10-405
Using RNNs and CNNs

Catchup from Monday’s lecture
Putting together Deep Learners

- Encoder/Decoder
- Seq2seq

- Image captioning
- Sequence classification
- Translation
- Named entity recognition

- One to many
- Many to one
- Many to many

CNN

http://karpathy.github.io/2015/05/21/rnn-effectiveness/
Other examples of seq2seq applications

• "Code captioning" (Yang et al, NIPS 2016):
 – Input: Java class implementation
 – Output: class-level comments

• Semantic parsing (Yih et al, ACL 2016)
 – Input: NL question “What’s the US state bordering Maryland?”
 – Output: code like
 “topk(area,1,intersect(members(‘state’), sharesBorder(named(‘Maryland’)))”

 – Might emit seq of operations that add to a tree instead of tokens: topk(_,1,_), area, intersect(_,_), members(‘state’),
Example: reasoning about entailment

A large annotated corpus for learning natural language inference

Samuel R. Bowman*†
sbowman@stanford.edu

Christopher Potts*
cgpotts@stanford.edu

Gabor Angeli†‡
angeli@stanford.edu

Christopher D. Manning*†‡
manning@stanford.edu

<table>
<thead>
<tr>
<th>Sentence</th>
<th>Annotation</th>
<th>Label</th>
</tr>
</thead>
<tbody>
<tr>
<td>A man inspects the uniform of a figure in some East Asian country.</td>
<td>contradiction</td>
<td>C C C C C</td>
</tr>
<tr>
<td>An older and younger man smiling.</td>
<td>neutral</td>
<td>N N E N N</td>
</tr>
<tr>
<td>A black race car starts up in front of a crowd of people.</td>
<td>contradiction</td>
<td>C C C C C</td>
</tr>
<tr>
<td>A soccer game with multiple males playing.</td>
<td>entailment</td>
<td>E E E E E</td>
</tr>
<tr>
<td>A smiling costumed woman is holding an umbrella.</td>
<td>neutral</td>
<td>N N E C N</td>
</tr>
<tr>
<td>The man is sleeping</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Two men are smiling and laughing at the cats playing on the floor.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A man is driving down a lonely road.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Some men are playing a sport.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A happy woman in a fairy costume holds an umbrella.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
RNNs for entailment

LSTM here is a macro – it’s expanded out to build a larger computation graph.
Example: question answering

LSTM-based Deep Learning Models for non-factoid answer selection

Ming Tan, Cicero dos Santos, Bing Xiang & Bowen Zhou
IBM Watson Core Technologies
Yorktown Heights, NY, USA
{mingtan,cicerons,bingxia,zhou}@us.ibm.com

Common trick: train network to make representations similar/dissimilar, not to classify
Example: recommendation

Rose Catherine & Cohen, RecSys 2017
Example: recommendation

Rose Catherine & Cohen, RecSys 2017
Example: recommendation

Rose Catherine & Cohen, RecSys 2017

<table>
<thead>
<tr>
<th>Dataset</th>
<th>DeepCoNN + Test Reviews</th>
<th>MF</th>
<th>DeepCoNN</th>
<th>DeepCoNN-rev_{AB}</th>
<th>TransNet</th>
<th>TransNet-Ext</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yelp17</td>
<td>1.2106</td>
<td>1.8661</td>
<td>1.8984</td>
<td>1.7045</td>
<td>1.6387</td>
<td>1.5913</td>
</tr>
<tr>
<td>AZ-Elec</td>
<td>0.9791</td>
<td>1.8898</td>
<td>1.9704</td>
<td>2.0774</td>
<td>1.8380</td>
<td>1.7781</td>
</tr>
<tr>
<td>AZ-CSJ</td>
<td>0.7747</td>
<td>1.5212</td>
<td>1.5487</td>
<td>1.7044</td>
<td>1.4487</td>
<td>1.4780</td>
</tr>
<tr>
<td>AZ-Mov</td>
<td>0.9392</td>
<td>1.4324</td>
<td>1.3611</td>
<td>1.5276</td>
<td>1.3599</td>
<td>1.2691</td>
</tr>
</tbody>
</table>
Big ML and GPUs
Parallel computing with map-reduce:

- Stream-and-sort in parallel
- Enormous datasets
- Tasks are i/o bound
- Many unreliable processors
 - which are basically commodity PCs
- Parallelize with mapreduce
 - loosely coupled, heavy-weight jobs
 - communicate via network/disk
- Don’t iterate (typically)
Streaming SGD:

- Iterative
- Sequential
- Fast
- Scale up by bounding memory

- You can handle very large datasets … but slowly
Streaming SGD:

- Iterative
- Sequential
- Fast
- Scale up by bounding memory

- You can handle very large datasets … but slowly

- You can speed it up by making the tasks in the stream bigger and doing them in parallel

- A GPU is a good way of doing that
Parallel computing with map-reduce:
- Stream-and-sort in parallel
- Enormous datasets
- Tasks are i/o bound
- Many unreliable processors
 - which are basically commodity PCs
- Parallelize with mapreduce
 - loosely coupled, heavy-weight jobs
 - communicate via network/disk
- Don’t iterate (typically)

Parallel ML computing with GPUs:
- Iterative streaming ML in parallel
- Big-but-not-too-big datasets
- Tasks are compute bound
- Many fast-but-simple processors
- Replace streaming operations with medium-sized computations that can be done in parallel
- Usually iterate many times
WHAT ARE GPUs?
What is a GPU?

A graphics processing unit (GPU) is a specialized electronic circuit designed to rapidly manipulate and alter memory to accelerate the creation of images in a frame buffer intended for output to a display device. [wikipedia]

The term GPU was popularized by Nvidia in 1999, who marketed the GeForce 256 as "the world's first …Graphics Processing Unit." It was presented as a "single-chip processor with integrated transform, lighting, triangle setup/clipping, and rendering engines". [3]
GPUs are faster than CPUs: maximum FLOPS/clock cycle

https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/
GPUs have more cores than CPUs
hi-end CPU: 32
hi-end GPU: 2000-5000

GPUs have less memory than CPUs
hi-end CPU: 256 Gb
hi-end GPU: 8-32 Gb

https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/
Theoretical Peak Performance per Core/Multiprocessor, Double Precision

GPUs compute faster because they are parallel

https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/
GPUs also read memory faster (memory bandwidth: bits/sec) because they are parallel.
Summary of GPUs vs CPUs

- less total memory
- more cores and more parallelism

- Multicore CPUs are mostly multiple-instruction multiple-data (MIMD)
- GPUs are mostly single-instruction multiple-data (SIMD)
Art, Science and GPU's
Adam Savage & Jamie Hyneman
Explain Parallel Processing

https://www.youtube.com/watch?v=-P28LKWzrI
HOW DO YOU USE A GPU?

Using GPUs for ML

• Programming parallel machines is complicated
• To use the parallelism of a GPU in an ML algorithm we almost always use matrix algebra as an abstraction layer – i.e. vectorize

def logisticRegression(....):

 for X,Y in:
 Z = W.matrix_multiply(X)
 P = logistic(Z)
 W = W + learning_rate * (P - Y) * X

def logisticRegression(....):

 for X,Y in:
 Z = W.matrix_multiply(X)
 P = logistic(Z)
 W = W + learning_rate * (P - Y) * X

```cpp
#include <iostream>
#include <algorithm>
using namespace std;

#define N          1024
#define RADIUS     3
#define BLOCK_SIZE 16

__global__ void stencil_1d( int *in, int *out ) {

    int gindex = threadIdx.x + blockIdx.x * blockDim.x;
    int lindex = threadIdx.x + RADIUS;

    // Read input elements into shared memory
    __shared__ int temp[BLOCK_SIZE + 2 * RADIUS];
    temp[lindex] = in[gindex];
    if (threadIdx.x < RADIUS) { temp[lindex-RADIUS] = in[gindex-RADIUS]; temp[lindex+BLOCK_SIZE] = in[gindex+BLOCK_SIZE]; }

    // Synchronize (ensure all the data is available)
    __syncthreads();

    // Apply the stencil
    int result = 0;
    for (int offset = -RADIUS; offset <= RADIUS; offset++) result += temp[lindex+offset];

    // Store the result
    out[gindex] = result;
}

void fill_ints( int *x, int n ) {
    fill_n( x, n, 1 );
}

int main(void) {
    int *in, *out;
    // host copies of a, b, c
    int *d_in, *d_out;
    // device copies of a, b, c

    int size = (N + 2*RADIUS) * sizeof(int);

    // Alloc space for host copies and setup values
    in = (int*) malloc(size);
    fill_ints( in, N + 2*RADIUS );
    out = (int*) malloc(size);

    // Alloc space for device copies
    cudaMalloc((void**)&d_in, size);
    cudaMalloc((void**)&d_out, size);

    // Copy to device
    cudaMemcpy(d_in, in, size, cudaMemcpyHostToDevice);
    cudaMemcpy(d_out, out, size, cudaMemcpyHostToDevice);

    // Launch stencil_1d() kernel on GPU
    stencil_1d<<<N/BLOCK_SIZE,BLOCK_SIZE>>>(d_in+RADIUS, d_out+RADIUS);

    // Copy result back to host
    cudaMemcpy(out, d_out, size, cudaMemcpyDeviceToHost);

    // Cleanup
    free(in); free(out);
    cudaFree(d_in);
    cudaFree(d_out);
    return 0;
}
```

