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ADMINISTRIVIA



Who/What/Where/When

Wiki: google://”cohen CMU”—>teaching =

— http://curtis.ml.cmu.edu/w/courses/index.php/Machine Learning with L
arge Datasets 10-405 in Spring 2018

— this should point to everything else
Office Hours:

— Still TBA for all of us, check the wiki

Course assistant: Dorothy Holland-Minkley
(dth@cs)

Instructor:
— William W. Cohen
TAS:

— Intros coming up....




Who/What/Where/When

e 10-405 is a brand new course!

* Butit's going to be very close to 10-605 which has
been happening since 2012

* It's aimed at undergrads
— will cover about the same topics
—not a project course

— one chance to do an open-ended “extension of
an assignment”

* Anyone can enroll but not all grad programs will
give you full credit for 4xx courses so read the
fine print



Who/What/Where/When
 Who is here?



Who/What/Where/When

* Most days there will be an on-line quiz you
should do after lecture

* The quizzes will usually close Friday noon
* We have one today - see the wiki!

* They don’t count for a lot but there are no
makeups

—Quizzes reinforce the lecture
—And make sure you keep up



Who/What/Where/When

e William W. Cohen

—1990-mid 1990’s: AT&T Bell Labs (working on ILP
and scalable propositional rule-learning algorithms)

— Mid 1990°s—2000: AT&T Research (text
classification, data integration, knowledge-as-text,
information extraction)

— 2000-2002: Whizbang! Labs (info extraction from
Web)

—2002-2008, 2010-now: CMU (IE, biotext, social
networks, learning in graphs, info extraction from
Web, scalable first-order learning)

* 2008-2009, Jan-Jul 2017: Visiting Scientist at Google




TAS



Vidhan Agarwal (MSIN)

| am a Masters Student in Information Networking
Institute going to join Microsoft Al & Research Team

. post this semester. My research interests are in the

- domains of Scalable Machine Learning and Deep Learning.

| took the course last semester (Fall 2017) and learnt a lot.

Hope you all have a great semester. See you at the office
hours!




Sarthak Garg - MS in CS

® Iam a first year Masters student
in the Computer Science
Department

® JTam interested in Deep
Generative Models and
Distributed Systems for Machine
Learning

® Itook 10-605 last fall and found
it very interesting, hope you
enjoy the course!




Nitish Kulkarni MS in MCDS

I am a first year master's student
in the Master of Computational
Data Science program, LTI
Department.

I'm interested in scalable
machine learning algorithms and
information retrieval.

I took 10-805 in fall ‘17. The
course was quite fun and
incredibly useful. I'm glad to be a
TA for the course this semester,
and hope you have a similar
experience.
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Vivek Shankar - BS in SCS

e Vivek Shankar - BS in SCS

* Tam afourth year undergraduate in the
School of Computer Science.

* This summer, I interned at Google,
Montreal working on building a URL-
based Machine Learning model for
detecting malicious Chrome extensions.
I'll be joining Google full time in
Pittsburgh.

* lam interested in designing
parallelizable machine learning
algorithms that scale well to large
datasets — a big theme in 10605. I took
10605 in Fall '17, and it was one of my
favorite classes thus far at CMU!




What/How

[ kind of like language tasks, especially for this task:
— The data (usually) makes sense
— The models (usually) make sense

— The models (usually) are complex, so

* More data actually helps

* Learning simple models vs complex ones is sometimes
computationally different




What/How

* Programming Languages and Systems:
— Python
— Hadoop and Spark

* Resources:
— unix.andrew machines

— Stoat hadoop cluster:
104 worker nodes, with 8 cores, 16 GB RAM, 4 1TB.
30 worker nodes, with 8 cores, 16 GB RAM, 250Gb+

— Amazon Elastic Cloud
* Amazon EC2 [http://aws.amazon.com/ec2/]
* Allocation: $50 worth of time per student




What/How: 601 co-req

* You should have as a prereq or co-req one of
the MLD’s intro ML courses: 10-401, 10-601,
10-701, 10-715

* Lectures are designed to complement that
material

—computational aspects vs informational
aspects



What/How: cheating vs working together

* [ have along and explicit policy
— stolen from Roni Rosenfeld - read the web page

— tl;dr: transmit information like they did in the stone age,
brain-to-brain, and document it

— do not copy anything digitally
— exceptions (eg projects) will be explicitly stated

— everybody involved will fail by default

— every infraction always gets reported up to the Office of
Academic Integrity, the head of your program, the dean
of your school], ....

