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Announcements

Wed, usual time/place
not finals period!
Closed book, but 2 sheets of notes are allowed

Open-ended projects due midnight Sun 5/6

| fixed that quiz from last week — Tues noon



Deep Neural Networks



https:/ /justindomke.wordpress.com/

Generalizing backprop

eg. | L7 = T2 T+ Ts
Starting point: a function of n W,(P/ = (2,5)
variables f7 = add
Step 1: code your function as a Step 1: forward

series of assignments | Wengert list | | nPuts: L1, L2, ..., Tp
Step 2: back propagate by going fori=n+1n+2 .. N

thru the list in reverse order, €T; j}-(xﬂ(,-))
: : dxry
Startlng with... K «— 1 return \
1 Step 2: backprop A fuqction ‘

...and using the chain rule
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dx;
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Computed in daa 2= dx; Ox;
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previous step Jien(y)




[

XJ[Wl]

Example: 2-layer neural network
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Inputs: X,W1,B1,W2,BL2
Zla=mul(X,W1l) // matrix mult
Z1lb=add*(Zla,Bl) //add biasvec
Al =tanh(Z1b) //element-wise
Z2a=mul(A1,WR)
Z2b =add*(ZR2a,BR)
A2 =tanh(Z2b)

P = softMax(AR)

// element-wise
// vec to vec

Target Y; N examples; K outs; D feats, H hidden

(w2) (22a]' % 28] [ a2
J n}{ /[ J dd//[ \Jtan[h/

X is N*D, W1 is D*H, B1 is 1*H,
W2is H*K, ...
Z1lais N*H
| Z1bisN*H ~
| Alis N*H Pi=
Z2ais N*K |
| Z2bis N*K
| A2 is N*K
| Pis N*K
| Cis a scalar

exp(a;)
Zj exp(a;)

J



Minibatch SGD on GPU

Let X be a matrix with k examples
Let w; be the input weights for the i-th hidden unit
Then A = X W is output for all m units

for all k examples
wy Jwy ws [ [w
1 o [ | 01 -03 ..
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There’s a lot XpWq  Xp:Wp o X Wiy
of chances to
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Understanding the difficulty of training deep feedforward neural networks
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Gradients are unstable

Derivative of sigmoid function

Max at1/4

If weights are usually <1 then
we are multiplying by many
numbers < 1 so the gradients
get very small.
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The vanishing gradient problem

What happens as the layers get further and further
from the output layer? E.g., what’s gradient for the
bias term with several layers after it in a trivial net?
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Some key differences in modern ANNs

e Use of softmax and
entropic loss instead of
guadratic loss.

N

N =N

e Use of alternate non- .
linearities —=

—relLU and hyperbolic
tangent

* Better understanding
of weight initialization



Bloom filters

* Interface to a Bloom filter
— BloomFilter(int maxSize, double p);
—void bf.add(String s); // insert s

— bool bd.contains(String s);
 // If s was added return true;
 // else with probability at least 1-p return false;
* // else with probability at most p return true;

—l.e., a noisy “set” where you can test membership
(and that’s it)



Randomized algorithms



Bloom filters

o o0 o o0 o0 O o0 O 0 O

bf.add(“fred flintstone”):

set several “random” bits
h1 h2 h3

o 1 1 0 O O O 1 0 O

bf.add(“barney rubble”):

BN

i1 1 o0 O 1 O 1 0 O
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Bloom filters

bf.contains (“fred flintstone”):

return min of “random” bits
hi h2

i1 1 o0 O 1 0 1 0 O

bf.contains(“barney rubble”):

AN

i1 1 o0 O 1 O 1 0 O
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Bloom filters

. . 7\ .
/ \ h3
bf.contains(“wilma flintstone”): [, faise positive

/\\

1 0 O
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Randomized algorithms

 What is a Bloom filter for (what’s the API)?

 What are the guarantees? What kind of errors do
they make?

* How can you build up more complex operations
(eg, counting to K) with multiple filters?

e How about countmin sketches?
e How about LSH?

 What are the problems that on-line LSH is trying
to fix?



Architectures



Graph architectures

* Differences between
—Signal/collect
— GraphX
— PowerGraph
— GraphChi
* Can you understand/extend simple programs?

initialState if (isTrainingData) trainingData else avgProbDist

collect () if (isTrainingData)
return oldState
else
return signals.sum.normalise

signal () return source.state



Stale Synchronous Parallel (SSP)

LDA on NYtimes Dataset
LDA 32 machines (256 cores), 10% docs per iter
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LDAs and sampling



Unsupervised NB vs LDA g for each doc
one class prior

@ ar

one Y per doc

9
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different class distrib

one Z per word




Recap: Collapsed Sampling for LDA

Pr(Z|E+) Pr(E-[2) ‘

“fraction” of time
Z=tin doc d

fraction of time
W=w in topic t

-

Ny

ignores a detail — counts
should not include the
Z 4 being sampled
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Fenwick Tree Sampler

O(K)
Basic problem: how can we sample from a biased die quickly....
O 1 /4 9/20 23/40 7/1 0 4/5 9/1 0 1
...and update quickly? maybe we can use a binary tree....
rin (23/40,7/10] O(log2K)

/ ('1,,°1,]

[0, ",

1]
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http://www.keithschwarz.com/darts-dice-coins/
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Data structures and algorithms

Data Structure

Initialization

Generation Parameter Update

Space Time Space Time Time
LSearch cr=p' 1: O(1) o) 0(Q) o(T) O(1)
BSearch ¢ = cumsun(p): O(T) o(T) 0(1) O(log T') o(T)
Alias Method prob, alias: O(T) o(T) O(T) O(1) o(T)
F+tree Sampling F.initialize(p): O(T) || O(T) O(1) O(logT') O(log T')

F+ tree
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Unsupervised/SS Learning on graphs

« What's different between HE, MRW MAD?
—Which have hard/soft seeds?
—How do they scale with #edges, #nodes?
 What are the methods trying to optimize?
* Do they optimize it exactly or approximately?
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