10-405

Using RNNs and CNNs

Catchup from Monday's lecture

Putting together Deep Learners

Other examples of seq2seq applications

- "Code captioning" (Yang et al, NIPS 2016):
 - Input: Java class implementation
 - Output: class-level comments
- Semantic parsing (Yih et al, ACL 2016)
 - Input: NL question "What's the US state bordering Maryland?"
 - Output: code like "topk(area,1,intersect(members('state'), sharesBorder(named('Maryland'))"
 - Might emit seq of operations that add to a tree instead of tokens: topk(_,1,_), area, intersect(_,_), members('state'),

members('state')

Example: reasoning about entailment

A large annotated corpus for learning natural language inference

Samuel R. Bowman*†

sbowman@stanford.edu

Christopher Potts*

cgpotts@stanford.edu

Gabor Angeli†‡

angeli@stanford.edu

Christopher D. Manning*†‡

manning@stanford.edu

	A man inspects the uniform of a figure in some East Asian country.	C C C C C	The man is sleeping
4	An older and younger man smiling.	neutral NNENN	Two men are smiling and laughing at the cats play- ing on the floor.
	A black race car starts up in front of a crowd of people.	contradiction C C C C C	A man is driving down a lonely road.
1	A soccer game with multiple males playing.	entailment EEEEE	Some men are playing a sport.
	A smiling costumed woman is holding an um- brella.	neutral NNECN	A happy woman in a fairy costume holds an um- brella.

RNNs for entailment

System	SNLI		
Edit Distance Based	71.9		
Classifier Based	72.2		
+ Lexical Resources	75.0		

LSTM here is a macro – it's expanded out to build a larger computation graph

Example: question answering

LSTM-BASED DEEP LEARNING MODELS FOR NON-FACTOID ANSWER SELECTION

Ming Tan, Cicero dos Santos, Bing Xiang & Bowen Zhou IBM Watson Core Technologies
Yorktown Heights, NY, USA
{mingtan, cicerons, bingxia, zhou}@us.ibm.com

Common trick: train network to make representations similar/dissimilar, not to classify

Example: recommendation

Rose Catherine & Cohen, RecSys 2017

Example: recommendation

Rose Catherine & Cohen, RecSys 2017

Example: recommendation

Rose Catherine & Cohen, RecSys 2017

Dataset	DeepCoNN + Test Reviews	MF	DeepCoNN	DeepCoNN-rev _{AB}	TransNet	TransNet-Ext
Yelp17	1.2106	1.8661	1.8984	1.7045	1.6387	1.5913
AZ-Elec	0.9791	1.8898	1.9704	2.0774	1.8380	1.7781
AZ-CSJ	0.7747	1.5212	1.5487	1.7044	1.4487	1.4780
AZ-Mov	0.9392	1.4324	1.3611	1.5276	1.3599	1.2691

Big ML and GPUs

Parallel computing with map-reduce:

- Stream-and-sort in parallel
- Enormous datasets
- Tasks are i/o bound
- Many unreliable processors
 - which are basically commodity PCs
- Parallelize with mapreduce
 - loosely coupled, heavy-weight jobs
 - communicate via network/disk
- Don't iterate (typically)

Streaming SGD:

- Iterative
- Sequential
- Fast
- Scale up by bounding memory
- You can handle very large datasets... but slowly

Streaming SGD:

- Iterative
- Sequential
- Fast
- Scale up by bounding memory
- You can handle very large datasets... but slowly
- You can speed it up by making the tasks in the stream bigger and doing them in parallel
- A GPU is a good way of doing that

Parallel computing with map-reduce:

- Stream-and-sort in parallel
- Enormous datasets
- Tasks are i/o bound
- Many unreliable processors
 - which are basically commodity PCs
- Parallelize with mapreduce
 - loosely coupled, heavy-weight jobs
 - communicate via network/disk
- Don't iterate (typically)

Parallel ML computing with GPUS:

- Iterative streaming ML in parallel
- Big-but-not-too-big datasets
- Tasks are compute bound
- Many fast-but-simple processors
- Replace streaming operations with medium-sized computations that can be done in parallel
- Usually iterate many times

WHAT ARE GPUS?

What is a GPU?