— a second offense is very bad



BIG DATA HISTORY: FROM THE DAWN OF
TIME TO THE PRESENT



Big ML c. 1993 (Cohen,“Efficient...Rule Learning”, I|JCAI 1993)
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$ ripper ../tdata/talks

Final hypothesis is:

talk_announcement :- WORDS ~ talk, WORDS ~ Subject_talk (54/1).
talk_announcement :- WORDS ~ '2d416' (26/3).

talk_announcement :- WORDS ~ system,WORDS ~ "To_ | 126@research’ (4/0).
talk_announcement :- WORDS ~ mh,WORDS ~ time (5/1).
talk_announcement :- WORDS ~ talk, WORDS ~ used (3/0).
talk_announcement :- WORDS ~ presentations (2/1).

default non_talk_announcement (390/1).




Benchmark

CPU Time

No Pruning REP Grow MDLGrow
kr-vs-kkn 108 + 0.6 18.5 +1.8 132 +£0.6 134 £0.6
bridge-t/d 12.7 0.9 27.6 3.3 10.4 0.9 8.1 0.7
thyroid-hypo 72.6 6.5 56.6 9.4 16.4 6.2 48.1 6.3
bridge-mtrl 22.1 0.6 6.7 9.6 16.5 1.5 10.6 0.6
mushroom 35.6 0.8 78.3 7.8 44.5 1.4 45.3 1.7
thyroid-allbp 144.8 7.7 164.5 12.6 99.5 4.6 100.7 5.8
bridge-span 29.5 0.8 176.2 18.6 31.9 2.3 13.3 0.8
bridge-rel-1 44.1 1.0 294.1 36.9 34.0 2.9 14.1 1.2
bridge-type 38.9 1.1 370.6 25.2 40.5 2.3 21.2 1.0
sonar 561.0 12.9 399.2 15.1 368.2  12.0 3706 12.1
segment 815.7 239 1264.0 86.6 728.2  29.6 7336 278
mushrooms 217.2 10.1 4081.7 4854 276.7 234 135.1 6.9
kr-vs-kkn# 154.2 11.9 5549.3  1255.3 206.6 235 53.5 4.0
rds 3189.1 84.9 | 15155.2 12824 | 2210.0 52.0 879.9 424
Average for Benchmark Set 2 || 382.03 2695.63 402.00 239.38
Average for Benchmark Set 1 108.4 384.0 105.9 100.5

Table 3: Comparing runtimes




More on this paper

Algorithm
* Phase 1: build rules
— Discrete greedy search:
— Starting with empty rule set, add conditions greedily
* Phase 2: prune rules
— starting with phase 1 output, remove conditions

talk_announcement :-

default non_talk _announcement .




More on this paper

Algorithm
* Phase 1: build rules
— Discrete greedy search:
— Starting with empty rule set, add conditions greedily
* Phase 2: prune rules
— starting with phase 1 output, remove conditions, greedily

talk_announcement :- WORDS ~ talk, WORDS ~ Subject_talk, WORBS—~p—comma(54/0)—
talk_announcement :- WORDS ~ "2d4|6', WORDS—~be—(19/0)—

talk_announcement :- WORDS ~ show,WORDS ~ talk (7/0).

talk_announcement :- WORDS ~ mh,WORDS ~ time, WORDS—researcir(4/0)—
talk_announcement :- WORDS ~ system,WORDS ~ "To_ | 126@research’ (3/0).
talk_announcement :- WORDS ~ "2d416',WORDS ~ memory (3/0).

talk_announcement :- WORDS ~ presentations WORDS=~Frem—ate(2/0).

default non_talk announcement .




