

10-405 ML from Large Datasets

William Cohen

ADMINISTRIVIA

Who/What/Where/When

- Wiki: `google://`"cohen CMU" → teaching →
 - [http://curtis.ml.cmu.edu/w/courses/index.php/Machine Learning with Large Datasets 10-405 in Spring 2018](http://curtis.ml.cmu.edu/w/courses/index.php/Machine_Learning_with_Large_Datasets_10-405_in_Spring_2018)
 - this should point to everything else
- Office Hours:
 - Still TBA for all of us, check the wiki
- Course assistant: Dorothy Holland-Minkley
(dfh@cs)
- Instructor:
 - William W. Cohen
- TAs:
 - Intros coming up....

Who/What/Where/When

- 10-405 is a brand new course!
- But it's going to be very close to 10-605 which has been happening since 2012
- It's aimed at undergrads
 - will cover about the same topics
 - not a project course
 - one chance to do an open-ended “extension of an assignment”
- Anyone can enroll but not all grad programs will give you full credit for 4xx courses so read the fine print

Who/What/Where/When

- Who is here?

Who/What/Where/When

- Most days there will be an on-line quiz you should do after lecture
- The quizzes will usually close Friday noon
- We have one today – see the wiki!
- They don't count for a lot but there are no makeups
 - Quizzes reinforce the lecture
 - And make sure you keep up

Who/What/Where/When

- William W. Cohen
 - 1990-mid 1990's: AT&T Bell Labs (working on ILP and scalable propositional rule-learning algorithms)
 - Mid 1990's—2000: AT&T Research (text classification, data integration, knowledge-as-text, information extraction)
 - 2000-2002: Whizbang! Labs (info extraction from Web)
 - 2002-2008, 2010-now: CMU (IE, biotext, social networks, learning in graphs, info extraction from Web, scalable first-order learning)
 - 2008-2009, Jan-Jul 2017: Visiting Scientist at Google

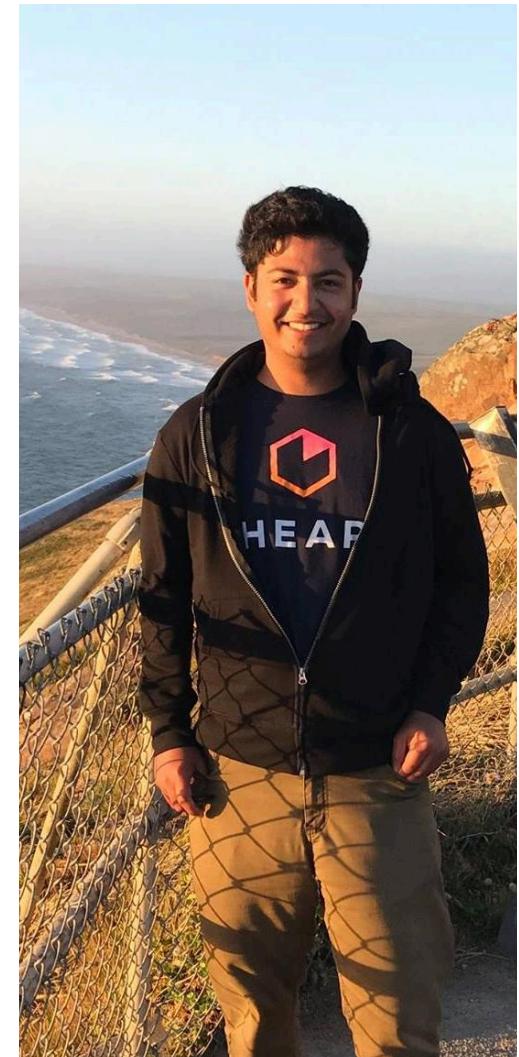
TAs

Vidhan Agarwal (MSIN)

I am a Masters Student in Information Networking Institute going to join Microsoft AI & Research Team post this semester. My research interests are in the domains of Scalable Machine Learning and Deep Learning.

I took the course last semester (Fall 2017) and learnt a lot.

Hope you all have a great semester. See you at the office hours!



Sarthak Garg - MS in CS

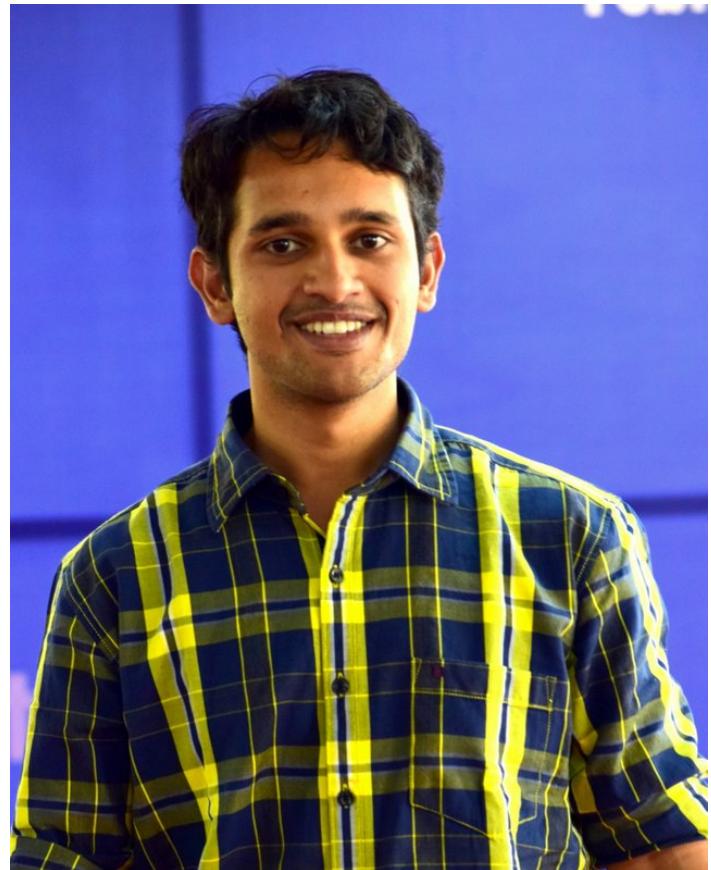
- I am a first year Masters student in the Computer Science Department
- I am interested in Deep Generative Models and Distributed Systems for Machine Learning
- I took 10-605 last fall and found it very interesting, hope you enjoy the course!

Nitish Kulkarni MS in MCDS

I am a first year master's student in the Master of Computational Data Science program, LTI Department.

I'm interested in scalable machine learning algorithms and information retrieval.

I took 10-805 in fall '17. The course was quite fun and incredibly useful. I'm glad to be a TA for the course this semester, and hope you have a similar experience.



Vivek Shankar – BS in SCS

- Vivek Shankar – BS in SCS
- I am a fourth year undergraduate in the School of Computer Science.
- This summer, I interned at Google, Montreal working on building a URL-based Machine Learning model for detecting malicious Chrome extensions. I'll be joining Google full time in Pittsburgh.
- I am interested in designing parallelizable machine learning algorithms that scale well to large datasets – a big theme in 10605. I took 10605 in Fall '17, and it was one of my favorite classes thus far at CMU!

What/How

I kind of like language tasks, especially for this task:

- The data (usually) makes sense
- The models (usually) make sense
- The models (usually) are complex, so
 - More data actually helps
 - Learning simple models *vs* complex ones is sometimes computationally different

What/How

- Programming Languages and Systems:
 - Python
 - Hadoop and Spark
- Resources:
 - unix.andrew machines
 - Stoat hadoop cluster:
 - 104 worker nodes, with 8 cores, 16 GB RAM, 4 1TB.
 - 30 worker nodes, with 8 cores, 16 GB RAM, 250Gb+
 - Amazon Elastic Cloud
 - Amazon EC2 [<http://aws.amazon.com/ec2/>]
 - Allocation: \$50 worth of time per student

What/How: 601 co-req

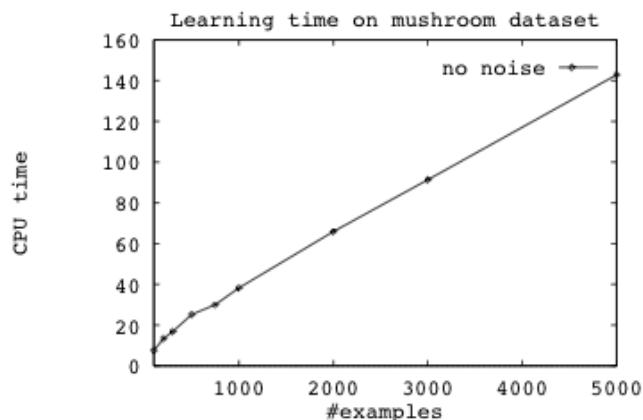
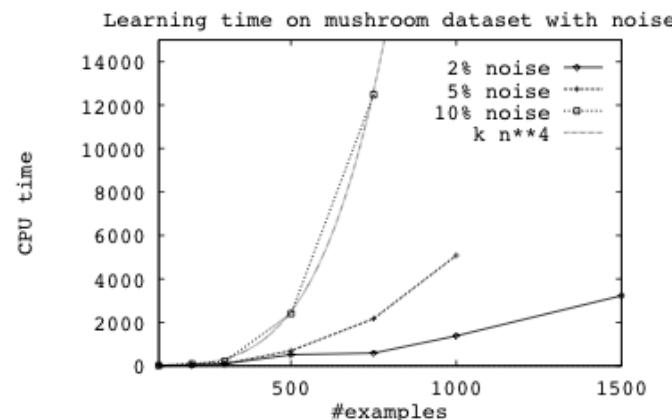
- You should have as a prereq or co-req one of the MLD's intro ML courses: 10-401, 10-601, 10-701, 10-715
- Lectures are designed to *complement* that material
 - computational aspects vs informational aspects

What/How: cheating vs working together

- I have a long and explicit policy
 - stolen from Roni Rosenfeld - read the web page
 - tl;dr: transmit information like they did in the stone age, brain-to-brain, and document it
 - do not copy anything digitally
 - exceptions (eg projects) will be explicitly stated
 - *everybody involved will fail* by default
 - *every* infraction *always* gets reported up to the Office of Academic Integrity, the head of your program, the dean of your school,
 - a second offense is very bad

BIG DATA HISTORY: FROM THE DAWN OF TIME TO THE PRESENT

Big ML c. 1993 (Cohen, “Efficient...Rule Learning”, IJCAI 1993)



```
$ ripper ..\tdata/talks
```

Final hypothesis is:

```
talk_announcement :- WORDS ~ talk, WORDS ~ Subject_talk (54/1).  
talk_announcement :- WORDS ~ '2d416' (26/3).  
talk_announcement :- WORDS ~ system, WORDS ~ 'To_1126@research' (4/0).  
talk_announcement :- WORDS ~ mh, WORDS ~ time (5/1).  
talk_announcement :- WORDS ~ talk, WORDS ~ used (3/0).  
talk_announcement :- WORDS ~ presentations (2/1).  
default non_talk_announcement (390/1).
```

Benchmark	CPU Time							
	No Pruning		REP		Grow		MDLGrow	
kr-vs-knn	10.8	± 0.6	18.5	± 1.8	13.2	± 0.6	13.4	± 0.6
bridge-t/d	12.7	0.9	27.6	3.3	10.4	0.9	8.1	0.7
thyroid-hypo	72.6	6.5	56.6	9.4	46.4	6.2	48.1	6.3
bridge-mtr1	22.1	0.6	76.7	9.6	16.5	1.5	10.6	0.6
mushroom	35.6	0.8	78.3	7.8	44.5	1.4	45.3	1.7
thyroid-allbp	144.8	7.7	164.5	12.6	99.5	4.6	100.7	5.8
bridge-span	29.5	0.8	176.2	18.6	31.9	2.3	13.3	0.8
bridge-rel-1	44.1	1.0	294.1	36.9	34.0	2.9	14.1	1.2
bridge-type	38.9	1.1	370.6	25.2	40.5	2.3	21.2	1.0
sonar	561.0	12.9	399.2	15.1	368.2	12.0	370.6	12.1
segment	815.7	23.9	1264.0	86.6	728.2	29.6	733.6	27.8
mushroom*	217.2	10.1	4081.7	485.4	276.7	23.4	135.1	6.9
kr-vs-knn*	154.2	11.9	5549.3	1255.3	206.6	23.5	53.5	4.0
rds	3189.1	84.9	15155.2	1282.4	2210.0	52.0	879.9	42.4
Average for Benchmark Set 2	382.03		2695.63		402.00		239.38	
Average for Benchmark Set 1	108.4		384.0		105.9		100.5	

Table 3: Comparing runtimes

More on this paper

Algorithm

- Phase 1: build rules
 - Discrete greedy search:
 - Starting with empty rule set, add conditions greedily
- Phase 2: prune rules
 - starting with phase 1 output, remove conditions

talk announcement :-

default non talk announcement.

