
10-405

1

Using RNNs and CNNs

Catchup	from	Monday’s	lecture

Putting together Deep Learners

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

sequence
classification translation named entity

recognition
image
captioning

seq2seqencoder/decoder

CNN

Other examples of seq2seq applications
• ”Code	captioning”	(Yang	et	al,	NIPS	2016):

– Input:	Java	class	implementation
– Output:	class-level	comments

• Semantic	parsing	(Yih	et	al,	ACL	2016)
– Input:	NL	question	“What’s	the	US	state	
bordering	Maryland?”

– Output:	code	like	
“topk(area,1,intersect(
members(‘state’),	
sharesBorder(named(‘Maryland’))”

– Might	emit	seq	of	operations	that	add	to	
a	tree	instead	of	tokens:	topk(_,1,_),	
area,	intersect(_,_),	members(‘state’),	….

4

area

topk(_,1,_),

members(‘state’)

intersect(_,_)

Example: reasoning about entailment

RNNs for
entailment

LSTM LSTM

LSTM here is a macro – it’s expanded out
to build a larger computation graph

Example: question answering

Common trick: train network
to make representations

similar/dissimilar, not to classify

Example: recommendation
Rose Catherine & Cohen, RecSys 2017

Example: recommendation
Rose Catherine & Cohen, RecSys 2017

Example: recommendation
Rose Catherine & Cohen, RecSys 2017

Big ML and GPUs

11

12

Parallel computing with map-reduce:
• Stream-and-sort in parallel
• Enormous datasets
• Tasks are i/o bound
• Many unreliable processors

• which are basically commodity PCs
• Parallelize with mapreduce

• loosely coupled, heavy-weight jobs
• communicate via network/disk

• Don’t iterate (typically)

13

Streaming SGD:

• Iterative
• Sequential
• Fast
• Scale up by

bounding memory

• You can handle
very large datasets
… but slowly

x1
x2
x3

w

x4
x5
x6

14

Streaming SGD:

• Iterative
• Sequential
• Fast
• Scale up by

bounding memory

• You can handle
very large datasets
… but slowly

• You can speed it
up by making the
tasks in the stream
bigger and doing
them in parallel

• A GPU is a good
way of doing that

x1
x2
x3

w

x4
x5
x6

15

Parallel ML computing with GPUS:
• Iterative streaming ML in parallel
• Big-but-not-too-big datasets
• Tasks are compute bound
• Many fast-but-simple processors
• Replace streaming operations

with medium-sized
computations that can be done
in parallel

• Usually iterate many times

Parallel computing with map-reduce:
• Stream-and-sort in parallel
• Enormous datasets
• Tasks are i/o bound
• Many unreliable processors

• which are basically commodity PCs
• Parallelize with mapreduce

• loosely coupled, heavy-weight jobs
• communicate via network/disk

• Don’t iterate (typically)

WHAT ARE GPUS?

16

What is a GPU?

17

A graphics processing unit (GPU) is a specialized electronic
circuit designed to rapidly manipulate and alter memory to
accelerate the creation of images in a frame buffer intended for
output to a display device. [wikipedia]

The term GPU was popularized
by Nvidia in 1999, who marketed
the GeForce 256 as "the world's first
…Graphics Processing Unit.” It was
presented as a "single-chip processor
with integrated transform, lighting,
triangle setup/clipping, and rendering
engines".[3]

18

https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/

GPUs are faster than CPUs:
maximum FLOPS/clock cycle

19

https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/

GPUs have more cores than CPUs
hi-end CPU: 32
hi-end GPU: 2000-5000

GPUs have less memory than CPUs
hi-end CPU: 256 Gb
hi-end GPU: 8-32 Gb

20

https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/

GPUs compute faster because they are parallel

21

https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/

GPUs also read memory faster
(memory bandwidth: bits/sec)
because they are parallel

22

Summary of GPUs vs CPUs

• less total memory
• more cores and more parallelism

• Multicore CPUs are mostly multiple-instruction multiple-data (MIMD)
• GPUs are mostly single-instruction multiple-data (SIMD)

23

https://www.youtube.com/watch?v=-P28LKWTzrI

HOW DO YOU USE A GPU?

24

http://developer.download.nvidia.com/compute/developertrainingmaterials/presentations/
cuda_language/Introduction_to_CUDA_C.pptx

Using GPUs for ML

• Programming	parallel	machines	is	complicated
• To	use	the	parallelism	of	a	GPU	in	an	ML	
algorithm	we	almost	always	use	matrix	
algebra as	an	abstraction	layer	– i.e.	vectorize

25

def logisticRegression(….):
….
for	X,Y	in	….:
Z	=	W.matrix_multiply(X)
P	=	logistic(Z)
W	=	W	+	learning_rate *	(P	– Y)	*	X
…..