More on this paper

Algorithm
* Phase 1: build rules
— Discrete greedy search:
— Starting with empty rule set, add conditions greedily
* Phase 2: prune rules
— starting with phase 1 output, remove conditions, greedily

talk_announcement :- WORDS ~ talk, WORDS ~ Subject_talk (54/1).
talk_announcement :- WORDS ~ '2d416' (26/3).

talk_announcement :- WORDS ~ system,WORDS ~ "To_ | 126@research’ (4/0).
talk_announcement :- WORDS ~ mh,WORDS ~ time (5/1).
talk_announcement :- WORDS ~ talk, WORDS ~ used (3/0).
talk_announcement :- WORDS ~ presentations (2/1).

default non_talk_announcement (390/1).




More on this paper

Algorithm
Fit the POS,NEG example .
While POS isn’t empty:
— Let R be “if True =» pos”
— While NEG isn’t empty: .

L1 ° Pickthe “best” [i] condition c of
the form “xi=True” or “xi=false”

* Add cto the LHS of R .
* Remove examples that don'’t .
satisfy ¢ from NEG

* Add R to the rule set [ii]

* Remove examples that satisfy R from
POS

Prune the rule set: ,
cubic!

[i] “Best” is wrt some statistics on c’s coverage of POS,NEG

[ii] R is now of the form “if xil=_ and xi2=_and ... =» pos”

Analysis

The total number of iterations of
.1 is the number of conditions in
the rule set — call it m

Picking the “best” condition
requires looking at all examples
— say there are n of these

Time is at least m*n

The problem: quadratic

— When there are noisy
positive examples the
algorithm builds rules that
cover just 1-2 of them

— So with huge noisy datasets
you build huge rulesets
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So in mid 1990’s.....

* Experimental datasets were small

 Many commonly used algorithms were
asymptotically “slow”

* Not many people really cared

25



Big ML c. 2001 (Banko & Brill,“Scaling to Very Very Large...”,ACL 2001)
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Figure 1. Learning Curves for Confusion Set

: S Figure 2. Representation Size vs. Training
Disambiguation

Corpus Size

Task: distinguish pairs of easily-confused words

(“affect” vs “effect”) in context
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Big ML c. 2001 (Banko & Brill,“Scaling to Very Very Large...”,ACL 2001)

Training Data Used

Test Accuracy

0.95 0.9¢6 0.97 0.98 0.99
100%

1.00

—riama Sequential
——t—Sampling from 5M
—3é—Sampling from 10M

—¢—Sampling from 100M

10%

oz L

Figure 4. Active Learning with Large Corpora

Initialize: Training data consists of X words
correctly labeled
Iterate :

1) Generate a committee of classifiers using
bagging on the training set

2) Run the committee on unlabeled portion of
the training set

3) Choose M instances from the unlabeled set
for labeling - pick the M/2 with the greatest
vote entropy and then pick another M/2
randomly — and add to training set

27



Why More Data Helps: A Demo

e Data:

—All 5-grams that appear >= 40 times in a
corpus of 1M English books
e approx 80B words

* 5-grams: 30Gb compressed, 250-300Gb
uncompressed

* Each 5-gram contains frequency distribution
over years

28
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Why More Data Helps: A Demo

e Data:

— All 5-grams that appear >= 40 times in a corpus of
1M English books

* approx 80B words
* 5-grams: 30Gb compressed, 250-300Gb uncompressed
* Each 5-gram contains frequency distribution over years

— Wrote code to compute
* Pr(A,B,C,D,E|C=affect or C=effect)

* Pr(any subset of A,...,E|any other fixed values of A, ...E
with C=affect V effect)

— Demo:

* /Users/wcohen/Documents/code/pyhack/bigml
* eg: python ngram-query.py data/aeffect-train.txt _ _B effect _ _
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Big ML c. 2001 (Banko & Brill,“Scaling to Very Very Large...”,ACL 2001)
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Task: distinguish pairs of easily-confused words