Using GPUs for ML

Parallel fn

Serial code

Parallel code

Serial code

Serial code
Simple Processing Flow

1. Copy input data from CPU memory to GPU memory
1. Copy input data from CPU memory to GPU memory
2. Load GPU program and execute, caching data on chip for performance
1. Copy input data from CPU memory to GPU memory
2. Load GPU program and execute, caching data on chip for performance
3. Copy results from GPU memory to CPU memory
SOME EXAMPLE CODE
Hello World!

```c
int main(void) {
    printf("Hello World!\n");
    return 0;
}
```

- Standard C that runs on the **host** (the CPU)
- NVIDIA compiler (nvcc)
- We can also write code for the **device** (the GPU)

Output:

```
$ nvcc hello_world.cu
$ a.out
Hello World!
$ 32
```
Hello World! with Device Code

```c
__global__ void mykernel(void) {
}

int main(void) {
    mykernel<<<1,1>>>();
    printf("Hello World!\n");
    return 0;
}
```

- Two new things here...
Hello World! with Device Code

```c
__global__ void mykernel(void) {
}
```

- CUDA C/C++ keyword `__global__` indicates a function that:
 - Runs on the device
 - Is called from host code

- `nvcc` separates source code into host and device components
 - Device functions (e.g. `mykernel()`) processed by NVIDIA compiler
 - Host functions (e.g. `main()`) processed by standard host compiler
 - `gcc, cl.exe`
Hello World! with Device CODE

mykernel<<<1,1>>>();

• Triple angle brackets mark a call from *host* code to *device* code
 – Also called a “kernel launch”
 – We’ll get to the parameters (1,1) soon
Hello World! with Device Code

```c
__global__ void mykernel(void)
{
}
```

```c
int main(void) {
    mykernel<<<1,1>>>();
    printf("Hello World!\n");
    return 0;
}
```

• mykernel() does nothing at all in this example so let’s fix that.

Output:

$ nvcc hello.cu
hello.cu
$ a.out
Hello World!
$
Addition on the Device

• A simple kernel to add two integers (coming up: adding two arrays)

```c
__global__ void add(int *a, int *b, int *c) {
    *c = *a + *b;
}
```

• As before __global__ is a CUDA C/C++ keyword meaning
 - `add()` will execute on the device
 - `add()` will be called from the host
Addition on the Device

• Note that we use pointers for the variables

```c
__global__ void add(int *a, int *b, int *c) {
    *c = *a + *b;
}
```

• `add()` runs on the device, so `a`, `b` and `c` must point to device memory

• We need to allocate memory on the GPU
Memory Management

• Host and device memory are separate entities
 – *Device* pointers point to GPU memory
 May be passed to/from host code
 May *not* be dereferenced in host code
 – *Host* pointers point to CPU memory
 May be passed to/from device code
 May *not* be dereferenced in device code

• Simple CUDA API for handling device memory
 – `cudaMalloc()`, `cudaFree()`, `cudaMemcpy()`
 – Similar to the C equivalents `malloc()`, `free()`, `memcpy()`
Addition on the Device: \texttt{add()}\n
• Returning to our \texttt{add()} kernel

\begin{verbatim}
__global__ void add(int *a, int *b, int *c) {
 *c = *a + *b;
}
\end{verbatim}

• Let’s take a look at \texttt{main()}...
Addition on the Device: `main()`

```c
int main(void) {
    int a, b, c;                      // host copies of a, b, c
    int *d_a, *d_b, *d_c;            // device copies of a, b, c
    int size = sizeof(int);

    // Allocate space for device copies of a, b, c
    cudaMalloc((void **)&d_a, size);
    cudaMalloc((void **)&d_b, size);
    cudaMalloc((void **)&d_c, size);

    // Setup input values
    a = 2;
    b = 7;
}
```
We’re getting ready to do this…

1. Copy input data from CPU memory to GPU memory is **coming up next!**
// Copy inputs to device
cudaMemcpy(d_a, &a, size, cudaMemcpyHostToDevice);
cudaMemcpy(d_b, &b, size, cudaMemcpyHostToDevice);