A graphics processing unit (GPU) is a specialized <u>electronic</u> <u>circuit</u> designed to rapidly manipulate and alter <u>memory</u> to accelerate the creation of <u>images</u> in a <u>frame buffer</u> intended for output to a <u>display device</u>. [wikipedia]

The term GPU was popularized by Nvidia in 1999, who marketed the GeForce 256 as "the world's first ...Graphics Processing Unit." It was presented as a "single-chip processor with integrated transform, lighting, triangle setup/clipping, and rendering engines".[3]

https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/

https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/

https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/

https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/

Summary of GPUs vs CPUs

- less total memory
- more cores and more parallelism
- Multicore CPUs are mostly multiple-instruction multiple-data (MIMD)
- GPUs are mostly single-instruction multiple-data (SIMD)

https://www.youtube.com/watch?v=-P28LKWTzrl

HOW DOYOU USE A GPU?

http://developer.download.nvidia.com/compute/developertrainingmaterials/presentations/cuda_language/Introduction_to_CUDA_C.pptx

Using GPUs for ML

- Programming parallel machines is complicated
- To use the parallelism of a GPU in an ML algorithm we almost always use matrix algebra as an abstraction layer – i.e. vectorize

```
def logisticRegression(....):
    ....
    for X,Y in ....:
        Z = W.matrix_multiply(X)
        P = logistic(Z)
        W = W + learning_rate * (P - Y) * X
        .....
```

Using GPUs for ML


```
def logisticRegression(....):
    ....
for X,Y in ....:
    Z = W.matrix_multiply(X)
    P = logistic(Z)
    W = W + learning_rate * (P - Y) * X
    .....
```

Using GPUs for ML

```
#include <iostream>
#include <algorithm>
using namespace std;
#define RADIUS 3
#define BLOCK_SIZE 16
__global__ void stencil_1d(int *in, int *out) {
    __shared__ int temp[BLOCK_SIZE + 2 * RADIUS];
    int gindex = threadIdx.x + blockIdx.x * blockDim.x;
         int lindex = threadldx.x + RADIUS;
         temp[lindex] = in[gindex];
         if (threadIdx.x < RADIUS) {
                  temp[lindex - RADIUS] = in[gindex - RADIUS];
                  temp[lindex + BLOCK_SIZE] = in[gindex + BLOCK_SIZE];
         // Synchronize (ensure all the data is available) __syncthreads();
         // Apply the stencil
         int result = 0:
         for (int offset = -RADIUS ; offset <= RADIUS ; offset++)
                 result += temp[lindex + offset];
         out[gindex] = result;
void fill_ints(int *x, int n) {
         fill_n(x, n, 1);
int main(void) {
        int *in, *out; // host copies of a, b, c
int *d_in, *d_out; // device copies...
                                 // device copies of a, b, c
         int size = (N + 2*RADIUS) * sizeof(int);
         // Alloc space for host copies and setup values
         in = (int *)malloc(size): fill_ints(in_N + 2*RADILIS):
         out = (int *)malloc(size); fill_ints(out, N + 2*RADIUS);
         // Alloc space for device copies
         cudaMalloc((void **)&d_in, size);
         cudaMalloc((void **)&d_out, size);
         cudaMemcpy(d_in, in, size, cudaMemcpyHostToDevice);
cudaMemcpy(d_out, out, size, cudaMemcpyHostToDevice);
         // Launch stencil 1d() kernel on GPU
         stencil_1d<<<N/BLOCK_SIZE,BLOCK_SIZE>>>(d_in + RADIUS,
         // Copy result back to host
         cudaMemcpy(out, d_out, size, cudaMemcpyDeviceToHost);
         free(in); free(out);
         cudaFree(d_in); cudaFree(d_out);
         return 0:
```


Simple Processing Flow

Simple Processing Flow

Simple Processing Flow

SOME EXAMPLE CODE

Hello World!

```
int main(void) {
    printf("Hello World!\n");
    return 0;
}
```

- Standard C that runs on the <u>host</u> (the CPU)
- NVIDIA compiler (nvcc)
- We can also write code for the device (the GPU)

Output:

```
$ nvcc
hello_world.
cu
$ a.out
Hello World!
$
```

Hello World! with Device Code

```
__global__ void mykernel(void) {
}
int main(void) {
    mykernel<<<1,1>>>();
    printf("Hello World!\n");
    return 0;
}
```

Two new things here...