(“affect” vs “effect”) in context
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Why More Data Helps

Data:

— All 5-grams that appear >= 40 times in a corpus of 1M English
books

e approx 80B words
e 5-grams: 30Gb compressed, 250-300Gb uncompressed
* Each 5-gram contains frequency distribution over years

— Wrote code to compute
* Pr(A,B,C,D,E|C=affect or C=effect)

* Pr(any subset of A,...,.E|any other fixed values of A,...,.E with
C=affect V effect)

Observations [from playing with data]:
— Mostly effect not affect
— Most common word before affect is not
— After not effect most common word is a

34



Soin 2001.....

* We're learning:
— “there’s no data like more data”

— For many tasks, there’s no real substitute for
using lots of data
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...and in 2009

Eugene Wigner’s article “The Unreasonable Effectiveness of Mathematics in
the Natural Sciences” examines why so much of physics can be neatly
explained with simple mathematical formulas such as f = ma or e = mc?.
Meanwhile, sciences that involve human beings rather than elementary
particles have proven more resistant to elegant mathematics. Economists
suffer from physics envy over their inability to neatly model human
behavior. An informal, incomplete grammar of the English language runs
over 1,700 pages.

Perhaps when it comes to natural language processing and related fields,
we’re doomed to complex theories that will never have the elegance of
physics equations. But if that’s so, we should stop acting as if our goal is to
author extremely elegant theories, and instead embrace complexity and
make use of the best ally we have: the unreasonable effectiveness of data.

Norvig, Pereira, Halevy,“The Unreasonable Effectiveness of Data”, 2009



..and in 2012

Arthur Gretton. Michael Mahoneyv, Mehrvar Mohri. Ameet Talwalkar

SCAL| N G U P Gatsby Unit, UCL; Stanford; Google Research; UC Berkeley

I\/I AC |_| | N E Workshop: Low-rank Methods for Large-scale Machine Learning

LEARN | N G 7-:30am - 6:30pm Saturday, December 11, 2010

Parallel and Distributed Approaches

EDITED BY
RoN BEKKERMAN
MIKHAIL BILENKO
JoHN LANGFORD

Joseph Gonzalez, Sameer Singh, Graham Tavlor, James Bergstra. Alice
Zheng. Misha Bilenko. Yucheng Low, Yoshua Bengio. Michael Franklin,
Carlos Guestrin, Andrew McCallum, Alexander Smola, Michael Jordan,

Sugato Basu

Carnegie Mellon University; University of Massachusetts, Amherst; New
York University; Harvard; Microsoft Research; Microsoft Research;
Carnegie Mellon University; University of Montreal; UC Berkeley; Carnegie
Mellon University; UMass Amherst; Yahoo! Research; University of
California; Google Research

Workshop: Big Learning: Algorithms, Systems, and Tools for Learning at Scale

Location: Montebajo: Theater Dec 201 |

SMLA Workshop 2010

29 June - o1 July, 2010, Bradford, UK

International Workshop on

Scalable Machine Learning and Applications (SMLA-10)

In conjunction with CIT 2010
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...and in 2013

Forget YOLO: Why 'Big Data' Should Be The Word Of The Year

by GEOFF NUNBERG

December 20, 2012 10:58 AM

Playlist

Listen to the Storv O
One of the biggest emerging stories about the campaign that has ended is how Mr. Obama’s

team used information and technology to outmatch and outwit a galvanized and incredibly

~well-financed opposition.

; S 'W™ #  probably , ape e
~ :Q'@YJ ranencit Was the buzz of Silicon Valley ; i

011 Wifed anu THIG LLUUVINIVITHOL,, AU 1L VWAoo UIT VUL VI vinuwuii VGIIG’ amnmg uavOS. And
if the phrase wasn't as familiar to many people as "Etch A Sketch" and "47
percent," Big Data had just as much to do with President Obama's victory as

they did.