Using GPUs for ML

26

def logisticRegression(….):
….
for	X,Y	in	….:
Z	=	W.matrix_multiply(X)
P	=	logistic(Z)
W	=	W	+	learning_rate *	(P	– Y)	*	X
…..

Using GPUs for ML
#include <iostream>
#include <algorithm>

using namespace std;

#define N 1024
#define RADIUS 3
#define BLOCK_SIZE 16

__global__ void stencil_1d(int *in, int *out) {
__shared__ int temp[BLOCK_SIZE + 2 * RADIUS];
int gindex = threadIdx.x + blockIdx.x * blockDim.x;
int lindex = threadIdx.x + RADIUS;

// Read input elements into shared memory
temp[lindex] = in[gindex];
if (threadIdx.x < RADIUS) {

temp[lindex - RADIUS] = in[gindex - RADIUS];
temp[lindex + BLOCK_SIZE] = in[gindex + BLOCK_SIZE];

}

// Synchronize (ensure all the data is available)
__syncthreads();

// Apply the stencil
int result = 0;
for (int offset = -RADIUS ; offset <= RADIUS ; offset++)

result += temp[lindex + offset];

// Store the result
out[gindex] = result;

}

void fill_ints(int *x, int n) {
fill_n(x, n, 1);

}

int main(void) {
int *in, *out; // host copies of a, b, c
int *d_in, *d_out; // device copies of a, b, c
int size = (N + 2*RADIUS) * sizeof(int);

// Alloc space for host copies and setup values
in = (int *)malloc(size); fill_ints(in, N + 2*RADIUS);
out = (int *)malloc(size); fill_ints(out, N + 2*RADIUS);

// Alloc space for device copies
cudaMalloc((void **)&d_in, size);
cudaMalloc((void **)&d_out, size);

// Copy to device
cudaMemcpy(d_in, in, size, cudaMemcpyHostToDevice);
cudaMemcpy(d_out, out, size, cudaMemcpyHostToDevice);

// Launch stencil_1d() kernel on GPU
stencil_1d<<<N/BLOCK_SIZE,BLOCK_SIZE>>>(d_in + RADIUS,

d_out + RADIUS);

// Copy result back to host
cudaMemcpy(out, d_out, size, cudaMemcpyDeviceToHost);

// Cleanup
free(in); free(out);
cudaFree(d_in); cudaFree(d_out);
return 0;

}

serial code

parallel code

serial code

parallel fn

27

Simple Processing Flow

1. Copy input data from CPU memory
to GPU memory

PCI Bus

28

Simple Processing Flow

1. Copy input data from CPU memory
to GPU memory

2. Load GPU program and execute,
caching data on chip for performance

PCI Bus

29

Simple Processing Flow

1. Copy input data from CPU memory
to GPU memory

2. Load GPU program and execute,
caching data on chip for performance

3. Copy results from GPU memory to
CPU memory

PCI Bus

30

SOME EXAMPLE CODE

31

Hello World!

int main(void) {
printf("Hello World!\n");
return 0;

}

Standard C that runs on the host
(the CPU)

NVIDIA compiler (nvcc)

We can also write code for the
device (the GPU)

Output:

$ nvcc
hello_world.
cu
$ a.out
Hello World!
$

32

Hello World! with Device Code

__global__ void mykernel(void) {
}

int main(void) {
mykernel<<<1,1>>>();
printf("Hello World!\n");
return 0;

}

§ Two new things here…

33

Hello World! with Device Code
__global__ void mykernel(void) {
}

• CUDA	C/C++	keyword	__global__ indicates	a	function	that:
– Runs	on	the	device
– Is	called	from	host	code

• nvcc separates	source	code	into	host	and	device	
components
– Device	functions	(e.g.	mykernel())	processed	by	NVIDIA	
compiler

– Host	functions	(e.g.	main())	processed	by	standard	host	
compiler

• gcc,	cl.exe

34

Hello World! with Device COde
mykernel<<<1,1>>>();

• Triple	angle	brackets	mark	a	call	from	host
code	to	device code
–Also	called	a	“kernel	launch”
–We’ll	get	to	the	parameters	(1,1)	soon

35

Hello World! with Device Code

__global__ void mykernel(void){
}

int main(void) {
mykernel<<<1,1>>>();
printf("Hello World!\n");
return 0;

}

• mykernel() does nothing at all in
this example …. so let’s fix that.