Hello World! with Device Code

```
__global__ void mykernel(void) {
}
```

- CUDA C/C++ keyword __global__ indicates a function that:
 - Runs on the device
 - Is called from host code
- nvcc separates source code into host and device components
 - Device functions (e.g. mykernel()) processed by NVIDIA compiler
 - Host functions (e.g. main()) processed by standard host compiler
 - gcc, cl.exe

Hello World! with Device COde

```
mykernel<<<1,1>>>();
```

- Triple angle brackets mark a call from host code to device code
 - -Also called a "kernel launch"
 - -We'll get to the parameters (1,1) soon

Hello World! with Device Code

```
__global__ void mykernel(void){

int main(void) {
   mykernel<<<1,1>>>();
   printf("Hello World!\n");
   return 0;
}
```

 mykernel() does nothing at all in this example so let's fix that.

Output:

```
$ nvcc
hello.cu
$ a.out
Hello World!
$
```

Addition on the Device

 A simple kernel to add two integers (coming up: adding two arrays)

```
__global__ void add(int *a, int *b, int *c) {
    *c = *a + *b;
}
```

- As before __global__ is a CUDA C/C++ keyword meaning
 - add() will execute on the device
 - add() will be called from the host

Addition on the Device

Note that we use pointers for the variables

```
__global__ void add(int *a, int *b, int *c) {
    *c = *a + *b;
}
```

- add() runs on the device, so a, b and c must point to device memory
- We need to allocate memory on the GPU

Memory Management

- Host and device memory are separate entities
 - Device pointers point to GPU memory
 May be passed to/from host code
 May not be dereferenced in host code
 - Host pointers point to CPU memory
 May be passed to/from device code
 May not be dereferenced in device code
- Simple CUDA API for handling device memory
 - cudaMalloc(), cudaFree(), cudaMemcpy()
 - Similar to the C equivalents malloc(), free(),
 memcpy()

Addition on the Device: add()

• Returning to our add() kernel

```
__global__ void add(int *a, int *b, int *c) {
    *c = *a + *b;
}
```

• Let's take a look at main()...

Addition on the Device: main()

```
int main(void) {
                    // host copies of a, b, c
   int a, b, c;
   int *d_a, *d_b, *d_c;  // device copies of a, b, c
   int size = sizeof(int);
   // Allocate space for device copies of a, b, c
   cudaMalloc((void **)&d a, size);
   cudaMalloc((void **)&d b, size);
   cudaMalloc((void **)&d c, size);
   // Setup input values
   a = 2;
   b = 7;
```

We're getting ready to do this...

Addition on the Device: main()

```
// Copy inputs to device
cudaMemcpy(d a, &a, size, cudaMemcpyHostToDevice);
cudaMemcpy(d b, &b, size, cudaMemcpyHostToDevice);
// Launch add() kernel on GPU
add<<<1,1>>>(d a, d b, d c);
// Copy result back to host
cudaMemcpy(&c, d c, size, cudaMemcpyDeviceToHost);
// Cleanup
cudaFree(d a); cudaFree(d b); cudaFree(d c);
return 0;
```

Next: Vector Addition on the Device

- With add() running in parallel we can do vector addition
- Terminology: each parallel invocation of add() is referred to as a block
 - The set of blocks is referred to as a grid
 - Each invocation can refer to its block index using

```
__global__ void add(int *a, int *b, int *c) {
    c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];
}
```

• By using blockIdx.x to index into the array, each block handles a different index

Vector Addition on the Device

```
__global__ void add(int *a, int *b, int *c) {
    c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];
}
```

On the device, each block can execute in parallel:

Vector Addition on the Device: add()

• Returning to our parallelized add() kernel

```
__global__ void add(int *a, int *b, int *c) {
    c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];
}
```

• Let's take a look at main()...

Vector Addition on the Device: main()

```
#define N 512
int main(void) {
   int *a *b *c
                                 // host copies of a, b, c
   int *d_a, *d_b, *d_c; // device copies of a, b, c
   int size = N * sizeof(int);
   // Alloc space for device copies of a, b, c
   cudaMalloc((void **)&d a, size);
   cudaMalloc((void **)&d b, size);
   cudaMalloc((void **)&d c, size);
   // Alloc space for host copies of a, b, c and setup input values
   a = (int *)malloc(size); random ints(a, N);
   b = (int *)malloc(size); random ints(b, N);
   c = (int *)malloc(size);
```