// Launch add() kernel on GPU
add<<<1,1>>>(d_a, d_b, d_c);

// Copy result back to host
cudaMemcpy(&c, d_c, size, cudaMemcpyDeviceToHost);

// Cleanup
cudaFree(d_a); cudaFree(d_b); cudaFree(d_c);
return 0;
}
Next: Vector Addition on the Device

• With \texttt{add()} running in parallel we can do vector addition

• Terminology: each parallel invocation of \texttt{add()} is referred to as a \texttt{block}
 – The set of blocks is referred to as a \texttt{grid}
 – Each invocation can refer to its block index using \texttt{blockIdx.x}

 \begin{verbatim}
 __global_ void add(int *a, int *b, int *c) {
 c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];
 }
 \end{verbatim}

• By using \texttt{blockIdx.x} to index into the array, each block handles a different index
Vector Addition on the Device

```c
__global__ void add(int *a, int *b, int *c) {
    c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];
}
```

- On the device, each block can execute in parallel:
Vector Addition on the Device: \texttt{add()} \\

- Returning to our parallelized \texttt{add()} kernel \\

\begin{verbatim}
__global__ void add(int *a, int *b, int *c) {
 c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];
}
\end{verbatim}

- Let’s take a look at main()...
Vector Addition on the Device: main()

#define N 512
int main(void) {
 int *a, *b, *c; // host copies of a, b, c
 int *d_a, *d_b, *d_c; // device copies of a, b, c
 int size = N * sizeof(int);

 // Alloc space for device copies of a, b, c
 cudaMalloc((void **)&d_a, size);
 cudaMalloc((void **)&d_b, size);
 cudaMalloc((void **)&d_c, size);

 // Alloc space for host copies of a, b, c and setup input values
 a = (int *)malloc(size); random_ints(a, N);
 b = (int *)malloc(size); random_ints(b, N);
 c = (int *)malloc(size);
Vector Addition on the Device: main()

```c
// Copy inputs to device
cudaMemcpy(d_a, a, size, cudaMemcpyHostToDevice);
cudaMemcpy(d_b, b, size, cudaMemcpyHostToDevice);

// Launch add() kernel on GPU with N blocks
add<<<N,1>>>(d_a, d_b, d_c);

// Copy result back to host
cudaMemcpy(c, d_c, size, cudaMemcpyDeviceToHost);

// Cleanup
free(a); free(b); free(c);
cudaFree(d_a); cudaFree(d_b); cudaFree(d_c);
return 0;
```
Coordinating Host & Device

• Kernel launches are asynchronous
 – Control returns to the CPU immediately
• CPU needs to synchronize before consuming the results

`cudaMemcpy()`
Blocks the CPU until the copy is complete
Copy begins when all preceding CUDA calls have completed

`cudaMemcpyAsync()`
Asynchronous, does not block the CPU

`cudaDeviceSynchronize()`
Blocks the CPU until all preceding CUDA calls have completed
MORE DETAILS ON GPU PROGRAMMING

Summary of GPUs vs CPUs

- less total memory
- more cores and more parallelism

- Multicore CPUs are *mostly* multiple-instruction multiple-data (MIMD)
- GPUs are *mostly* single-instruction multiple-data (SIMD)
Blocks, Grids, Threads, Warps

- Recall blocks are the things that work in parallel, and blocks are arranged in grids.
- $c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x]$;
- That would be SIMD (single instruction multiple data);
- It’s actually more complicated than that....
MIMD

![Diagram](https://courses.cs.washington.edu/courses/cse471/13sp/lectures/GPUsStudents.pdf)
Program
\(\text{color}_{\text{out}} = f(\text{color}_{\text{in}}) \)
SIMD: Zooming in

Program
\[color_{out} = f(color_{in}) \]

CPU0
- Execute
- Memory
- Writeback

Register File
SIMT: Single Instruction Multiple Threads

Program \(color_{out} = f(color_{in}) \)
A thread can access its own block id and also thread id. Blocks and threads are in a grid, which is 2D or 3D (there’s a .x and a .y part).
Comparison

MIMD/SPMD

SIMD/Vector

SIMT
What’s in a GPU?