More on this paper

Algorithm

- Phase 1: build rules
 - Discrete greedy search:
 - Starting with empty rule set, add conditions greedily
- Phase 2: prune rules
 - starting with phase 1 output, remove conditions, greedily

```
talk_announcement :- WORDS ~ talk, WORDS ~ Subject_talk, WORDS ~ p_comma (54/0).  
talk_announcement :- WORDS ~ '2d416', WORDS ~ be (19/0).  
talk_announcement :- WORDS ~ show, WORDS ~ talk (7/0).  
talk_announcement :- WORDS ~ mh, WORDS ~ time, WORDS ~ research (4/0).  
talk_announcement :- WORDS ~ system, WORDS ~ 'To_1126@research' (3/0).  
talk_announcement :- WORDS ~ '2d416', WORDS ~ memory (3/0).  
talk_announcement :- WORDS ~ interfaces, WORDS ~ From_p_exclam_point (2/0).  
talk_announcement :- WORDS ~ presentations, WORDS ~ From_att (2/0).  
default non_talk_announcement .
```

More on this paper

Algorithm

- Phase 1: build rules
 - Discrete greedy search:
 - Starting with empty rule set, add conditions greedily
- Phase 2: prune rules
 - starting with phase 1 output, remove conditions, greedily

```
talk_announcement :- WORDS ~ talk, WORDS ~ Subject_talk (54/1).  
talk_announcement :- WORDS ~ '2d416' (26/3).  
talk_announcement :- WORDS ~ system, WORDS ~ 'To_1126@research' (4/0).  
talk_announcement :- WORDS ~ mh, WORDS ~ time (5/1).  
talk_announcement :- WORDS ~ talk, WORDS ~ used (3/0).  
talk_announcement :- WORDS ~ presentations (2/1).  
default non_talk_announcement (390/1).
```

More on this paper

Algorithm

- Fit the POS,NEG example
- While POS isn't empty:
 - Let R be "if True \rightarrow pos"
 - While NEG isn't empty:
 - LI**
 - Pick the "best" [i] condition c of the form " $x_i=True$ " or " $x_i=false$ "
 - Add c to the LHS of R
 - Remove examples that don't satisfy c from NEG
 - Add R to the rule set [ii]
 - Remove examples that satisfy R from POS
 - Prune the rule set:
 - ...

cubic!

[i] "Best" is wrt some statistics on c 's coverage of POS,NEG

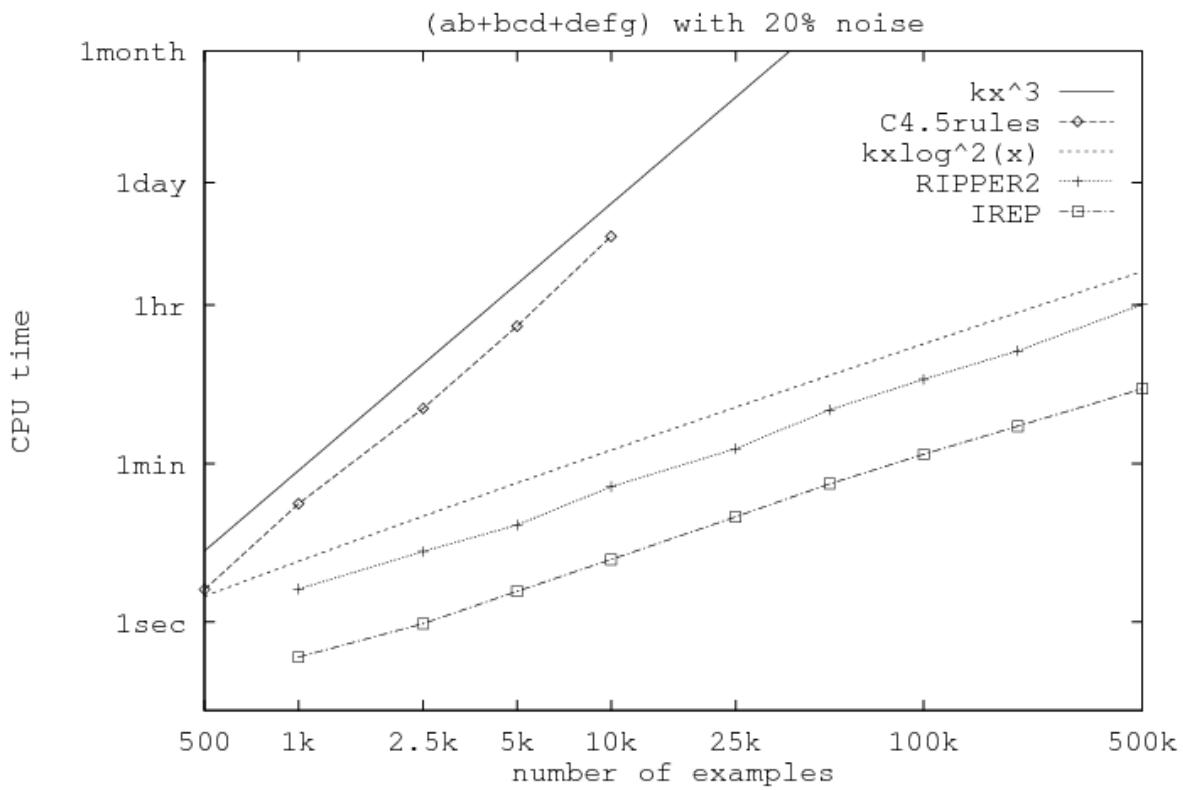
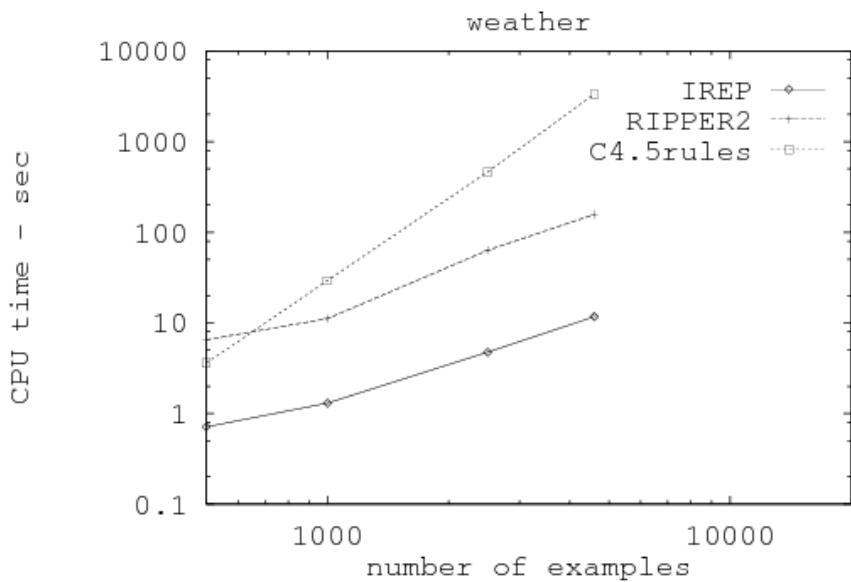
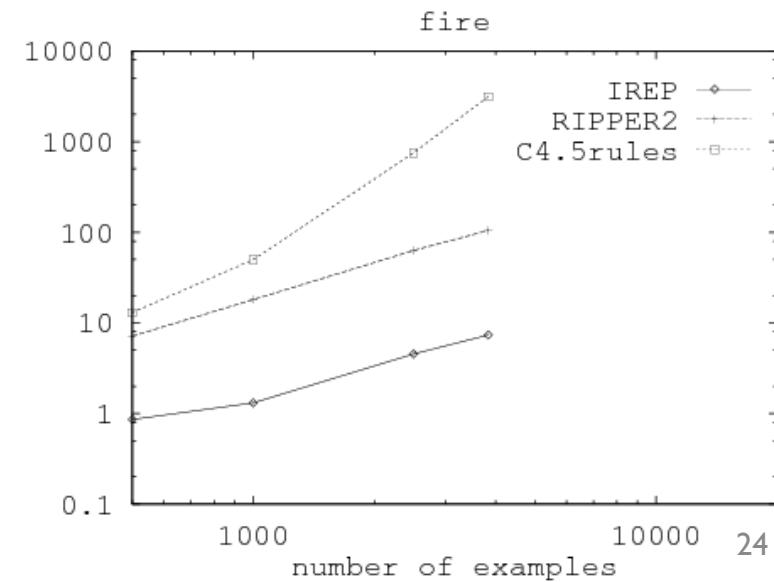
[ii] R is now of the form "if $x_{i1}=_$ and $x_{i2}=_$ and ... \rightarrow pos"

Analysis

- The total number of iterations of L1 is the number of conditions in the rule set – call it m
- Picking the "best" condition requires looking at all examples
 - say there are n of these
- Time is at least $m*n$
- The problem:
 - When there are noisy positive examples the algorithm builds rules that cover just 1-2 of them
 - So with huge noisy datasets you build huge rulesets

quadratic

Related paper from 1995...



So in mid 1990's.....

- Experimental datasets were small
- Many commonly used algorithms were *asymptotically* “slow”
- Not many people really cared

Big ML c. 2001 (Banko & Brill, “Scaling to Very Very Large...”, ACL 2001)