Whether it's explicitly mentioned or not, the Big Data phenomenon has been all
's about intrusions on our

H H n n

it will be around a lot longer than "gangnam style." | sweeps or the ads that
track us as we wander around the Web. It has even turned statistics into a sexy
major. So if you haven't heard the phrase yet, there's still time — it will be around
a lot longer than "gangnam style." 38



...and in 2014
JERE [ I EIE] cor somer srmmsmr samess e sson areoe

“. dat
O, dat
Q, dat
Q, dat
Q, dat

INNOVATION INSIGHTS [

Tell Your Kids to Be Data Scientists, Not Doctors

In for BY LINDA BURTCH, BURTCH WORKS 06.17.14 | 5:45PM | PERMALINK

Ed Share < 42 W Tweet 48 S+1 | 8 IN Share ERFZEREYTT:

Home  News & Commentary  Authors  Slideshows Video Reports  White Papers Events  Uniwve

STRATEGIC CIO SOFTWARE ‘ SECURITY CLOUD ‘ MOBILE ‘ } INFRA

BIG DATA // BIG DATA ANALYTICS

Data Scientist: The Sexiest Job No
One Has

l i ‘\ The data scientist has been called the sexiest job of the 21st century, but

it's largely going unfilled. That's a huge problem for the business world. 39



Online classification error

Bengio, Foundatlons & Trends, 2009
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1M vs
10M
examples

3—Iayer net, budget of 10000000 iterations
10':::',:::?‘

SEREEEE ST i —G—Ounsupewlsed+100000005upervnsed
[ | ==%g= 2500000 unsupervised + 7500000 supervised ]

N S T © 2.5M examples
N f?'ézzéizé'ié'zi‘zzi;iai;zss:%:éizjiéiééiéé:zs'z;jé:zz'éf;i """ for “pretraining”

Online classification error

-~

10_3..Zif11ZZIJ?Z::ZZ?filiifiiffiififiifiiiiffIZfiZIZfZZZZfZiffiZIZZ"""ZZZIZZ:?ZZ?:ZZ:?IZZIfiifi":

10-4 ! ] ! 1 ] ] ! ] |
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Number of examples seen x10°

Fig. 4.2 Deep architecture trained online with 10 million examples of digit images, either
with pre-training (triangles) or without (circles). The classification error shown (vertical
axis, log-scale) is computed online on the next 1000 examples, plotted against the number
of examples seen from the beginning. The first 2.5 million examples are used for unsuper-
vised pre-training (of a stack of denoising auto-encoders). The oscillations near the end are
because the error rate is too close to 0, making the sampling variations appear large on the
log-scale. Whereas with a very large training set regularization effects should dissipate, one
can see that without pre-training, training converges to a poorer apparent local minimum:
unsupervised pre-training helps to find a better minimum of the online error. Experiments
were performed by Dumitru Erhan.

naive vs
— clever
optimization
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Today....

 Commonly used deep learning datasets:

—Images/videos:
* ImageNet: 20k+ categories, 14M+ images
 MS COCO: 91 categories, 2.5M labels, 328k images
* YouTube-M: 8M urls, 4800 classes, 0.5M hours

— Reading comprehension:

* Children’s book test: 600k + context/query pairs
* CNN/Daily mail: ~300k docs, 1.2M cloze questions

— Other:
* Ubuntu dialog: 7M+ utterances, 1M+ dialogs



REVIEW: ASYMPTOTIC COMPLEXITY

43



How do we use very large amounts of data?

* Working with big data is not™ about
— code optimization

— learning details of todays hardware/software:
* GraphLab, Hadoop, Spark, parallel hardware, ....

* Working with big data is about
— Understanding the cost of what you want to do
— Understanding what the tools that are available offer

— Understanding how much can be accomplished with
linear or nearly-linear operations (e.g., sorting, ...)