Threads (SIMT, synchronous threads) are grouped into cores (which are decoupled, like a MIMD machine)
IDs and Dimensions

- A kernel is launched as a grid of blocks of threads
 - `blockIdx` and `threadIdx` are 3D
 - We showed only one dimension (x)

- Built-in variables:
 - `threadIdx`
 - `blockIdx`
 - `blockDim`
 - `gridDim`
Thread and block parallelism

\[
\begin{align*}
\text{tx} &= \text{cuda.threadIdx.x} \\
\text{ty} &= \text{cuda.threadIdx.y} \\
\text{bx} &= \text{cuda.blockIdx.x} \\
\text{by} &= \text{cuda.blockIdx.y} \\
\text{bw} &= \text{cuda blockDim.x} \\
\text{bh} &= \text{cuda blockDim.y} \\
x &= \text{tx} + \text{bx} \times \text{bw} \\
y &= \text{ty} + \text{by} \times \text{bh} \\
\text{array}[x, y] &= \text{something}(x, y)
\end{align*}
\]
How Do You REALLY Use a GPU?
Streaming SGD:

- Iterative
- Sequential
- Fast
- Scale up by bounding memory

- You can handle very large datasets … but slowly

\[x_1 x_2 x_3 x_4 x_5 x_6 \]
Streaming SGD:

- Iterative
- Sequential
- Fast
- Scale up by bounding memory

- You can handle very large datasets … but slowly

- You can speed it up by making the tasks in the stream bigger and doing them in parallel
- A GPU is a good way of doing that
```python
import numpy as np
import numpy.random as random
from examples.utils.data_utils import gaussian_cluster_generator as make_data

# Predict the class using multinomial logistic regression (softmax regression).
def predict(w, x):
    a = np.exp(np.dot(x, w))
    a_sum = np.sum(a, axis=1, keepdims=True)
    prob = a / a_sum
    return prob

# Using gradient descent to fit the correct classes.
def train(w, x, loops):
    for i in range(loops):
        prob = predict(w, x)
        loss = -np.sum(label * np.log(prob)) / num_samples
        if i % 10 == 0:
            print('Iter {}, training loss {}'.format(i, loss))
        # gradient descent
        dy = prob - label
        dw = np.dot(data.T, dy) / num_samples
        # update parameters; fixed learning rate of 0.1
        w -= 0.1 * dw

# Initialize training data.
num_samples = 10000
num_features = 500
num_classes = 5
data, label = make_data(num_samples, num_features, num_classes)

# Initialize training weight and train
weight = random.randn(num_features, num_classes)
train(weight, data, 100)
```
```python
import numpy as np
import numpy.random as random
from examples.utils.data_utils import gaussian_cluster_generator as make_data

# Predict the class using multinomial logistic regression (softmax regression).
def predict(w, x):
    a = np.exp(np.dot(x, w))
    a_sum = np.sum(a, axis=1, keepdims=True)
    prob = a / a_sum
    return prob

# Using gradient descent to fit the correct classes.
def train(w, x, loops):
    for i in range(loops):
        prob = predict(w, x)
        loss = -np.sum(label * np.log(prob)) / num_samples
        if i % 10 == 0:
            print('Iter {}, training loss {}'.format(i, loss))
        # gradient descent
        dy = prob - label
        dw = np.dot(data.T, dy) / num_samples
        # update parameters; fixed learning rate of 0.1
        w -= 0.1 * dw

# Initialize training data.
num_samples = 10000
num_features = 500
num_classes = 5
data, label = make_data(num_samples, num_features, num_classes)

# Initialize training weight and train
weight = random.randn(num_features, num_classes)
train(weight, data, 100)
```
So this will run in parallel on a GPU?

No: we’re not there yet....
So this will run in parallel on a GPU?
Not yet....


```
import numpy as np
import numpy.random as random
from examples.utils.data_utils import gaussian_cluster_generator as make_data

# Predict the class using multinomial Logistic regression (softmax regression).
def predict(w, x):
    a = np.exp(np.dot(x, w))
    a_sum = np.sum(a, axis=1, keepdims=True)
    prob = a / a_sum
    return prob

# Using gradient descent to fit the correct classes.
def train(w, x, loops):
    for i in range(loops):
        prob = predict(w, x)
        loss = -np.sum(label * np.log(prob)) / num_samples
        if i % 10 == 0:
            print('Iter {}, training loss {}'.format(i, loss))
        # gradient descent
        dy = prob - label
        dw = np.dot(data.T, dy) / num_samples
        # update parameters; fixed learning rate
        w -= 0.1 * dw

# Initialize training data.
num_samples = 10000
num_features = 500
num_classes = 5
data, label = make_data(num_samples, num_features, num_classes)

# Initialize training weight and train
weight = random.randn(num_features, num_classes)
train(weight, data, 100)
```