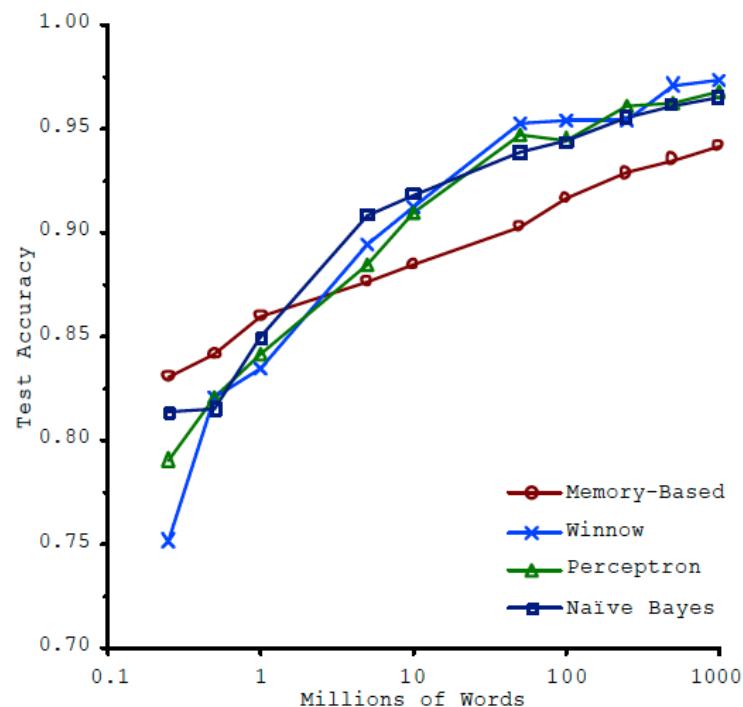


Figure 1. Learning Curves for Confusion Set Disambiguation

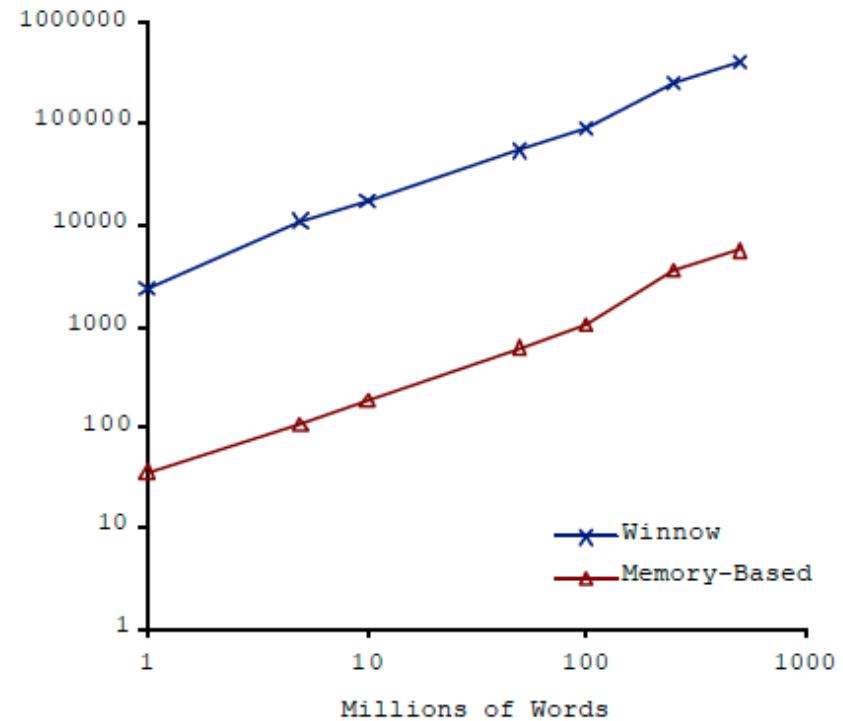
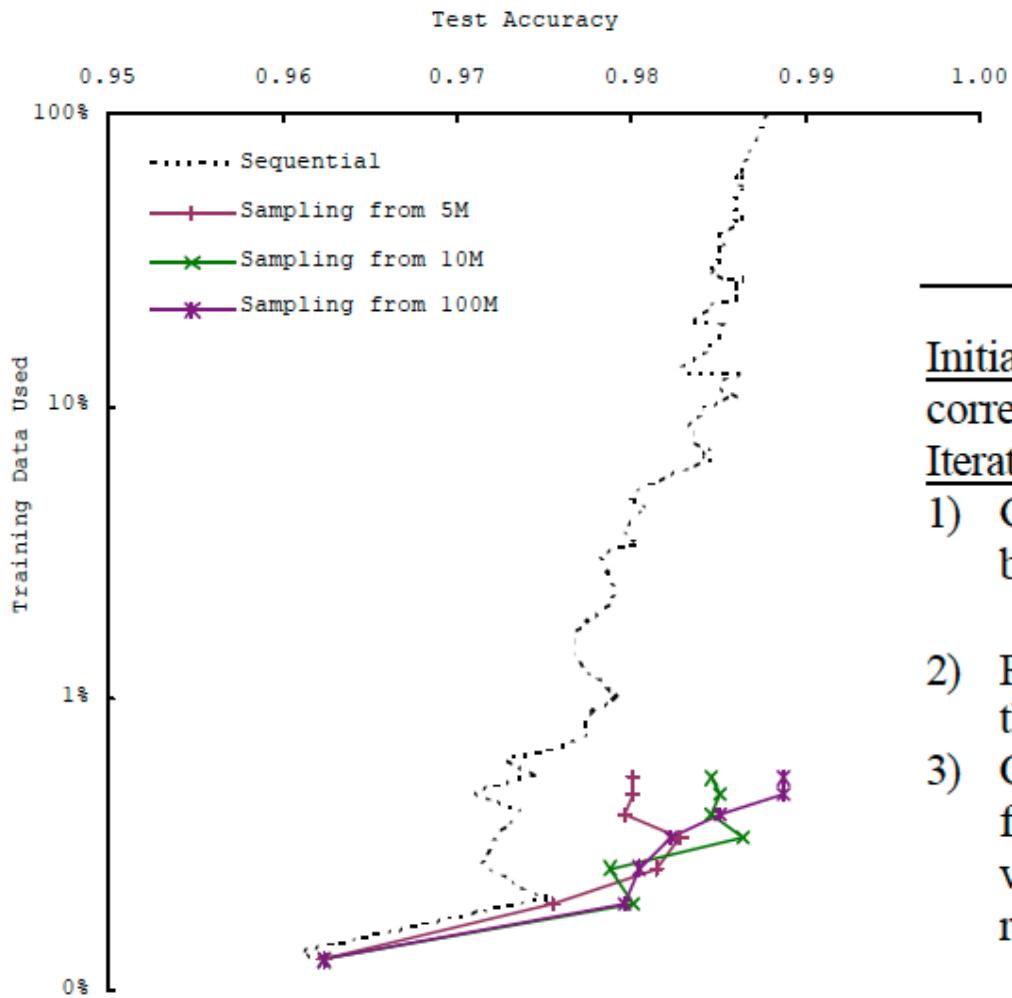


Figure 2. Representation Size vs. Training Corpus Size

Task: distinguish pairs of easily-confused words
 (“affect” vs “effect”) in context

Big ML c. 2001 (Banko & Brill, "Scaling to Very Very Large...", ACL 2001)



Initialize: Training data consists of X words correctly labeled

Iterate:

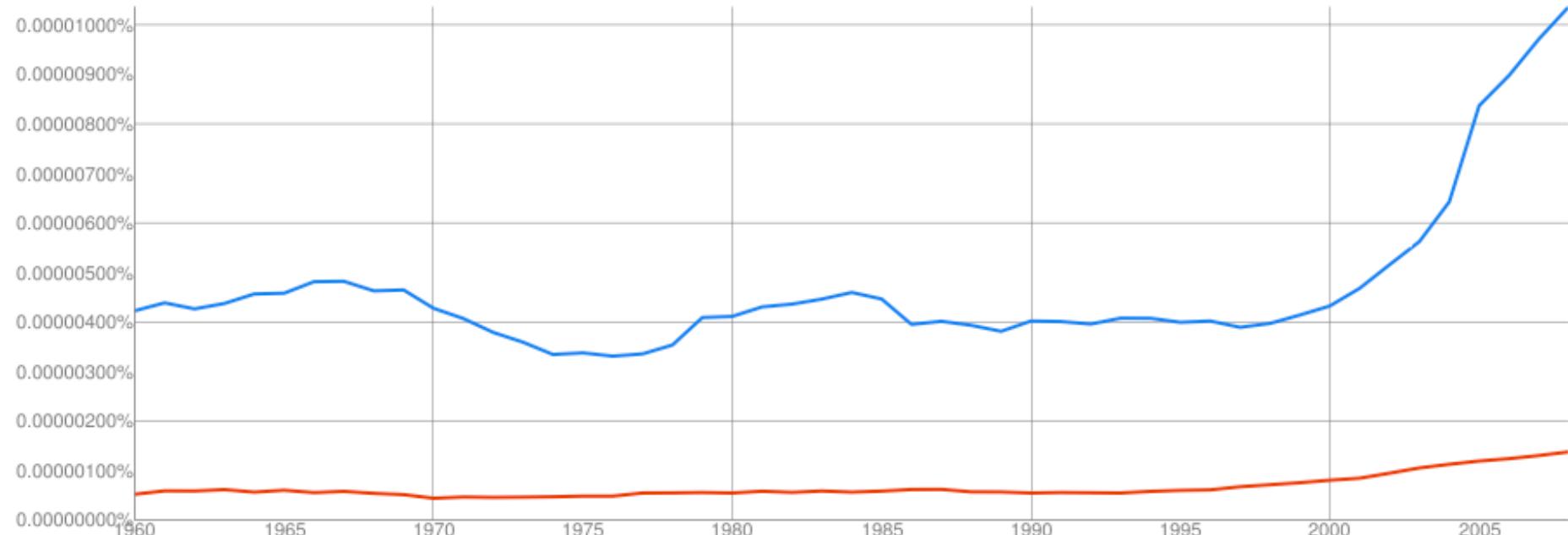
- 1) Generate a committee of classifiers using bagging on the training set
- 2) Run the committee on unlabeled portion of the training set
- 3) Choose M instances from the unlabeled set for labeling - pick the $M/2$ with the greatest vote entropy and then pick another $M/2$ randomly – and add to training set

Figure 4. Active Learning with Large Corpora

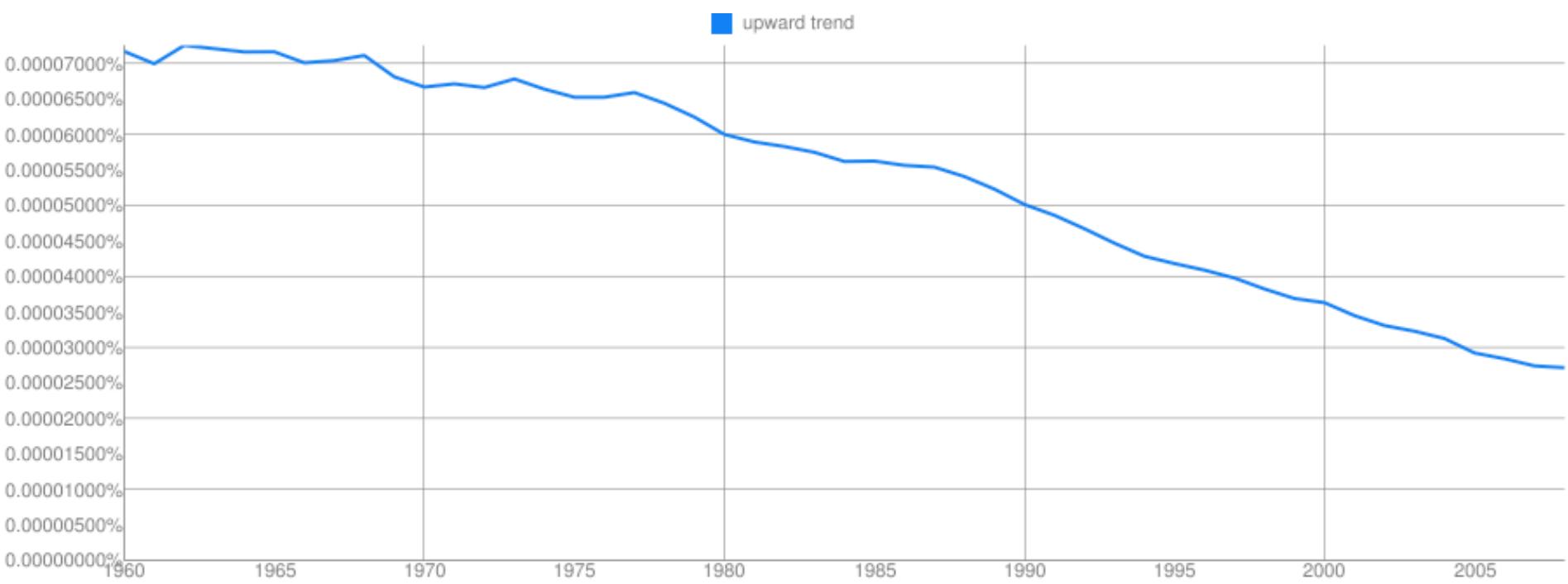
Why More Data Helps: A Demo

- Data:
 - All 5-grams that appear \geq 40 times in a corpus of 1M English books
 - approx 80B words
 - 5-grams: 30Gb compressed, 250-300Gb uncompressed
 - Each 5-gram contains frequency distribution over *years*

