Announcements

Announcements

- Wed, usual time/place
- not finals period!
- Closed book, but 2 sheets of notes are allowed
- Open-ended projects due midnight Sun 5/6
- I fixed that quiz from last week - Tues noon

Deep Neural Networks

Generalizing backprop

- Starting point: a function of n variables
- Step 1: code your function as a series of assignments Wengert list
- Step 2: back propagate by going thru the list in reverse order, starting with... $\frac{d x_{N}}{d x_{N}} \leftarrow 1$
- ...and using the chain rule

$$
\frac{d x_{N}}{d x_{i}}=\sum_{j: i \in \pi(j)} \frac{d x_{N}}{d x_{j}} \frac{\partial x_{j}}{\partial x_{i}}
$$

Computed in previous step

$$
\begin{array}{ll}
\text { e.g. } & x_{7}=x_{2}+x_{5} \\
& \pi(7)=(2,5) \\
f_{7}=\text { add }
\end{array}
$$

Step 1: forward inputs: $x_{1}, x_{2}, \ldots, x_{n}$ for $i=n+1, n+2, \ldots, N$

$$
x_{i} \leftarrow f_{i}\left(\mathbf{x}_{\pi(i)}\right)
$$

Step 2: backprop
A function

$$
\text { for } i=N-1, N-2, \ldots, 1
$$

Example: 2-layer neural network

X is $N^{*} D, \mathrm{~W} 1$ is $D^{*} H, \mathrm{~B} 1$ is $1^{*} H$,

Inputs: X,W1, Bl,W2,B2	
$\mathrm{Zla}=\operatorname{mul}(\mathrm{X}, \mathrm{Wl})$	// matrix mult
Zlb = add* (Zla,Bl)	// add bias vec
Al $=\tanh (\mathrm{Zlb})$	//element-wise
$\mathrm{Z} 2 \mathrm{a}=\mathrm{mul}(\mathrm{Al}, \mathrm{W} 2)$	
Z2b = add* (Zんa,B2)	
Aえ = tanh (Z2b)	// element-wise
$\mathrm{P}=$ softlMax (A2)	// vec to vec
$\mathrm{C}=\mathrm{crossm}^{\text {a }}$	// cost function

Z1a is $N^{*} H$
$Z 1 b$ is $N^{*} H$
$A 1$ is $N^{*} H$
$Z 2 a$ is $N^{*} K$
$Z 2 b$ is $N^{*} K$
$A 2$ is $N^{*} K$
P is $N^{*} K$
C is a scalar
$\mathbf{p}_{i}=\frac{\exp \left(\mathbf{a}_{\mathbf{i}}\right)}{\sum_{j} \exp \left(\mathbf{a}_{\boldsymbol{j}}\right)}$

Minibatch SGD on GPU

Let X be a matrix with k examples
Let \mathbf{w}_{i} be the input weights for the i-th hidden unit Then $\mathrm{A}=\mathrm{X} \mathrm{W}$ is output for all m units for all k examples

x_{1}	1	0	1	1
x_{2}	\ldots			
\ldots				
x_{k}				

W_{1}	$\mathrm{~W}_{2}$	$\mathrm{~W}_{3}$	\ldots	w_{m}
0.1	-0.3	\ldots		
-1.7	\ldots			
0.3	\ldots			
1.2				

| There's a lot
 of chances to
 do this in
 parallel |
| :--- | :--- | :--- | :--- | :--- |

Understanding the difficulty of training deep feedforward neural networks

Gradients are unstable

Derivative of sigmoid function
Max at $1 / 4$
If weights are usually <1 then we are multiplying by many numbers < 1 so the gradients get very small.

The vanishing gradient problem
What happens as the layers get further and further from the output layer? E.g., what's gradient for the bias term with several layers after it in a trivial net?

$$
\frac{\partial C}{\partial b_{1}}=\sigma^{\prime}\left(z_{1}\right) \times w_{2} \times \sigma^{\prime}\left(z_{2}\right) \times w_{3} \times \sigma^{\prime}\left(z_{3}\right) \times w_{4} \times \sigma^{\prime}\left(z_{4}\right) \times \frac{\partial C}{\partial a_{4}}
$$

Some key differences in modern ANNs

- Use of softmax and entropic loss instead of quadratic loss.
- Use of alternate nonlinearities
-reLU and hyperbolic tangent
- Better understanding of weight initialization

Bloom filters

- Interface to a Bloom filter
- BloomFilter(int maxSize, double p);
- void bf.add(String s); // insert s
- bool bd.contains(String s);
- // If s was added return true;
- // else with probability at least 1-p return false;
- // else with probability at most p return true;
- l.e., a noisy "set" where you can test membership (and that's it)

Randomized algorithms

Bloom filters

$$
\begin{array}{llllllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}
$$

bf.add("fred flintstone"):

bf.add("barney rubble"):

Bloom filters

$$
\begin{array}{llllllllll}
1 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0
\end{array}
$$

bf.contains ("fred flintstone"):

bf.contains("barney rubble"):

Bloom filters

$$
\begin{array}{llllllllll}
1 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0
\end{array}
$$

bf.contains(" wilma flintstone"):

bf.contains(" wilma flintstone"): a false positive

Randomized algorithms

- What is a Bloom filter for (what's the API)?
- What are the guarantees? What kind of errors do they make?
- How can you build up more complex operations (eg, counting to K) with multiple filters?
- How about countmin sketches?
- How about LSH?
- What are the problems that on-line LSH is trying to fix?

Architectures

Graph architectures

- Differences between
-Signal/collect
-GraphX
- PowerGraph
-GraphChi
- Can you understand/extend simple programs?

initialState	if (isTrainingData) trainingData else avgProbDist
collect()	if (isTrainingData) return oldState else return signals.sum.normalise
signal()	return source.state

Stale Synchronous Parallel (SSP)

LDA on NYtimes Dataset

LDA 32 machines (256 cores), 10% docs per iter

[Ho et al 2013]

LDAs and sampling

Unsupervised NB vs LDA

different class distrib θ for each doc

Recap: Collapsed Sampling for LDA

$$
P(z=t \mid w) \quad \propto \quad\left(\alpha_{t}+n_{t \mid d}\right) \frac{\beta+n_{w \mid t}}{\beta V+n_{\cdot \mid t}} .
$$

$$
P(z=t \mid w) \propto \frac{\alpha_{t} \beta}{\beta V+n_{\cdot \mid t}}+\frac{n_{t \mid d} \beta}{\beta V+n_{\cdot \mid t}}+\frac{\left(\alpha_{t}+n_{t \mid d}\right) n_{w \mid t}}{\beta V+n_{\cdot \mid t}} .
$$

Fenwick Tree Sampler

O(K)

Basic problem: how can we sample from a biased die quickly....

...and update quickly? maybe we can use a binary tree....

Data structures and algorithms

F+ tree

Unsupervised/SS Learning on graphs

- What's different between HF, MRW, MAD?
-Which have hard/soft seeds?
-How do they scale with \#edges, \#nodes?
- What are the methods trying to optimize?
- Do they optimize it exactly or approximately?