Output:

$ nvcc
hello.cu
$ a.out
Hello World!
$

36

Addition on the Device
• A	simple	kernel	to	add	two	integers	(coming	up:	
adding	two	arrays)

__global__ void add(int *a, int *b, int *c) {
*c = *a + *b;

}

• As	before	__global__ is	a	CUDA	C/C++	keyword	
meaning
– add() will	execute	on	the	device
– add() will	be	called	from	the	host

37

Addition on the Device

• Note	that	we	use	pointers	for	the	variables

__global__ void add(int *a, int *b, int *c) {
*c = *a + *b;

}

• add() runs	on	the	device,	so	a,	b and	cmust	
point	to	device	memory

• We	need	to	allocate	memory	on	the	GPU

38

Memory Management

• Host	and	device	memory	are	separate	entities
– Device pointers	point	to	GPU	memory

May	be	passed	to/from	host	code
May	not	be	dereferenced	in	host	code

– Host	pointers	point	to	CPU	memory
May	be	passed	to/from	device	code
May	not	be	dereferenced	in	device	code

• Simple	CUDA	API	for	handling	device	memory
– cudaMalloc(),	cudaFree(),	cudaMemcpy()
– Similar	to	the	C	equivalents	malloc(),	free(),	
memcpy()

39

Addition on the Device: add()

• Returning	to	our	add() kernel

__global__ void add(int *a, int *b, int *c) {
*c = *a + *b;

}

• Let’s	take	a	look	at	main()…

40

Addition on the Device: main()

int main(void) {
int a, b, c; // host copies of a, b, c
int *d_a, *d_b, *d_c; // device copies of a, b, c
int size = sizeof(int);

// Allocate space for device copies of a, b, c
cudaMalloc((void **)&d_a, size);
cudaMalloc((void **)&d_b, size);
cudaMalloc((void **)&d_c, size);

// Setup input values
a = 2;
b = 7;

41

We’re getting ready to do this…

1. Copy input data from CPU memory
to GPU memory is coming up next!

PCI Bus

42

Addition on the Device: main()

// Copy inputs to device
cudaMemcpy(d_a, &a, size, cudaMemcpyHostToDevice);
cudaMemcpy(d_b, &b, size, cudaMemcpyHostToDevice);

// Launch add() kernel on GPU
add<<<1,1>>>(d_a, d_b, d_c);

// Copy result back to host
cudaMemcpy(&c, d_c, size, cudaMemcpyDeviceToHost);

// Cleanup
cudaFree(d_a); cudaFree(d_b); cudaFree(d_c);
return 0;

}

43

Next: Vector Addition on the Device

• With	add() running	in	parallel	we	can	do	vector	addition

• Terminology:	each	parallel	invocation	of	add() is	referred	
to	as	a	block
– The	set	of	blocks	is	referred	to	as	a	grid
– Each	invocation	can	refer	to	its	block	index	using	

blockIdx.x

__global__ void add(int *a, int *b, int *c) {
c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];

}

• By	using	blockIdx.x to	index	into	the	array,	each	block	
handles	a	different	index

44

Vector Addition on the Device

__global__ void add(int *a, int *b, int *c) {
c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];

}

• On	the	device,	each	block	can	execute	in	parallel:

c[0] = a[0] + b[0]; c[1] = a[1] + b[1]; c[2] = a[2] + b[2]; c[3] = a[3] + b[3];

Block 0 Block 1 Block 2 Block 3

45

Vector Addition on the Device: add()

• Returning	to	our	parallelized	add() kernel
__global__ void add(int *a, int *b, int *c) {

c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];
}

• Let’s	take	a	look	at	main()…

46

Vector Addition on the Device: main()
#define N 512
int main(void) {

int *a, *b, *c; // host copies of a, b, c
int *d_a, *d_b, *d_c; // device copies of a, b, c
int size = N * sizeof(int);

// Alloc space for device copies of a, b, c
cudaMalloc((void **)&d_a, size);
cudaMalloc((void **)&d_b, size);
cudaMalloc((void **)&d_c, size);

// Alloc space for host copies of a, b, c and setup input values
a = (int *)malloc(size); random_ints(a, N);
b = (int *)malloc(size); random_ints(b, N);
c = (int *)malloc(size);

47

Vector Addition on the Device: main()

// Copy inputs to device
cudaMemcpy(d_a, a, size, cudaMemcpyHostToDevice);
cudaMemcpy(d_b, b, size, cudaMemcpyHostToDevice);