■ merry Christmas ■ happy holidays

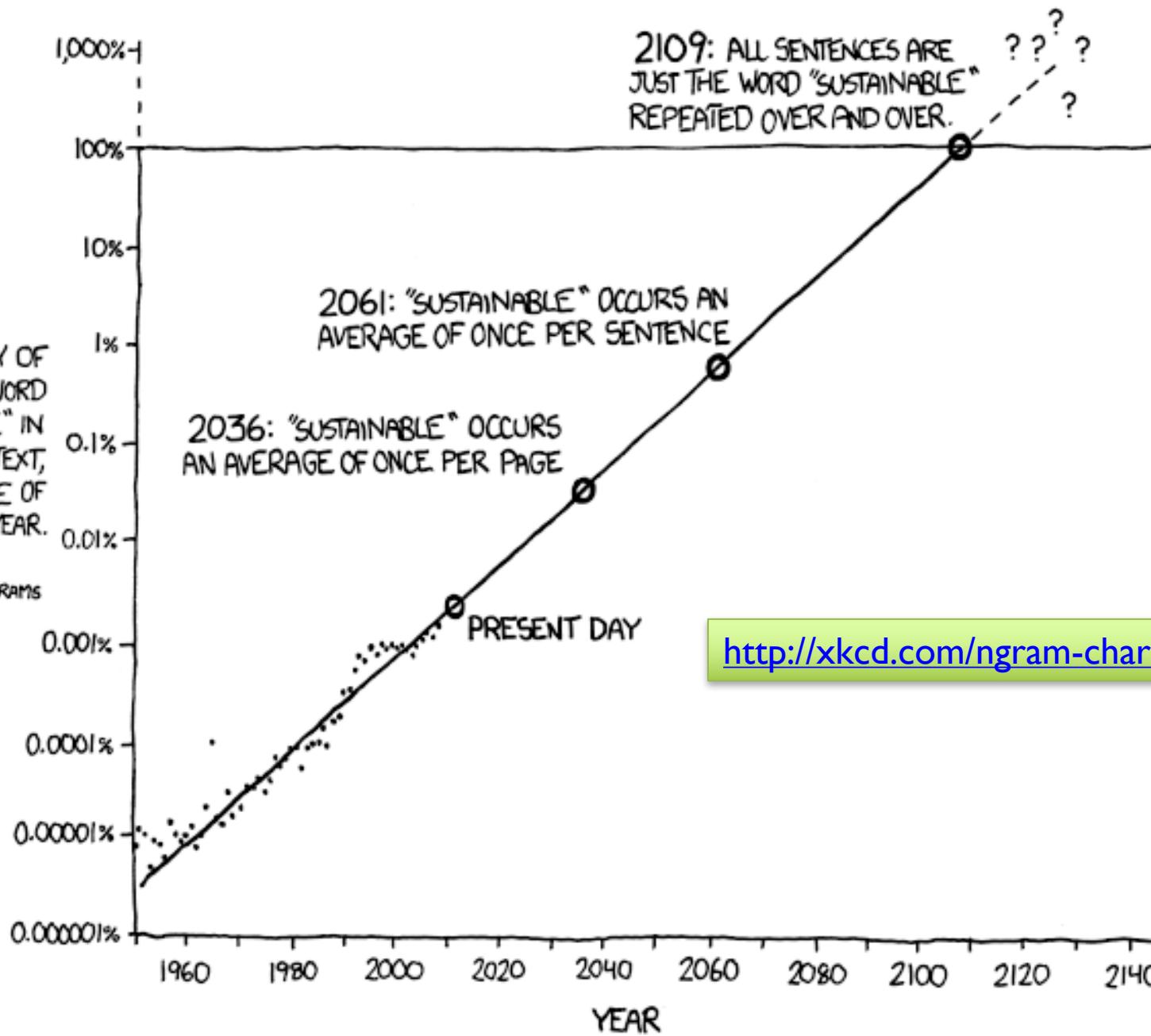


■ explosion in popularity



FREQUENCY OF
USE OF THE WORD
"SUSTAINABLE" IN
US ENGLISH TEXT,
AS A PERCENTAGE OF
ALL WORDS, BY YEAR.

SOURCE: GOOGLE NGRAMS



THE WORD "SUSTAINABLE" IS UNSUSTAINABLE.

Why More Data Helps: A Demo

- Data:
 - All 5-grams that appear ≥ 40 times in a corpus of 1M English books
 - approx 80B words
 - 5-grams: 30Gb compressed, 250-300Gb uncompressed
 - Each 5-gram contains frequency distribution over *years*
 - Wrote code to compute
 - $\Pr(A, B, C, D, E | C = \text{affect} \text{ or } C = \text{effect})$
 - $\Pr(\text{any subset of } A, \dots, E | \text{any other fixed values of } A, \dots, E \text{ with } C = \text{affect} \text{ V effect})$
 - Demo:
 - `/Users/wcohen/Documents/code/pyhack/bigml`
 - eg: `python ngram-query.py data/aeffect-train.txt _B effect _-`

Big ML c. 2001 (Banko & Brill, “Scaling to Very Very Large...”, ACL 2001)

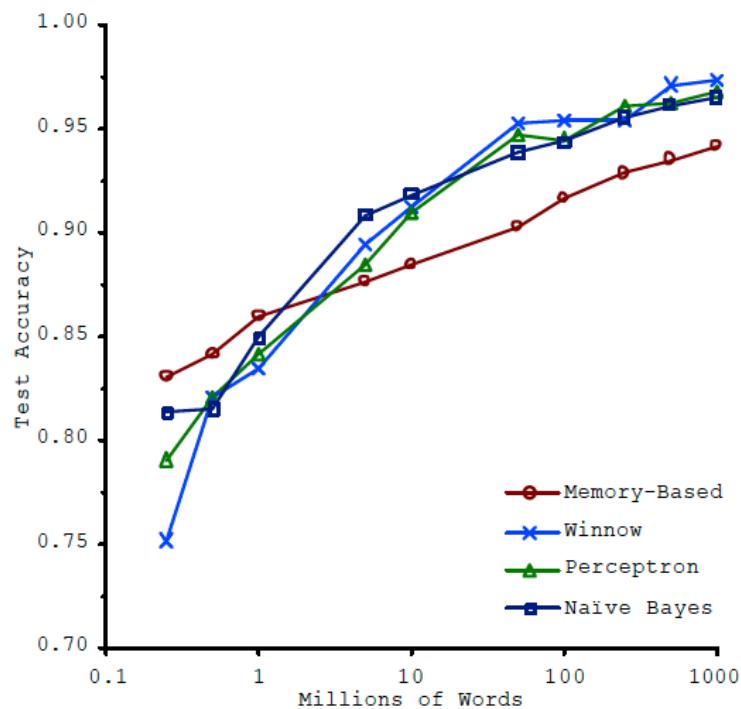


Figure 1. Learning Curves for Confusion Set Disambiguation

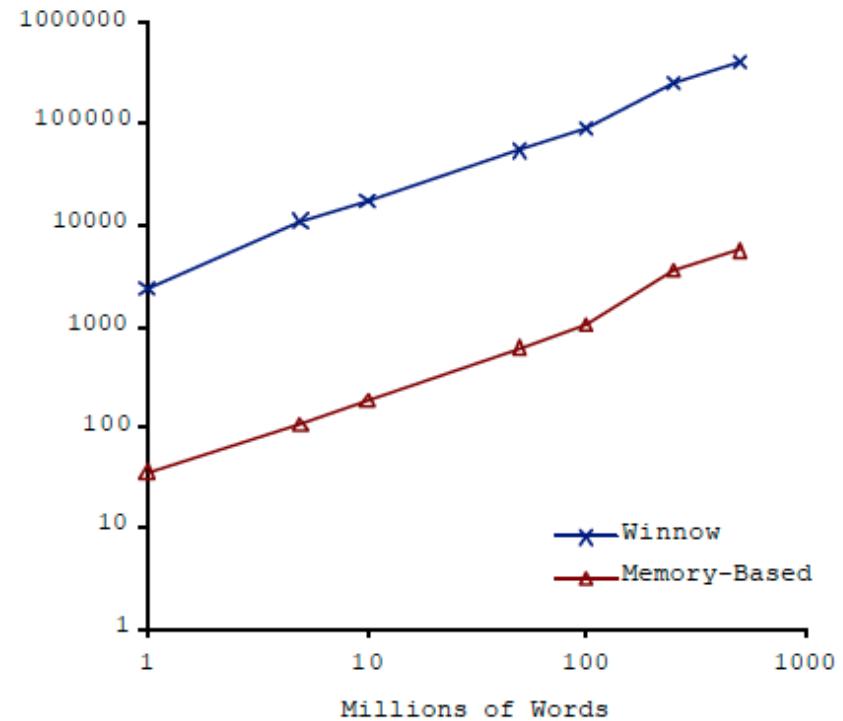


Figure 2. Representation Size vs. Training Corpus Size

Task: distinguish pairs of easily-confused words
 (“affect” vs “effect”) in context

Why More Data Helps

- Data:
 - All 5-grams that appear ≥ 40 times in a corpus of 1M English books
 - approx 80B words
 - 5-grams: 30Gb compressed, 250-300Gb uncompressed
 - Each 5-gram contains frequency distribution over *years*
 - Wrote code to compute
 - $\Pr(A, B, C, D, E | C = \text{affect} \text{ or } C = \text{effect})$
 - $\Pr(\text{any subset of } A, \dots, E | \text{any other fixed values of } A, \dots, E \text{ with } C = \text{affect} \text{ V effect})$
- Observations [from **playing with data**]:
 - Mostly **effect** not **affect**
 - Most common word before **affect** is **not**
 - After **not effect** most common word is **a**
 - ...

So in 2001.....

- We're learning:
 - “there's no data like more data”
 - For many tasks, there's no real *substitute* for using lots of data

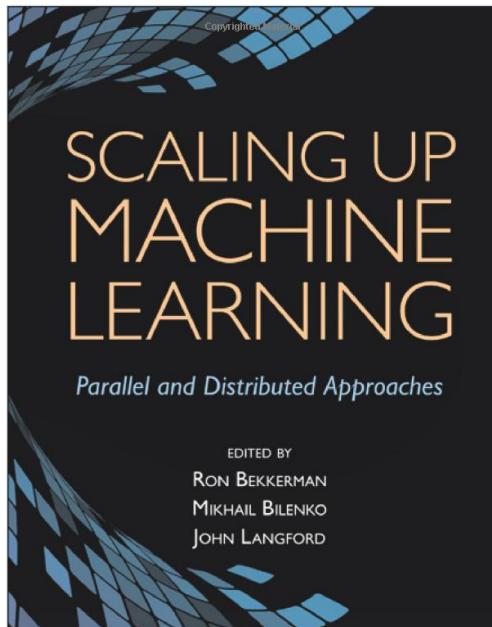
...and in 2009

Eugene Wigner's article "*The Unreasonable Effectiveness of Mathematics in the Natural Sciences*" examines why so much of physics can be neatly explained with simple mathematical formulas such as $f = ma$ or $e = mc^2$. Meanwhile, sciences that involve human beings rather than elementary particles have proven more resistant to elegant mathematics. Economists suffer from physics envy over their inability to neatly model human behavior. An informal, incomplete grammar of the English language runs over 1,700 pages.

Perhaps when it comes to natural language processing and related fields, we're doomed to complex theories that will never have the elegance of physics equations. But if that's so, we should stop acting as if our goal is to author extremely elegant theories, and instead embrace complexity and make use of the best ally we have: the unreasonable effectiveness of data.