Vector Addition on the Device: main()

```
// Copy inputs to device
cudaMemcpy(d a, a, size, cudaMemcpyHostToDevice);
cudaMemcpy(d b, b, size, cudaMemcpyHostToDevice);
// Launch add() kernel on GPU with N blocks
add << N, 1>>> (d a, d b, d c);
// Copy result back to host
cudaMemcpy(c, d c, size, cudaMemcpyDeviceToHost);
// Cleanup
free(a); free(b); free(c);
cudaFree(d a); cudaFree(d b); cudaFree(d c);
return 0;
```

Coordinating Host & Device

- Kernel launches are asynchronous
 - Control returns to the CPU immediately
- CPU needs to synchronize before consuming the results

cudaMemcpy()	Blocks the CPU until the copy is complete Copy begins when all preceding CUDA call have completed
<pre>cudaMemcpyAsync()</pre>	Asynchronous, does not block the CPU
<pre>cudaDeviceSynchronize()</pre>	Blocks the CPU until all preceding CUDA calls have completed

MORE DETAILS ON GPU PROGRAMMING

http://developer.download.nvidia.com/compute/developertrainingmaterials/presentations/cuda_language/Introduction_to_CUDA_C.pptx

Summary of GPUs vs CPUs

- less total memory
- more cores and more parallelism
- Multicore CPUs are mostly multiple-instruction multiple-data (MIMD)
- GPUs are mostly single-instruction multiple-data (SIMD)

Blocks, Grids, Threads, Warps

 Recall blocks are the things that work in parallel, and blocks are arranged in grids

```
c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];
```

- That would be SIMD (single instruction multiple data)
- It's actually more complicated than that....

MIMD

https://courses.cs.washington.edu/courses/cse471/13sp/lectures/GPUsStudents.pdf

SIMD

SIMD: Zooming in

SIMT: Single Instruction Multiple Threads

SIMT: Single Instruction Multiple Threads

A thread can access its own block id and also thread id. Blocks and threads are in a grid, which is 2D or 3D (there's a .x and a .y part)

Comparison

What's in a GPU?

Threads (SIMT, synchronous threads) are grouped into **cores** (which are decoupled, like a MIMD machine)

IDs and Dimensions

- A kernel is launched as a grid of blocks of threads
 - blockIdx and threadIdx are 3D
 - We showed only one dimension (x)
- Built-in variables:
 - threadIdx
 - blockIdx
 - blockDim
 - gridDim

Thread and block parallelism

```
tx = cuda.threadIdx.x
ty = cuda.threadIdx.y
bx = cuda.blockIdx.x
by = cuda.blockIdx.y
bw = cuda.blockDim.x
bh = cuda.blockDim.y
x = tx + bx * bw
y = ty + by * bh
array[x, y] = something(x, y)
```

How Do You REALLY Use a GPU?

Streaming SGD:

- Iterative
- Sequential
- Fast
- Scale up by bounding memory
- You can handle very large datasets... but slowly

Streaming SGD:

- Iterative
- Sequential
- Fast
- Scale up by bounding memory
- You can handle very large datasets... but slowly
- You can speed it up by making the tasks in the stream bigger and doing them in parallel
- A GPU is a good way of doing that


```
import numpy as np
1
      import numpy.random as random
2
      from examples.utils.data_utils import gaussian_cluster_generator as make_data
 3
4
      # Predict the class using multinomial Logistic regression (softmax regression).
      def predict(w, x):
5
          a = np.exp(np.dot(x, w))
6
          a sum = np.sum(a, axis=1, keepdims=True)
7
          prob = a / a sum
          return prob
8
9
      # Using gradient descent to fit the correct classes.
10
      def train(w, x, loops):
          for i in range(loops):
11
              prob = predict(w, x)
12
              loss = -np.sum(label * np.log(prob)) / num samples
13
              if i % 10 == 0:
14
                  print('Iter {}, training loss {}'.format(i, loss))
              # gradient descent
15
              dy = prob - label
16
              dw = np.dot(data.T, dy) / num_samples
17
              # update parameters; fixed Learning rate of 0.1
18
              W -= 0.1 * dw
19
      # Initialize training data.
20
      num samples = 10000
21
      num features = 500
      num classes = 5
22
      data, label = make data(num samples, num features, num classes)
23
24
      # Initialize training weight and train
      weight = random.randn(num features, num classes)
25
      train(weight, data, 100)
26
```