— Understanding how to organize your computations
so that they effectively use whatever’s fast

— Understanding how to test/debug/verify with large
data

* according to William



Asymptotic Analysis: Basic Principles
Usually we only care about positive f(n), g(n), n here...
f(n)eO(g(n)) it Ik,n,:Vn>n,, f(x)<k-g(n)
f(n)eQ(g(n)) it Jk,n,:Vu>n,, f(x)=k-g(n)
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Asymptotic Analysis: Basic Principles

Less pedantically:

f(n)=0(g(n)) it Jk,n,:Vu>n,, f(x)<k-g(n)
J(n)=Q(g(n)) it Ik,n,:Vn>n,, f(x)=k-g(n)

Some useful rules:

0(714 + n3) = O(n4) Only highest-order terms matter

0(3}14 4 127n3) — O(n4) Leading constants don’t matter

O(logn®) = O(4-logn)=0(logn)

Degree of something in a log doesn’t matter
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Back to rule pruning....

Algorithm

Fit the POS,NEG exampleWhile POS isn’t empty:

— LetRbe “if True = pos”
— While NEG isn’t empty:

* Pick the “best” [1] condition c of the form

“xi=True” or “xi=false”
 Add ctothe LHS of R

* Remove examples that don’t satisfy ¢

from NEG
* Add R to the rule set [2]

* Remove examples that satisfy R from POS
Prune the rule set:

— For each condition c in the rule set:

* Evaluate the accuracy of the ruleset w/o

c on heldout data
— If removing any c improves accuracy

* Remove c and repeat the pruning step

[1] “Best” is wrt some statistics on c’s coverage of POS,NEG

[2] R is now of the form “if xil=_ and xi2=_and ... =» pos”

Analysis

Assume n examples

Assume m conditions in rule set
Growing rules takes time at least
2(m*n) if evaluating c is 2(n)
When data is clean mis small,
fitting takes linear time

When k% of data is noisy, m is
2(n*0.01*k) so growing rules
takes 2(n?)

Pruning a rule set with m =

0.01*kn extra conditions is very
slow: 2(n?) if implemented naively



(ab+bcd+defg) with 20% noise
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Where do asymptotics break down?

* When the constants are too big
—or nis too small
* When we can’t predict what the program will do

— Eg, how many iterations before convergence?
Does it depend on data size or not?

— This is when you need experiments

 When there are different types of operations with
different costs

— We need to understand what we should count
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What do we count?

* Compilers don't warn Jeff Dean. Jeff Dean warns
compilers.

e Jeff Dean builds his code before committing it, but only to
check for compiler and linker bugs.

* Jeff Dean writes directly in binary. He then writes the
source code as a documentation for other developers.

* Jeff Dean once shifted a bit so hard, it ended up on another
computer.

 When Jeff Dean has an ergonomic evaluation, it is for the
protection of his keyboard.

* gcc-04 emails your code to Jeff Dean for a rewrite.

* When he heard that Jeff Dean's autobiography would be
exclusive to the platform, Richard Stallman bought a
Kindle.

* Jeff Dean puts his pants on one leg at a time, but if he had

more legs, you'd realize the algorithm is actually only
O(logn)
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Numbers (Jeff Dean says) Everyone Should

Know
L1 cache reference 0.5 ns
Branch mispredict 5 ns
L2 cache reference 7 ns
Mutex lock/unlock 100 ns
Main memory reference 100 ns
Compress 1K bytes with Zippy 10,000 ns
Send 2K bytes over 1 Gbps network 20,000 ns
Read 1 MB sequentially from memory 250,000 ns
Round trip within same datacenter 500,000 ns
Disk seek 10,000,000 ns
Read 1 MB sequentially from network 10,000,000 ns
Read 1 MB sequentially from disk 30,000,000 ns

Send packet CA->Netherlands->CA 150,000,000 ns
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Update: Colin Scott, UCB

file:///Users/wcohen/Documents/code/interactive_latencies/interactive lat
ency.html - *may need to open this from shell
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What's Happening with Hardware?