Norvig, Pereira, Halevy, "The Unreasonable Effectiveness of Data", 2009

...and in 2012



[Arthur Gretton](#), [Michael Mahoney](#), [Mehryar Mohri](#), [Ameet Talwalkar](#)

Gatsby Unit, UCL; Stanford; Google Research; UC Berkeley

Workshop: Low-rank Methods for Large-scale Machine Learning

7:30am - 6:30pm Saturday, December 11, 2010

[Joseph Gonzalez](#), [Sameer Singh](#), [Graham Taylor](#), [James Bergstra](#), [Alice Zheng](#), [Misha Bilenko](#), [Yucheng Low](#), [Yoshua Bengio](#), [Michael Franklin](#), [Carlos Guestrin](#), [Andrew McCallum](#), [Alexander Smola](#), [Michael Jordan](#), [Sugato Basu](#)

Carnegie Mellon University; University of Massachusetts, Amherst; New York University; Harvard; Microsoft Research; Microsoft Research; Carnegie Mellon University; University of Montreal; UC Berkeley; Carnegie Mellon University; UMass Amherst; Yahoo! Research; University of California; Google Research

Workshop: Big Learning: Algorithms, Systems, and Tools for Learning at Scale

Location: Montebajo: Theater

Dec 2011

SMLA Workshop 2010

29 June - 01 July, 2010, Bradford, UK

**International Workshop on
Scalable Machine Learning and Applications (SMLA-10)
In conjunction with [CIT 2010](#)**

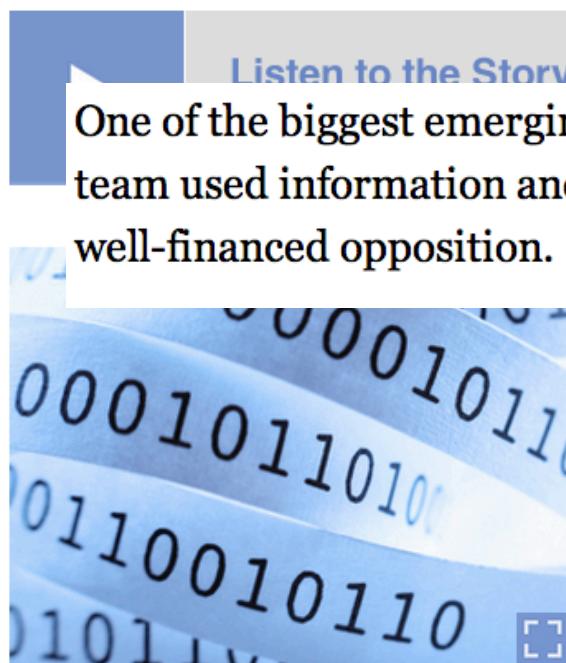
...and in 2013

news > opinion > commentary

Forget YOLO: Why 'Big Data' Should Be The Word Of The Year

by GEOFF NUNBERG

December 20, 2012 10:58 AM



Listen to the Story

One of the biggest emerging stories about the campaign that has ended is how Mr. Obama's team used information and technology to outmatch and outwit a galvanized and incredibly well-financed opposition.

probably
"frankens" **it was the buzz of Silicon Valley** e like
Wired and the Economist, and it was the buzz of Silicon Valley and Davos. And if the phrase wasn't as familiar to many people as "Etch A Sketch" and "47 percent," Big Data had just as much to do with President Obama's victory as they did.

Whether it's explicitly mentioned or not, the Big Data phenomenon has been all

Adam Gryko/STC

it will be around a lot longer than "gangnam style." is about intrusions on our data sweeps or the ads that track us as we wander around the Web. It has even turned statistics into a sexy major. So if you haven't heard the phrase yet, there's still time — it will be around a lot longer than "gangnam style."

...and in 2014

← → C **WIRED** GEAR SCIENCE ENTERTAINMENT BUSINESS SECURITY DESIGN OPINION MAGA

INNOVATION INSIGHTS | [analytics](#) [doctors](#) [EHR](#) [salaries](#)

Tell Your Kids to Be Data Scientists, Not Doctors

BY LINDA BURTCH, BURTCH WORKS 06.17.14 | 5:45 PM | [PERMALINK](#)

[Share](#) 42 [Tweet](#) 48 [g+1](#) 8 [Share](#) 124 [Pin it](#)

Home News & Commentary Authors Slideshows Video Reports White Papers Events University

STRATEGIC CIO SOFTWARE SECURITY CLOUD MOBILE BIG DATA INFRASTRUCTURE

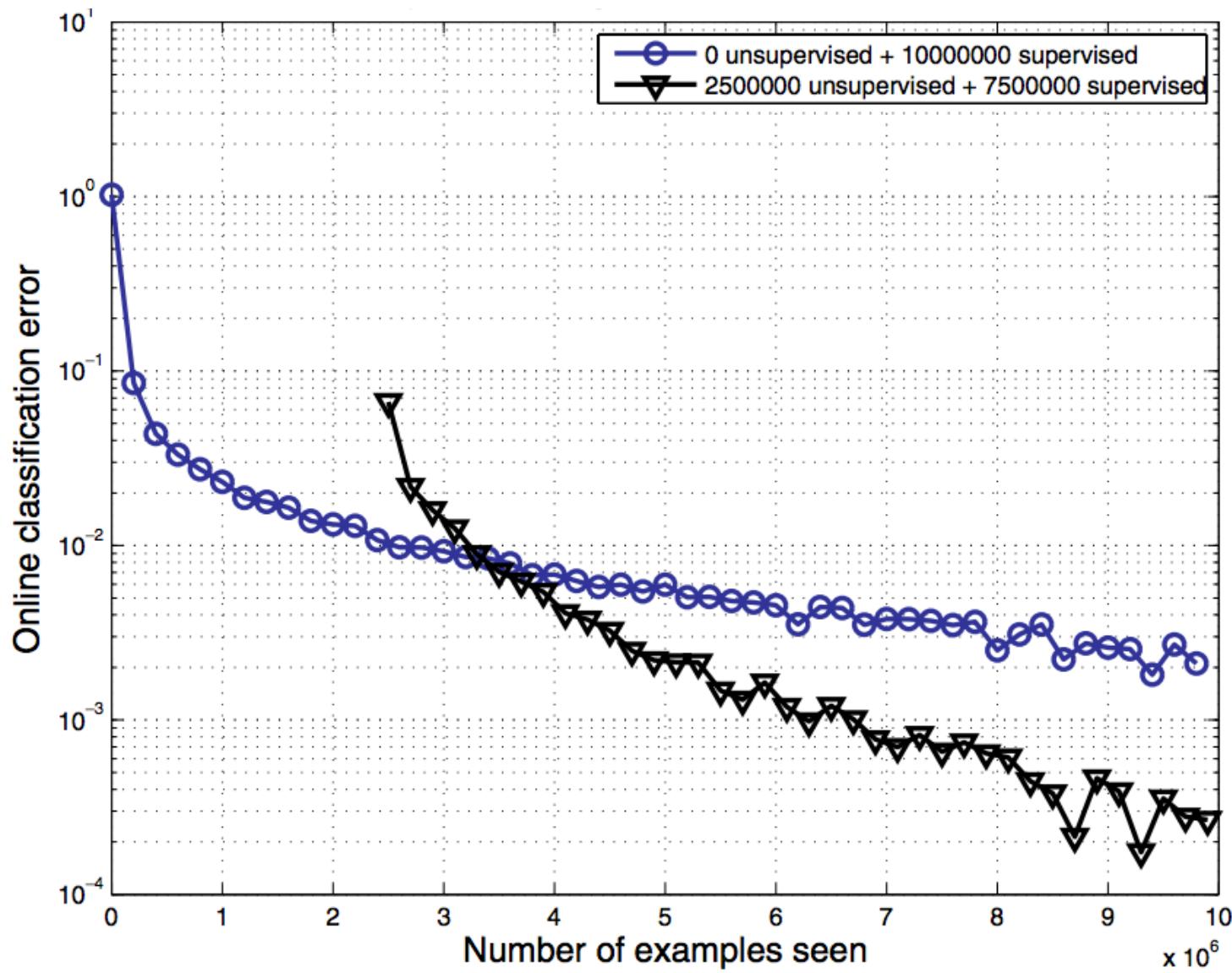
BIG DATA // BIG DATA ANALYTICS

COMMENTARY 12/2/2013 09:06 AM

Data Scientist: The Sexiest Job No One Has

The data scientist has been called the sexiest job of the 21st century, but it's largely going unfilled. That's a huge problem for the business world.

Bengio, Foundations & Trends, 2009



3-layer net, budget of 10000000 iterations

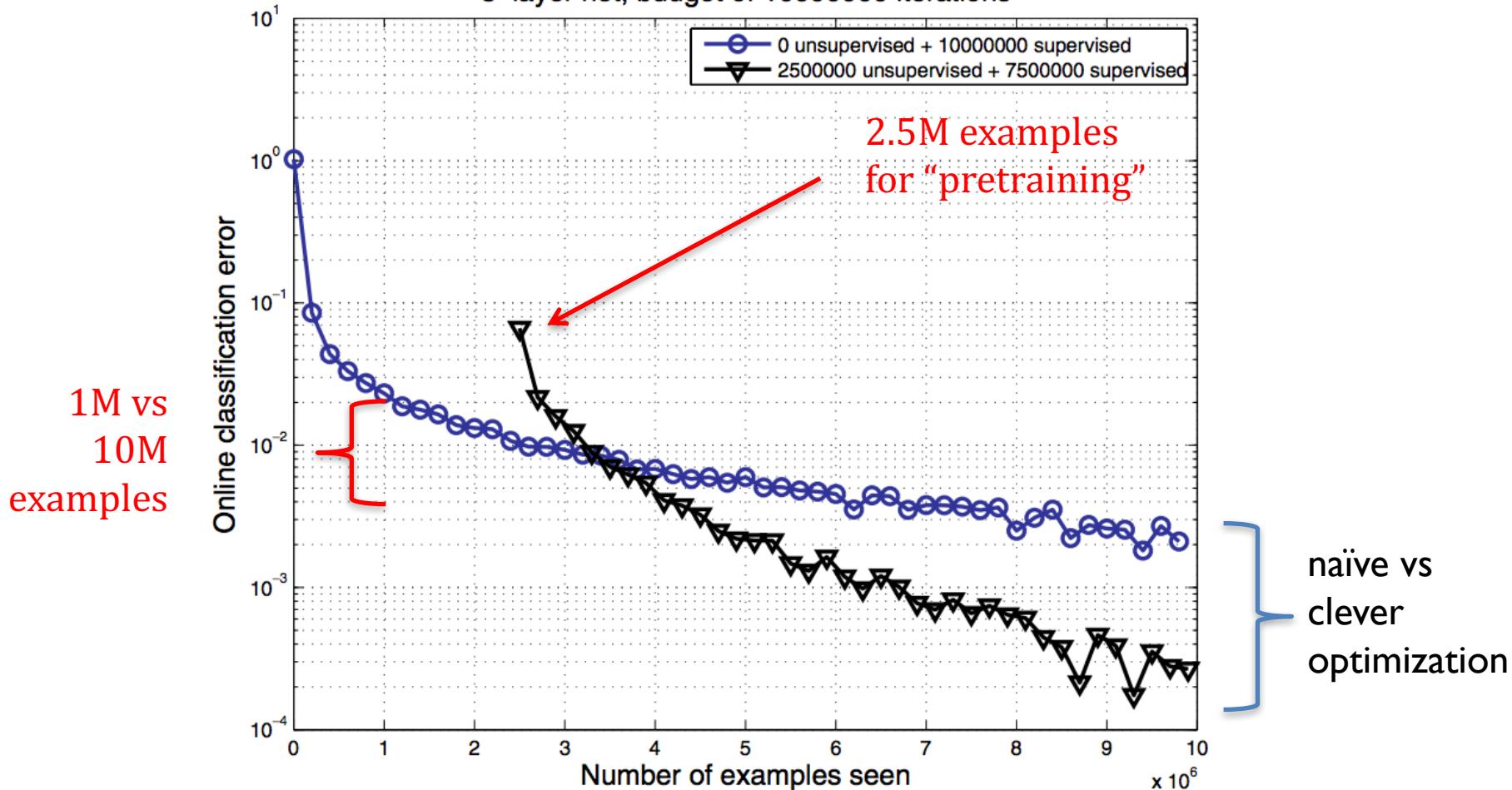


Fig. 4.2 Deep architecture trained online with 10 million examples of digit images, either with pre-training (triangles) or without (circles). The classification error shown (vertical axis, log-scale) is computed online on the next 1000 examples, plotted against the number of examples seen from the beginning. The first 2.5 million examples are used for unsupervised pre-training (of a stack of denoising auto-encoders). The oscillations near the end are because the error rate is too close to 0, making the sampling variations appear large on the log-scale. Whereas with a very large training set regularization effects should dissipate, one can see that without pre-training, training converges to a poorer apparent local minimum: unsupervised pre-training helps to find a better minimum of the online error. Experiments were performed by Dumitru Erhan.