http://minpy.readthedocs.io/en/latest/get-started/logistic regression.html

```
http://minpy.readthedocs.io/en/latest/get-started/logistic regression.html
      import numpy as np
1
      import numpy.random as random
 2
      from examples.utils.data_utils import gaussian_cluster_generator as make_data
 3
4
      # Predict the class using multinomial Logistic regression (softmax regression).
      def predict(w, x):
 5
          a = np.exp(np.dot(x, w))
 6
          a_sum = np.sum(a, axis=1, keepdims=True)
7
          prob = a / a sum
          return prob
8
9
      # Using gradient descent to fit the correct classes.
10
      def train(w, x, loops):
          for i in range(loops):
11
              prob = predict(w, x)
12
              loss = -np.sum(label * np.log(prob)) / num samples
13
              if i % 10 == 0:
14
                  print('Iter {}, training loss {}'.format(i, loss))
              # aradient descent
15
              dy = prob - label
16
              dw = np.dot(data.T, dy) / num_samples
17
              # update parameters; fixed Learning rate of 0.1
18
              W -= 0.1 * dW
19
      # Initialize training data.
20
      num samples = 10000
21
      num features = 500
      num classes = 5
22
      data, label = make data(num samples, num features, num classes)
23
24
      # Initialize training weight and train
      weight = random.randn(num features, num classes)
25
      train(weight, data, 100)
26
```

So this will run in parallel on a GPU?

http://minpy.readthedocs.io/en/latest/get-started/logistic_regression.html

```
import numpy as np
      import numpv.random as random
      from examples.utils.data utils import gaussian cluster generator as make data
      # Predict the class using multinomial logistic regression (softmay regression).
      def predict(w, x):
          a = np.exp(np.dot(x, w))
          a sym = np.sum(a, axis=1, keepdims=True)
7
          prob a / a sum
          return prob
8
      # Using gradient lescent to fit the correct cla
                                                                                  No: we're not
10
      def train(w, x, loops):
          for i in range(loops):
11
                                                                                  there yet....
              prob = predict(w, x)
12
              loss = -np.sum(label * np.log(prob)) / num samples
13
              if i % 10 == 0:
                  print('Iter {}, training loss {}'.format(i, loss))
14
              # gradient descent
15
              dv = prob - label
16
              dw = np.dot(data.T, dy) / num samples
17
              # update parameters; fixed Learning rate of 0.1
              w -= 0.1 * dw
18
19
      # Initialize training data.
20
      num samples = 10000
21
      num features = 500
      num lasses = 5
22
      data, label = make data(num samples, num features, num classes)
23
24
      # Initialize training weight and train
      weight = random.randn(num features, num classes)
      train(weight, data, 100)
```

So this will run in parallel on a GPU? Not yet....

http://minpy.readthedocs.io/en/latest/get-started/logistic regression.html

```
import numpy as np
1
     import numpy.random as random
     from examples.utils.data utils import gaussian cluster generator as make data
     # Predict the class using multinomial logistic regression (softmax regression).
     def predict(w, x):
         a = np.exp(np.dot(x, w))
         a sum = np.sum(a, axis=1, keepdims=True)
7
         prob = a / a sum
         return prob
8
                                                                  Option 1: switch from
9
     # Using gradient descent to fit the correct classes.
                                                                  numpy (old package) to
10
     def train(w, x, loops):
11
         for i in range(loops):
                                                                  cupy (new GPU-oriented
             prob = predict(w, x)
12
             loss = -np.sum(label * np.log(prob)) / num samples
13
                                                                  package)
             if i % 10 == 0:
14
                print('Iter {}, training loss {}'.format(i, loss))
15
             # gradient descent
             dy = prob - label
16
                                                   Option 2: switch to a package that
             dw = np.dot(data.T, dy) / num samples
17
             # update parameters; fixed Learning rate
                                                   will compile to a GPU and also
             W -= 0.1 * dw
18
19
                                                   compute the gradients for you (like
     # Initialize training data.
20
     num samples = 10000
                                                    Theano, Tensorflow, Torch, ...)
21
     num features = 500
     num classes = 5
22
     data, label = make data(num samples, num features, num classes)
23
24
     # Initialize training weight and train
     weight = random.randn(num features, num classes)
25
     train(weight, data, 100)
26
                                                                                                  68
```