// Launch add() kernel on GPU with N blocks
add<<<N,1>>>(d_a, d_b, d_c);

// Copy result back to host
cudaMemcpy(c, d_c, size, cudaMemcpyDeviceToHost);

// Cleanup
free(a); free(b); free(c);
cudaFree(d_a); cudaFree(d_b); cudaFree(d_c);
return 0;

}

48

Coordinating Host & Device

• Kernel	launches	are	asynchronous
–Control	returns	to	the	CPU	immediately

• CPU	needs	to	synchronize	before	consuming	
the	results

cudaMemcpy() Blocks the CPU until the copy is complete
Copy begins when all preceding CUDA calls
have completed

cudaMemcpyAsync() Asynchronous, does not block the CPU

cudaDeviceSynchronize() Blocks the CPU until all preceding CUDA
calls have completed

49

MORE DETAILS ON GPU
PROGRAMMING

50

http://developer.download.nvidia.com/compute/developertrainingmaterials/presentations/
cuda_language/Introduction_to_CUDA_C.pptx

51

Summary of GPUs vs CPUs

• less total memory
• more cores and more parallelism

• Multicore CPUs are mostly multiple-instruction multiple-data (MIMD)
• GPUs are mostly single-instruction multiple-data (SIMD)

Blocks, Grids, Threads, Warps

• Recall	blocks	are		the	things	that	work	in	
parallel,	and	blocks	are	arranged	in	grids

• c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];

52

• That	would	be	SIMD	(single	instruction	
multiple	data)

• It’s	actually	more	complicated	than	that….

MIMD

53

https://courses.cs.washington.edu/courses/cse471/13sp/lectures/GPUsStudents.pdf

1

2

3

4

SIMD

54

SIMD: Zooming in

55

SIMT: Single Instruction Multiple
Threads

56

SIMT: Single Instruction Multiple
Threads

57

A thread can access its own block id and also thread id.
Blocks and threads are in a grid, which is 2D or 3D (there’s a
.x and a .y part)

Comparison

58

What’s in a GPU?

59

Threads (SIMT,
synchronous
threads) are
grouped into
cores (which are
decoupled, like a
MIMD machine)

IDs and Dimensions

– A	kernel	is	launched	as	a	
grid	of	blocks	of	threads

• blockIdx and	
threadIdx are	3D

• We	showed	only	one	
dimension	(x)

• Built-in	variables:
– threadIdx
– blockIdx
– blockDim
– gridDim

Device

Grid 1

Block
(0,0,0)

Block
(1,0,0)

Block
(2,0,0)

Block
(1,1,0)

Block
(2,1,0)

Block
(0,1,0)

Block (1,1,0)

Thread
(0,0,0)

Thread
(1,0,0)

Thread
(2,0,0)

Thread
(3,0,0)

Thread
(4,0,0)

Thread
(0,1,0)

Thread
(1,1,0)

Thread
(2,1,0)

Thread
(3,1,0)

Thread
(4,1,0)

Thread
(0,2,0)

Thread
(1,2,0)

Thread
(2,2,0)

Thread
(3,2,0)

Thread
(4,2,0)

60

Thread and block parallelism

61

How Do You REALLY Use a
GPU?

62

63

Streaming SGD:

• Iterative
• Sequential
• Fast
• Scale up by

bounding memory

• You can handle
very large datasets
… but slowly

x1
x2
x3

w

x4
x5
x6

64

Streaming SGD:

• Iterative
• Sequential
• Fast
• Scale up by

bounding memory

• You can handle
very large datasets
… but slowly

• You can speed it
up by making the
tasks in the stream
bigger and doing
them in parallel

• A GPU is a good
way of doing that

x1
x2
x3

w

x4
x5
x6

65

http://minpy.readthedocs.io/en/latest/get-started/logistic_regression.html

66

http://minpy.readthedocs.io/en/latest/get-started/logistic_regression.html

So this will run in parallel on a GPU?

67

http://minpy.readthedocs.io/en/latest/get-started/logistic_regression.html

No: we’re not
there yet….

So this will run in parallel on a GPU?
Not yet….

68

http://minpy.readthedocs.io/en/latest/get-started/logistic_regression.html

Option	1:	switch	from	
numpy (old	package)	to	
cupy (new	GPU-oriented	
package)

Option	2:	switch	to	a	package	that	
will	compile	to	a	GPU	and	also	
compute	the	gradients	for	you	(like	
Theano,	Tensorflow,	Torch,	…)