* Clock speed: stuck at 3Ghz for ~ 10 years
* Net bandwidth doubles ~ 2 years

* Disk bandwidth doubles ~ 2 years

* SSD bandwidth doubles ~ 3 years

* Disk seek speed doubles ~ 10 years

* SSD latency nearly saturated

53



Price USD / MB

Historical Cost of Computer Memory and Storage

le+09 — T T T T T T T
E Flip-Flops *
¢ g’ Core ]
i o ICs on boards
1le+08 [ T SIMMs v o
g * 3 DIMMs  x
oA -1 fad Big drives o
I _ v Floppy drives ¥
le+07 [ - — S Small drives +
E L x o Flash sticks / cards A E
A - e SSDs e
le+06 | &w xﬁ & x _
X X
100000 E x 7 -
C x 7]
10000 -
g we
N + -
100 | + b 5ve = ]
10 E ++ E
+ + " ]
' "'Fﬁ-# + A =
+ - & ]
N - % ]
0.1 E + + _ ‘xx% :
AR = K "a‘b‘& ]
N o ]
0.01 'H'.'.':h. ] —Aﬂrﬁ ‘x&;“." E
: y ===
L - . ]
0001 | W * 3 e M"‘a ]
g - S : ]
- + ]
N % _ »?“hu..,% ]
0.0001 _ eh
i e
16’05 1 1 1 1 L 1 1 L L
1955 19¢, 1 1 | 1 ] ] 1 2005 2010 2015

000




Numbers (Jeff Dean says) Everyone Should

Know
L1 cache reference 0.5 ns
Branch mispredict 5 ns
L2 cache reference 7 ns
Mutex lock/unlock 100 ns
Main memory reference 100 ns
Compress 1K bytes with Zippy 10,000 ns
Send 2K bytes over 1 Gbps network 20,000 ns
Read 1 MB sequentially from memory 250,000 ns
Round trip within same datacenter 500,000 ns
Disk seek 10,000,000 ns
Read 1 MB sequentially from network 10,000,000 ns
Read 1 MB sequentially from disk 30,000,000 ns

Send packet CA->Netherlands->CA 150,000,000 ns
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A typical CPU (not to scale)

K8 core in the AMD Athlon 64 CPU

] Main Memory
Hard disk | <=8GB
( | Tb) |28x bigger
. - Other
CPUs
L2 Unified
1 MB 16-way
A A A A
| 6x bigger
L2 ITLB L2 DTLB
512 entries 512 entries
4-way 4-wav
I I 256x bigger
\ 4 Y + Y
L1 Instruction Cache L1ITLB L1 DTLB | L1 Data Cache
64KB 2-way 4 KB 4/2 MB 4 KB a2 MB 1 | 64KB 2-way 2 ports
32 entries| 8 entries | |32 entries|8 entries
full assoc |full assoc| |full assoc full assoc 56
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A typical CPU (not to scale)
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Numbers (Jeff Dean says) Everyone Should

Know

L1 cache reference

Branch mispredict

L2 cache reference

Mutex lock/unlock

Main memory reference

Compress 1K bytes with Zippy

Send 2K bytes over 1 Gbps network
Read 1 MB sequentially from memory
Round trip within same datacenter
Disk seek

Read 1 MB sequentially from network
Read 1 MB sequentially from disk
Send packet CA->Netherlands->CA

0.5 ns

5

7

100

100

10,000
20,000
250,000
500,000
10,000,000
10,000,000
30,000,000
150,000,000

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

~= |0x

~= | 5x

e 40x

~= 100,000x
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What do we count?

Compilers don’t warn Jeff Dean. Jeff Dean warns compilers.

* Memory access/instructions are
qualitatively different from disk access

» Seeks are qualitatively different from
sequential reads on disk

* (Cache, disk fetches, etc work best when you
stream through data sequentially

* Best case for data processing: stream
through the data once in sequential order,
as it’s found on disk.
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Other lessons -?

—ncoding Your Data

« CPUs are fast, memory/bandwidth are precious, ergo...
— Variable-length encodings
— Compression
— Compact in-memory representations

b S
« Compression very important aspect of many systems
— Inverted index posting list formats
— storage systems for persistent data  * but not important

enough for this class’s
assignments.... 63



What/How

— Next lecture: probability review and Naive
Bayes.

— Homework:
e Watch the review lecture I linked to on the wiki

—I'm notgoing to repeat it
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