Today....

- Commonly used deep learning datasets:
 - Images/videos:
 - ImageNet: 20k+ categories, 14M+ images
 - MS COCO: 91 categories, 2.5M labels, 328k images
 - YouTube-M: 8M urls, 4800 classes, 0.5M hours
 - Reading comprehension:
 - Children's book test: 600k + context/query pairs
 - CNN/Daily mail: ~300k docs, 1.2M cloze questions
 - Other:
 - Ubuntu dialog: 7M+ utterances, 1M+ dialogs
 - ...

REVIEW: ASYMPTOTIC COMPLEXITY

How do we use very large amounts of data?

- Working with big data is *not** about
 - code optimization
 - learning details of todays hardware/software:
 - GraphLab, Hadoop, Spark, parallel hardware,
- Working with big data *is* about
 - Understanding the cost of what you want to do
 - Understanding what the tools that are available offer
 - Understanding how much can be accomplished with linear or nearly-linear operations (e.g., sorting, ...)
 - Understanding how to organize your computations so that they effectively use whatever's fast
 - Understanding how to test/debug/verify with large data

* according to William

Asymptotic Analysis: Basic Principles

Usually we only care about positive $f(n), g(n), n$ here...

$$f(n) \in O(g(n)) \text{ iff } \exists k, n_0 : \forall n > n_0, f(n) \leq k \cdot g(n)$$

$$f(n) \in \Omega(g(n)) \text{ iff } \exists k, n_0 : \forall n > n_0, f(n) \geq k \cdot g(n)$$

Asymptotic Analysis: Basic Principles

Less pedantically:

$$f(n) = O(g(n)) \text{ iff } \exists k, n_0 : \forall n > n_0, f(n) \leq k \cdot g(n)$$

$$f(n) = \Omega(g(n)) \text{ iff } \exists k, n_0 : \forall n > n_0, f(n) \geq k \cdot g(n)$$

Some useful rules:

$$O(n^4 + n^3) = O(n^4) \qquad \qquad \text{Only highest-order terms matter}$$

$$O(3n^4 + 127n^3) = O(n^4) \qquad \text{Leading constants don't matter}$$

$$O(\log n^4) = O(4 \cdot \log n) = O(\log n)$$

Degree of something in a log doesn't matter

Back to rule pruning....

Algorithm

- Fit the POS,NEG exampleWhile POS isn't empty:
 - Let R be "if True \rightarrow pos"
 - While NEG isn't empty:
 - Pick the "best" [1] condition c of the form " $x_i=True$ " or " $x_i=false$ "
 - Add c to the LHS of R
 - Remove examples that don't satisfy c from NEG
 - Add R to the rule set [2]
 - Remove examples that satisfy R from POS
- Prune the rule set:
 - For each condition c in the rule set:
 - Evaluate the accuracy of the ruleset w/o c on heldout data
 - If removing any c improves accuracy
 - Remove c and repeat the pruning step

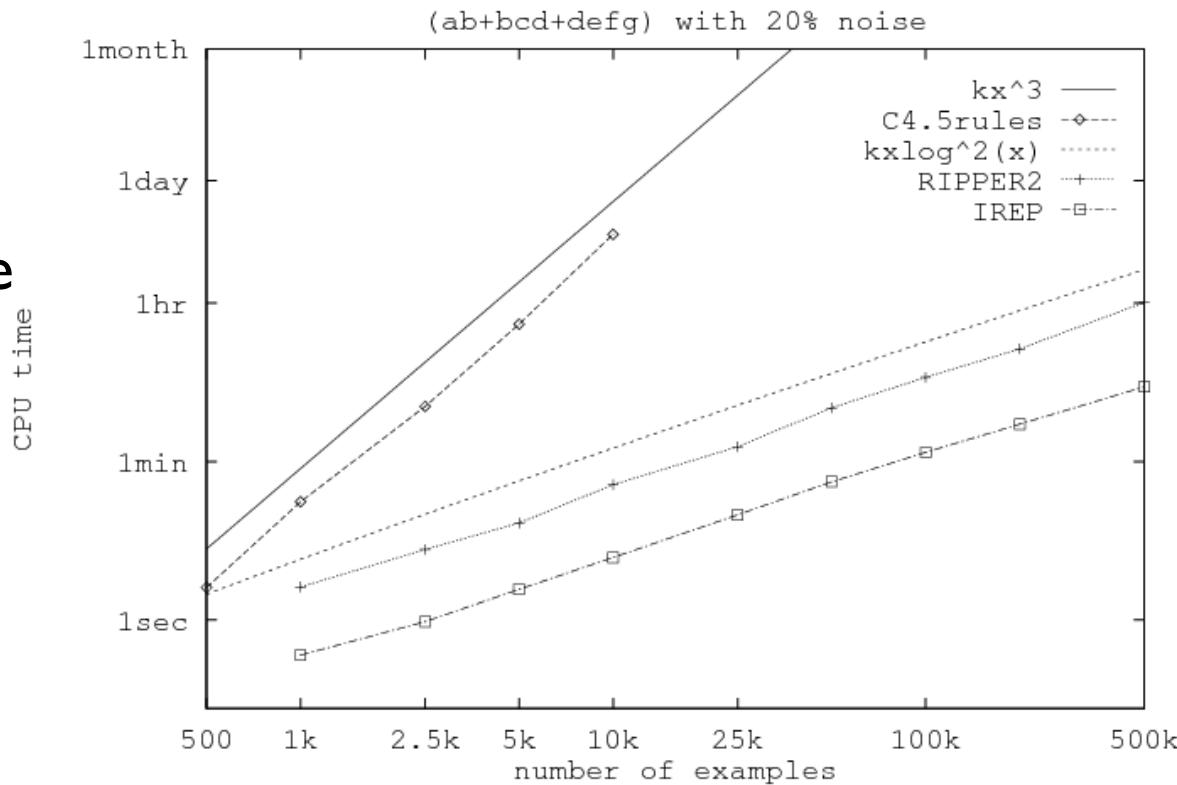
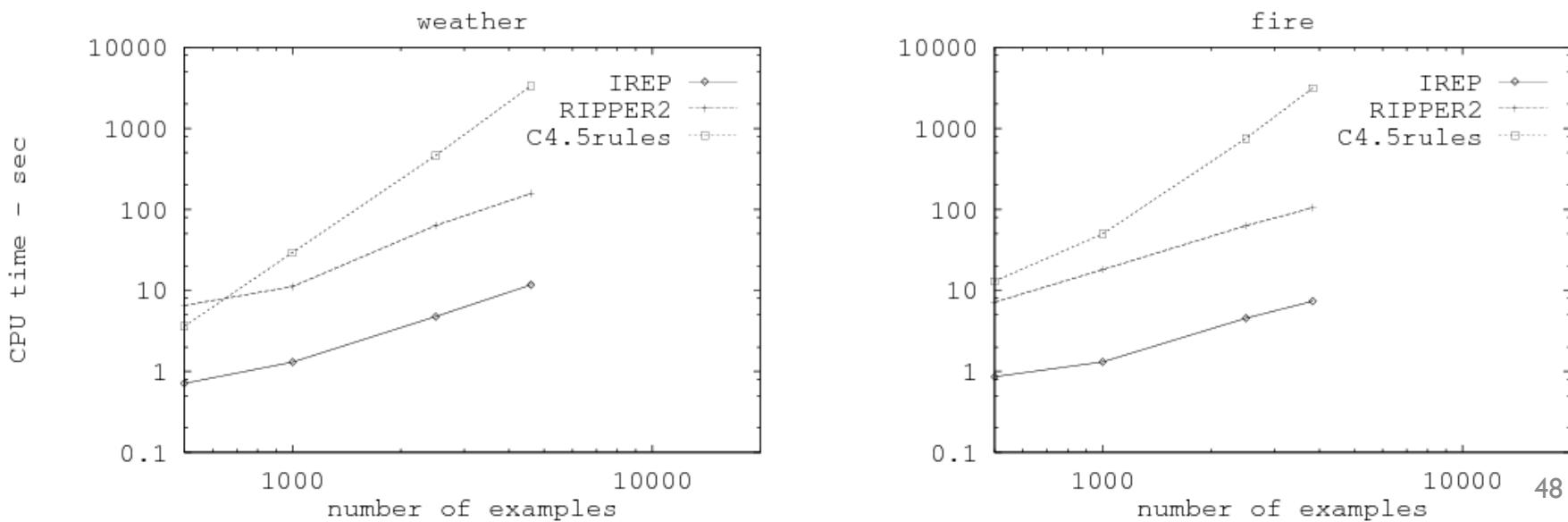
Analysis

- Assume n examples
- Assume m conditions in rule set
- Growing rules takes time at least $\Omega(m^*n)$ if evaluating c is $\Omega(n)$
- When data is clean m is small, fitting takes linear time
- When $k\%$ of data is noisy, m is $\Omega(n^*0.01^*k)$ so growing rules takes $\Omega(n^2)$
- Pruning a rule set with $m = 0.01^*kn$ extra conditions is *very* slow: $\Omega(n^3)$ if implemented naively

[1] "Best" is wrt some statistics on c 's coverage of POS,NEG

[2] R is now of the form "if $x_1=_$ and $x_2=_$ and ... \rightarrow pos"

*Empirical
analysis of
complexity:
plot run-time
on a log-log
plot and
measure the
slope (using
linear
regression)*



Where do asymptotics break down?

- When the constants are too big
 - or n is too small
- When we can't predict what the program will do
 - Eg, how many iterations before convergence?
Does it depend on data size or not?
 - This is when you need experiments
- When there are different types of operations with different costs
 - We need to understand what we should count

What do we count?

