 nnnO =+

)O(   )1273( 434 nnnO =+

)loglog4log 4 nO(n) O()  nO( =×=

Only highest-order terms matter

Leading constants don’t matter

Degree of something in a log doesn’t matter
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Back	to	rule	pruning….

Algorithm
• Fit	the	POS,NEG	exampleWhile POS	isn’t	empty:

– Let	R be	“if	True	è pos”
– While	NEG	isn’t	empty:

• Pick	the	“best”	[1]	condition	c of	the	form	
“xi=True”	or	“xi=false”

• Add	c to	the	LHS	of	R
• Remove	examples	that	don’t	satisfy	c
from	NEG

• Add	R	to	the	rule	set	[2]
• Remove	examples	that	satisfy	R	from	POS

• Prune	the	rule	set:
– For	each	condition	c	in	the	rule	set:

• Evaluate	the	accuracy	of	the	ruleset w/o	
c	on	heldout data

– If	removing	any	c	improves	accuracy
• Remove	c	and	repeat	the	pruning	step

Analysis
• Assume	n	examples
• Assume m	conditions	in	rule	set
• Growing	rules	takes	time	at	least	

Ω(m*n)		if	evaluating	c	is	Ω(n)
• When	data	is	clean	m	is	small,	

fitting	takes	linear	time
• When	k%	of	data	is	noisy,	m is	

Ω(n*0.01*k)	so	growing	rules	
takes	Ω(n2)	

• Pruning	a	rule	set	with	m =	
0.01*kn extra	conditions	is	very	
slow:	Ω(n3)	if	implemented	naively	

[1] “Best” is wrt some statistics on c’s coverage of POS,NEG

[2] R is now of the form “if xi1=_ and xi2=_ and … è pos”
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Empirical
analysis of 
complexity: 
plot run-time 
on a log-log 
plot and 
measure the 
slope (using 
linear 
regression)
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Where	do	asymptotics break	down?
• When	the	constants	are	too	big
– or	n	is	too	small

• When	we	can’t	predict	what	the	program	will	do
– Eg,	how	many	iterations	before	convergence?	
Does	it	depend	on	data	size	or	not?
– This	is	when	you	need	experiments

• When	there	are	different	types	of	operations	with	
different	costs
–We	need	to	understand	what	we	should	count
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What	do	we	count?

• Compilers	don’t	warn	Jeff	Dean.		Jeff	Dean	warns	
compilers.

• Jeff	Dean	builds	his	code	before	committing	it,	but	only	to	
check	for	compiler	and	linker	bugs.

• Jeff	Dean	writes	directly	in	binary.	He	then	writes	the	
source	code	as	a	documentation	for	other	developers.

• Jeff	Dean	once	shifted	a	bit	so	hard,	it	ended	up	on	another	
computer.

• When	Jeff	Dean	has	an	ergonomic	evaluation,	it	is	for	the	
protection	of	his	keyboard.

• gcc -O4	emails	your	code	to	Jeff	Dean	for	a	rewrite.
• When	he	heard	that	Jeff	Dean's	autobiography	would	be	

exclusive	to	the	platform,	Richard	Stallman	bought	a	
Kindle.

• Jeff	Dean	puts	his	pants	on	one	leg	at	a	time,	but	if	he	had	
more	legs,	you’d	realize	the	algorithm	is	actually	only	
O(logn)
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Numbers	(Jeff	Dean	says)	Everyone	Should	
Know
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Update:	Colin	Scott,	UCB

file:///Users/wcohen/Documents/code/interactive_latencies/interactive_lat
ency.html - *may need to open this from shell

52



What’s	Happening	with	Hardware?
• Clock	speed:	stuck	at	3Ghz	for	~	10	years
• Net	bandwidth	doubles	~	2	years
• Disk	bandwidth	doubles	~	2	years
• SSD	bandwidth	doubles	~	3	years
• Disk	seek	speed	doubles	~	10	years
• SSD	latency	nearly	saturated
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Numbers	(Jeff	Dean	says)	Everyone	Should	
Know
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A	typical	CPU	(not	to	scale)
K8 core in the AMD Athlon 64 CPU

16x bigger

256x bigger

Hard disk 
(1Tb) 128x bigger
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A	typical	CPU	(not	to	scale)
K8 core in the AMD Athlon 64 CPU

16x bigger

256x bigger

Hard disk 
(1Tb) 128x bigger
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A	typical	CPU	(not	to	scale)
K8 core in the AMD Athlon 64 CPU

16x bigger

256x bigger

Hard disk 
(1Tb) 128x bigger
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A	typical	CPU	(not	to	scale)
K8 core in the AMD Athlon 64 CPU

16x bigger

256x bigger

Hard disk 
(1Tb) 128x bigger
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A	typical	disk
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Numbers	(Jeff	Dean	says)	Everyone	Should	
Know

~= 10x

~= 15x

~= 100,000x

40x
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What	do	we	count?

• Compilers	don’t	warn	Jeff	Dean.		Jeff	Dean	warns	compilers.
• ….

• Memory	access/instructions	are	
qualitatively	different	from	disk	access

• Seeks	are	qualitatively	different	from	
sequential	reads	on	disk

• Cache,	disk	fetches,	etc	work	best	when	you	
stream	through	data	sequentially

• Best	case	for	data	processing:	stream	
through	the	data	once in	sequential	order,	
as	it’s	found	on	disk.
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Other	lessons	-?

* but not important 
enough for this class’s 
assignments….

*
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What/How
–Next	lecture:	probability	review	and	Naïve	
Bayes.
–Homework:
• Watch	the	review	lecture	I	linked	to	on	the	wiki

– I’m	not going	to	repeat	it
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