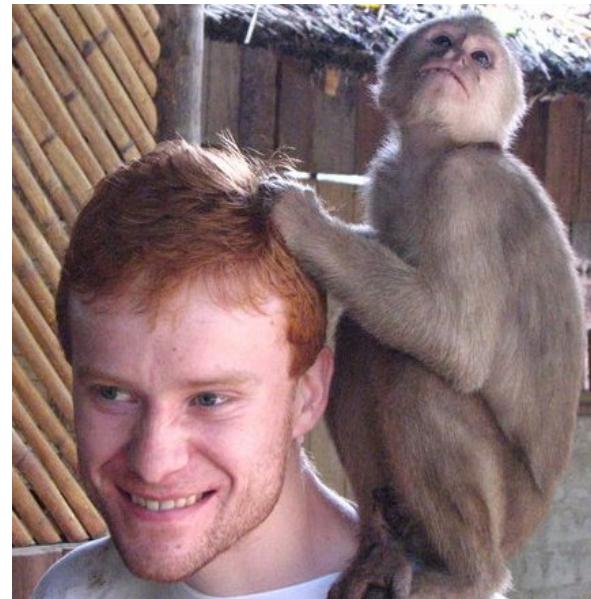
- Compilers don't warn Jeff Dean. Jeff Dean warns compilers.
- Jeff Dean builds his code before committing it, but only to check for compiler and linker bugs.
- Jeff Dean writes directly in binary. He then writes the source code as a documentation for other developers.
- Jeff Dean once shifted a bit so hard, it ended up on another computer.
- When Jeff Dean has an ergonomic evaluation, it is for the protection of his keyboard.
- gcc -O4 emails your code to Jeff Dean for a rewrite.
- When he heard that Jeff Dean's autobiography would be exclusive to the platform, Richard Stallman bought a Kindle.
- Jeff Dean puts his pants on one leg at a time, but if he had more legs, you'd realize the algorithm is actually only $O(\log n)$

Numbers (Jeff Dean says) Everyone Should Know

L1 cache reference	0.5 ns
Branch mispredict	5 ns
L2 cache reference	7 ns
Mutex lock/unlock	100 ns
Main memory reference	100 ns
Compress 1K bytes with Zippy	10,000 ns
Send 2K bytes over 1 Gbps network	20,000 ns
Read 1 MB sequentially from memory	250,000 ns
Round trip within same datacenter	500,000 ns
Disk seek	10,000,000 ns
Read 1 MB sequentially from network	10,000,000 ns
Read 1 MB sequentially from disk	30,000,000 ns
Send packet CA->Netherlands->CA	150,000,000 ns

Update: Colin Scott, UCB

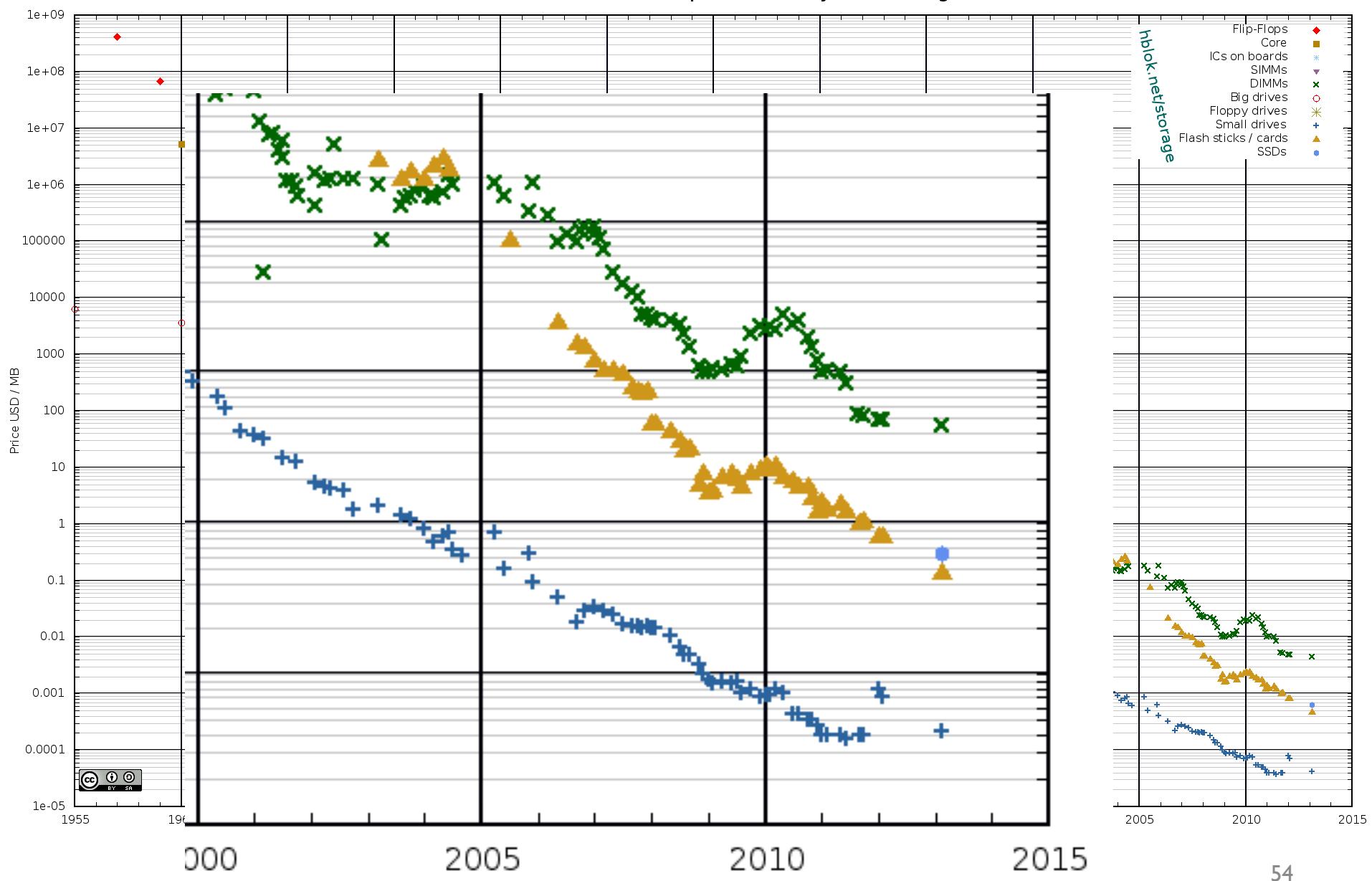
file:///Users/wcohen/Documents/code/interactive_latencies/interactive_latency.html - *may need to open this from shell



What's Happening with Hardware?

- Clock speed: stuck at 3Ghz for \sim 10 years
- Net bandwidth doubles \sim 2 years
- Disk bandwidth doubles \sim 2 years
- SSD bandwidth doubles \sim 3 years
- Disk seek speed doubles \sim 10 years
- SSD latency nearly saturated

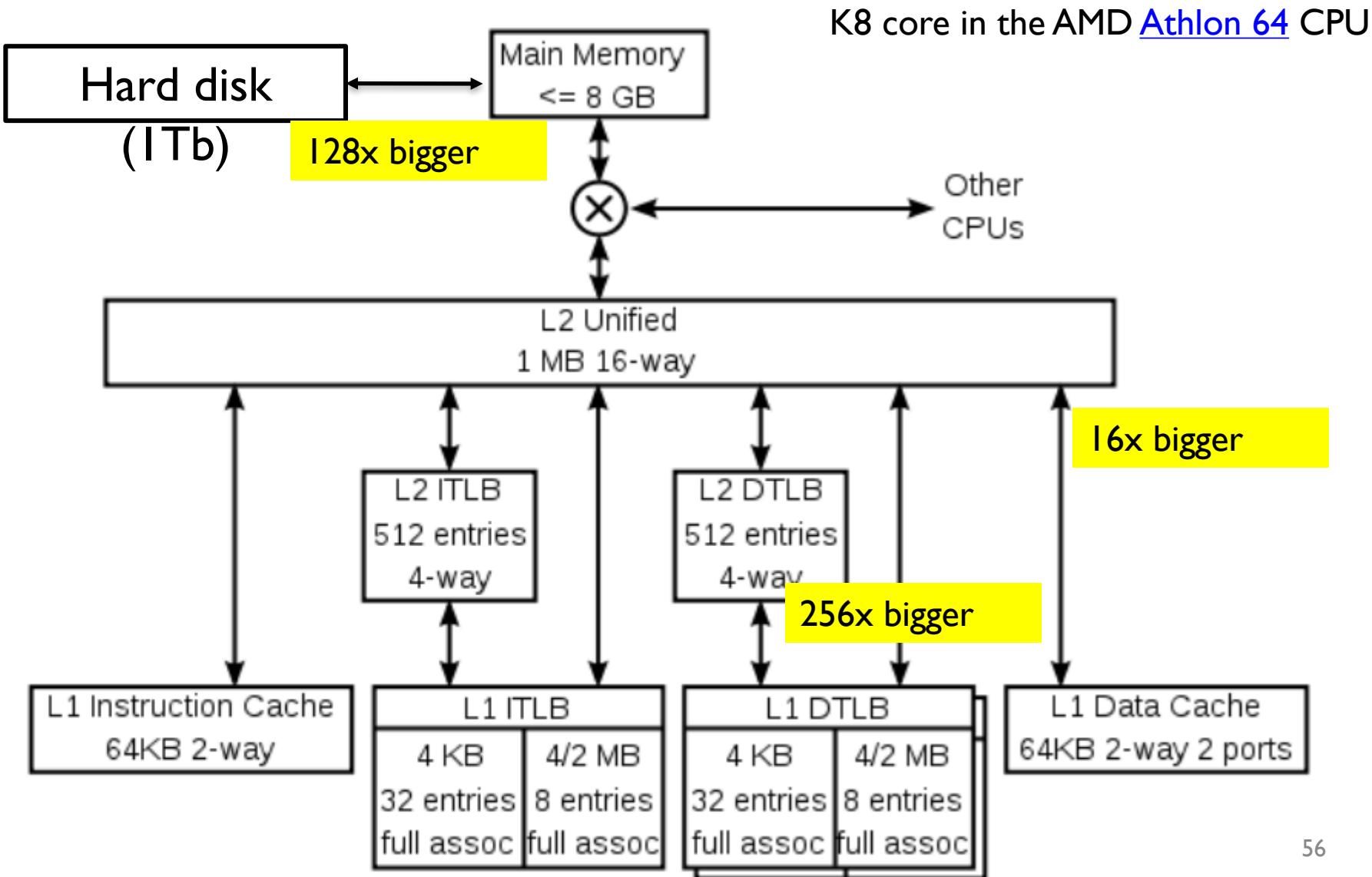
Historical Cost of Computer Memory and Storage



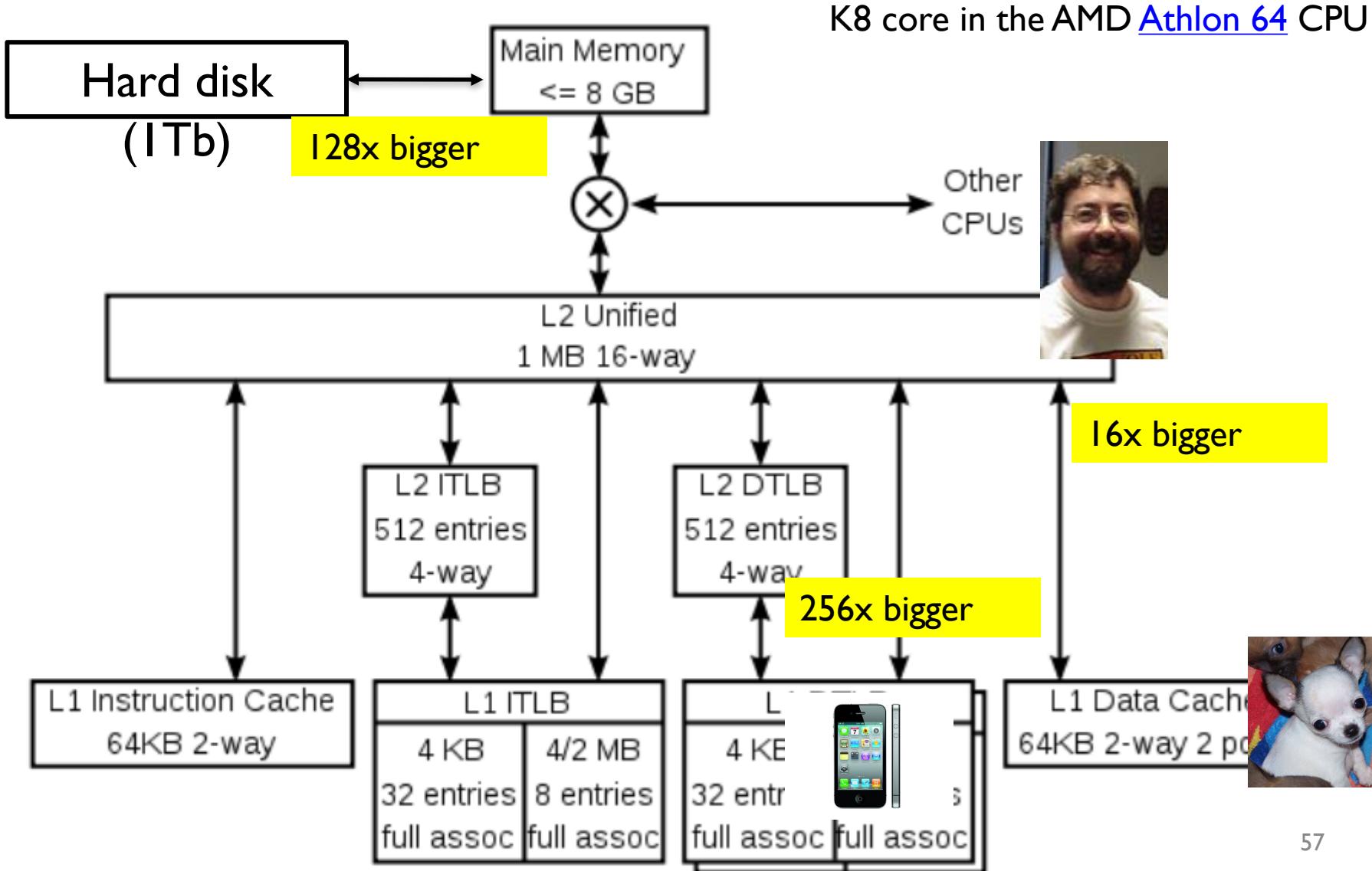
Numbers (Jeff Dean says) Everyone Should Know

L1 cache reference	0.5 ns
Branch mispredict	5 ns
L2 cache reference	7 ns
Mutex lock/unlock	100 ns
Main memory reference	100 ns
Compress 1K bytes with Zippy	10,000 ns
Send 2K bytes over 1 Gbps network	20,000 ns
Read 1 MB sequentially from memory	250,000 ns
Round trip within same datacenter	500,000 ns
Disk seek	10,000,000 ns
Read 1 MB sequentially from network	10,000,000 ns
Read 1 MB sequentially from disk	30,000,000 ns
Send packet CA->Netherlands->CA	150,000,000 ns

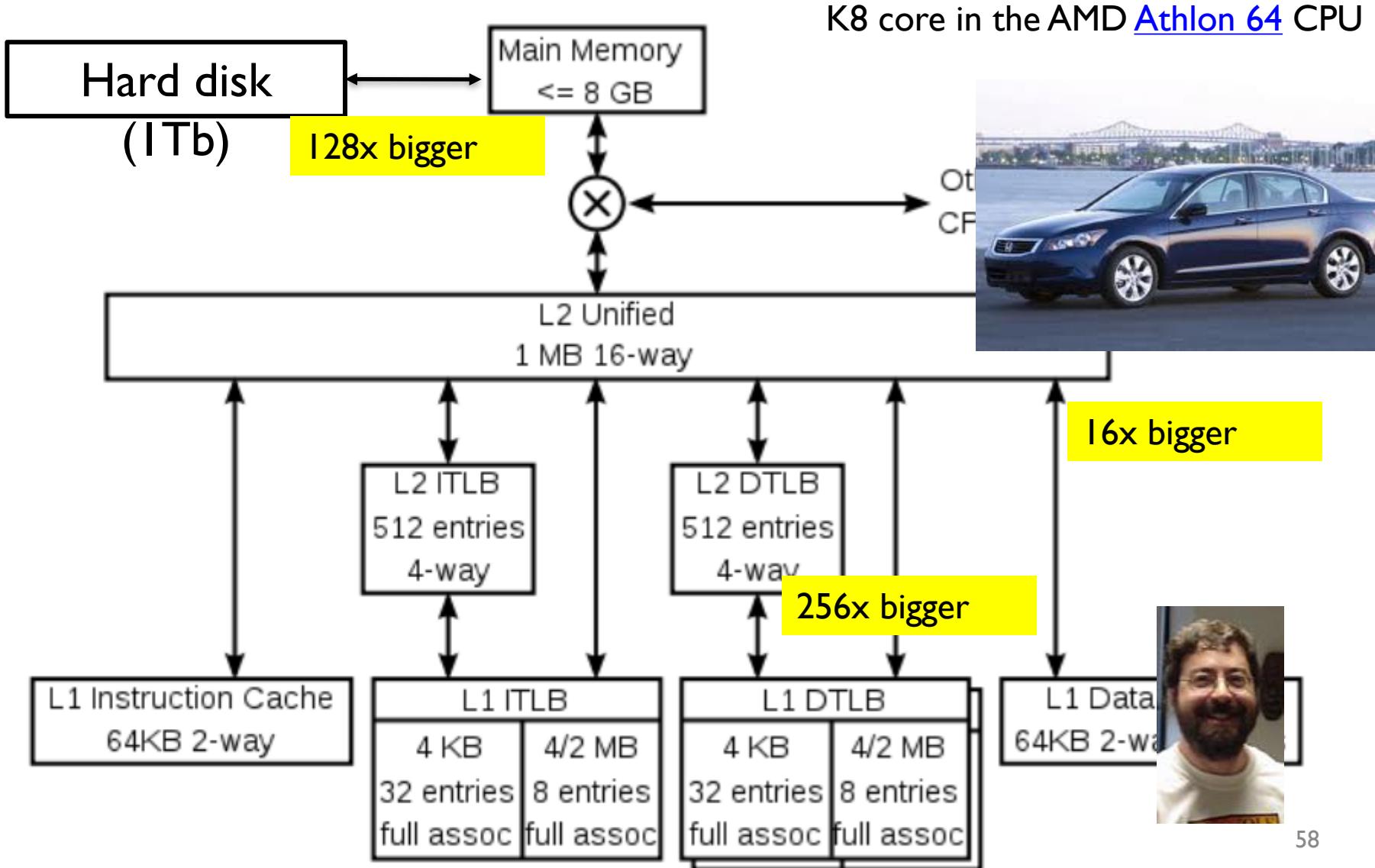
A typical CPU (not to scale)



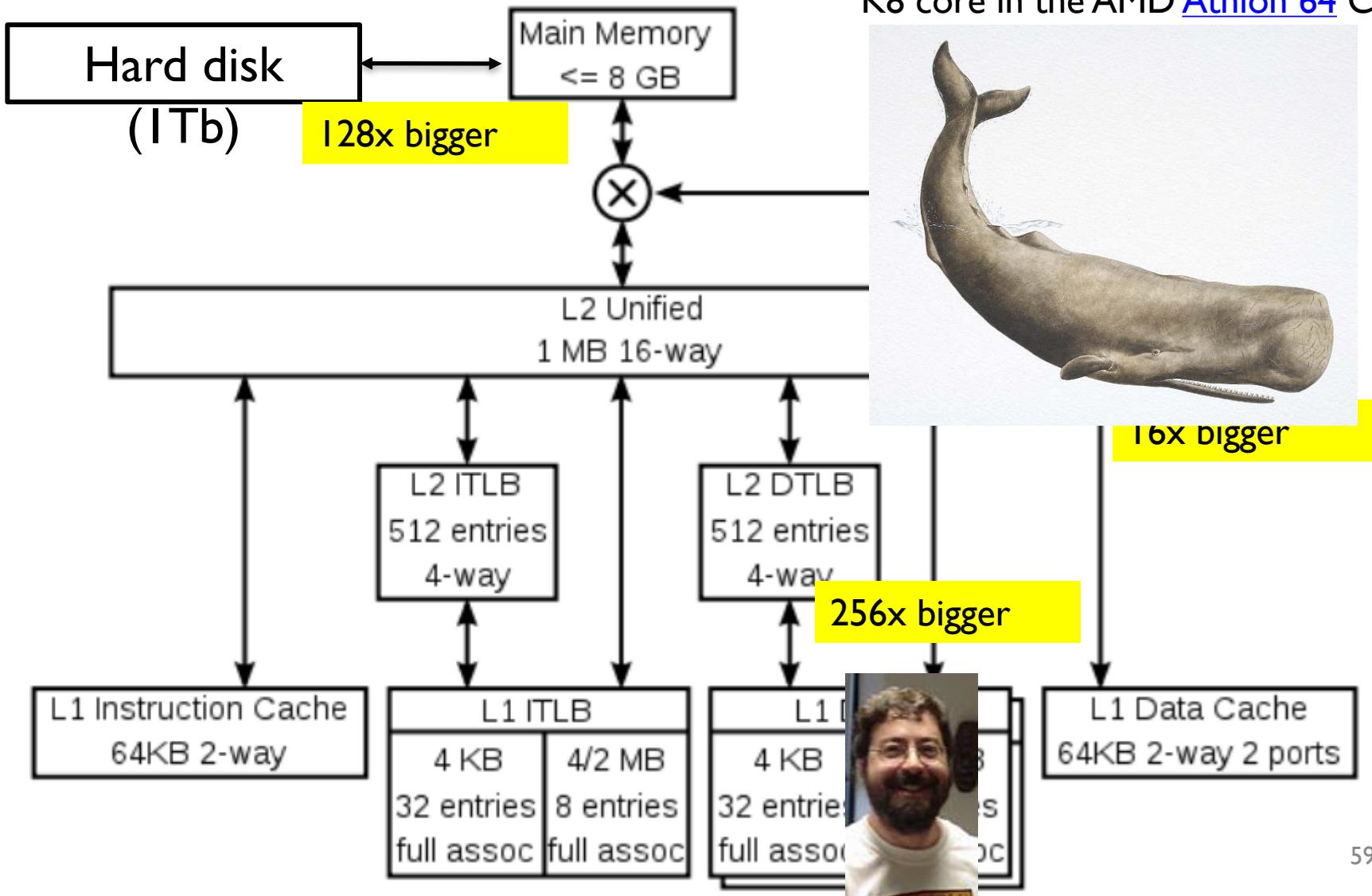
A typical CPU (not to scale)



A typical CPU (not to scale)



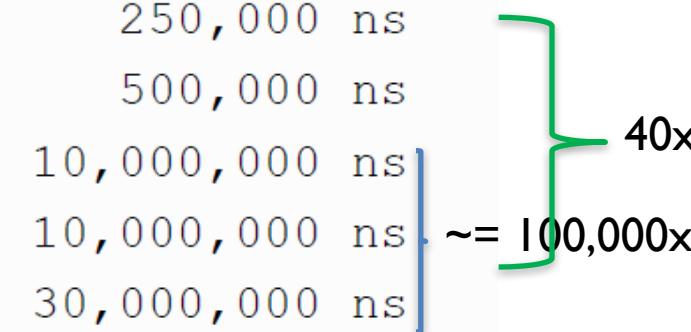
A typical CPU (not to scale)



A typical disk

Numbers (Jeff Dean says) Everyone Should Know

L1 cache reference	0.5 ns
Branch mispredict	5 ns
L2 cache reference	7 ns $\approx 10x$
Mutex lock/unlock	100 ns
Main memory reference	100 ns $\approx 15x$
Compress 1K bytes with Zippy	10,000 ns
Send 2K bytes over 1 Gbps network	20,000 ns
Read 1 MB sequentially from memory	250,000 ns
Round trip within same datacenter	500,000 ns
Disk seek	10,000,000 ns
Read 1 MB sequentially from network	10,000,000 ns
Read 1 MB sequentially from disk	30,000,000 ns
Send packet CA->Netherlands->CA	150,000,000 ns



What do we count?

- Compilers don't warn Jeff Dean. Jeff Dean warns compilers.
-
- Memory access/instructions are *qualitatively different* from disk access
- Seek are *qualitatively different* from sequential reads on disk
- Cache, disk fetches, etc work best when you stream through data *sequentially*
- Best case for data processing: stream through the data *once* in *sequential order*, as it's found on disk.

Other lessons -?

Encoding Your Data

- CPUs are fast, memory/bandwidth are precious, ergo...
 - Variable-length encodings
 - Compression
 - Compact in-memory representations
- Compression very important aspect of many systems
 - inverted index posting list formats
 - storage systems for persistent data

* but not important enough for this class's assignments....

What/How

- Next lecture: probability review and Naïve Bayes.
- Homework:
 - Watch the review lecture I linked to on the wiki
- I'm *not* going to repeat it