Policy on Collaboration among Students

These policies are the same as were used in Dr. Rosenfeld’s previous version of 10601 from 2013. The purpose of student collaboration is to facilitate learning, not to circumvent it. Studying the material in groups is strongly encouraged. It is also allowed to seek help from other students in understanding the material needed to solve a particular homework problem, provided no written notes are shared, or are taken at that time, and provided learning is facilitated, not circumvented. The actual solution must be done by each student alone, and the student should be ready to reproduce their solution upon request. The presence or absence of any form of help or collaboration, whether given or received, must be explicitly stated and disclosed in full by all involved, on the first page of their assignment. Specifically, each assignment solution must start by answering the following questions in the report:

- Did you receive any help whatsoever from anyone in solving this assignment? Yes / No. If you answered ‘yes’, give full details: ________________ (e.g. “Jane explained to me what is asked in Question 3.4”)

- Did you give any help whatsoever to anyone in solving this assignment? Yes / No. If you answered ‘yes’, give full details: ________________ (e.g. “I pointed Joe to section 2.3 to help him with Question 2”)

Collaboration without full disclosure will be handled severely, in compliance with CMU’s Policy on Cheating and Plagiarism. As a related point, some of the homework assignments used in this class may have been used in prior versions of this class, or in classes at other institutions. Avoiding the use of heavily tested assignments will detract from the main purpose of these assignments, which is to reinforce the material and stimulate thinking. Because some of these assignments may have been used before, solutions
to them may be (or may have been) available online, or from other people. It is explicitly forbidden to use any such sources, or to consult people who have solved these problems before. You must solve the homework assignments completely on your own. I will mostly rely on your wisdom and honor to follow this rule, but if a violation is detected it will be dealt with harshly. Collaboration with other students who are currently taking the class is allowed, but only under the conditions stated below.

1 Important Note

As usual, you are expected to use Python for this assignment. It could take hours to run your experiments. Start early.

Vidhan Agarwal (vidhan@cmu.edu) and Nitish Kumar Kulkarni (nitishkk@andrew.cmu.edu) are the contact TAs for this assignment. Please post clarification questions to Piazza, and the instructors can be reached out at the following eamil address: 10405-Instructors@cs.cmu.edu.

2 Background: SGD for Logistic Regression

One fairly simple way (and extremely scalable way) to implement logistic regression is stochastic gradient descent.

In the lecture we followed Charles Elkan’s notes\(^1\), which are for a binary classification task. We estimate the probability \(p \) that an example \(x = \langle x_1, \ldots, x_d \rangle \) is positive in the log-odds form:

\[
\log \frac{p}{1 - p} = \alpha + \sum_{j=1}^d \beta_j x_j
\]

(1)

If we assume there is a “bias feature” \(x_0 \) that is true for every example, then you can simplify and drop the \(\alpha \), leaving just the \(\beta_j \)’s to estimate. Therefore

\[
p = \frac{\exp(\beta^T x)}{1 + \exp(\beta^T x)}.
\]

(2)

It’s convenient to consider examples of the form \(x, y \) where \(y = 0 \) or \(y = 1 \). The log of the conditional likelihood for example is example will be \(\text{LCL}(x, y) = \log p \) if \(y = 1 \) and \(\text{LCL}(x, y) = \log(1 - p) \) if \(y = 0 \), where \(p \) is computed as in Eq. 1. With a little calculus you can show that for a positive example,

\[
\frac{\partial}{\partial \beta_j} \text{LCL}(x, y) = \frac{1}{p} \frac{\partial}{\partial \beta_j} p
\]

and for a negative example,

\[
\frac{\partial}{\partial \beta_j} \text{LCL}(x, y) = \frac{1}{1 - p} (-\frac{\partial}{\partial \beta_j} p)
\]

\(^1\)http://cseweb.ucsd.edu/~elkan/250B/logreg.pdf
and that
\[\frac{\partial}{\partial \beta_j} p = p(1 - p)x_j \]
and putting this together we get that if \(y = 1 \)
\[\frac{\partial}{\partial \beta_j} LCL(x, y) = (1 - p)x_j \]
and if \(y = 0 \) then
\[\frac{\partial}{\partial \beta_j} LCL(x, y) = -px_j \]
so in either case
\[\frac{\partial}{\partial \beta_j} LCL(x, y) = (y - p)x_j \] (3)
So an update to the \(\beta \)'s that would improve most LCL would be along the gradient—i.e., for some small step size \(\lambda \), let
\[\beta_j = \beta_j + \lambda(y - p)x_i \]
Notice that if \(x_i = 0 \) then \(\beta_j \) is unchanged.
So this leads to this algorithm, which is very fast (assuming you have enough memory to hash all the parameter values).

1. Initialize a hashtable \(B \) to store \(\beta \) (note this hashtable is not equivalent to dictionary in python)

2. For \(t = 1, \ldots, T \)
 - For each example \(x_i, y_i \):
 * For each non-zero feature of \(x_i \) with index \(j \) and value \(x_j \):
 * If \(j \) is not in \(B \), set \(B[j] = 0 \).
 * Set \(B[j] = B[j] + \lambda(y - p)x_i \)

3. Output the parameters \(\beta_1, \ldots, \beta_d \).

The time to run this is \(O(nT) \), where \(n \) is the total number of non-zero features for each example and \(T \) is the number of iterations.

3 **Efficient regularized SGD**

Logistic regression tends to overfit when there are many rare features. One fix is to penalize large values of \(\beta \), by optimizing, instead of \(LCL \), some function such as \(LCL - \mu \sum_{j=1}^{d} \beta_j^2 \). Here \(\mu \) controls how much weight to give to the penalty term. The update for \(\beta_j \) becomes
\[\beta_j = \beta_j + \lambda((y - p)x_i - 2\mu \beta_j) \]
or equivalently
\[\beta_j = \beta_j + \lambda(y - p)x_i - \lambda 2\mu \beta_j \]

Experimentally this greatly improves overfitting - but unfortunately, this makes the computation much more expensive, because now every \(\beta_j \) needs to be updated, not only the ones that are non-zero.

The trick to making this efficient is to break the update into two parts. One is the usual update of adding \(\lambda(y - p)x_i \). Let’s call this the “LCL” part of the update. The second is the “regularization part” of the update, which is to replace \(\beta \) by

\[\beta_j = \beta_j - \lambda 2\mu \beta_j = \beta_j \cdot (1 - 2\lambda\mu) \]

So we could perform our update of \(\beta_j \) as follows:

- Set \(\beta_j = \beta_j \cdot (1 - 2\lambda\mu) \)
- If \(x_j \neq 0 \), set \(\beta_j = \beta_j + \lambda(y - p)x_i \)

Following this up, we note that we can perform \(m \) successive “regularization” updates by letting \(B_j = B_j \cdot (1 - 2\lambda\mu)^m \). The basic idea of the new algorithm is to not perform regularization updates for zero-valued \(x_j \)'s, but instead to simply keep track of how many such updates would need to be performed to update \(\beta_j \), and perform them only when we would normally perform “LCL” updates (or when we output the parameters at the end of the day).

Here’s the final algorithm (for more detail, see “Lazy sparse stochastic gradient descent for regularized multinomial logistic regression”, Bob Carpenter\(^2\))

1. Let \(k = 0 \), and let \(A \) and \(B \) be empty hashables. \(A \) will record the value of \(k \) last time \(B[j] \) was updated.
2. For \(t = 1, \ldots, T \)
 - For each example \(x_i, y_i \):
 - Let \(k = k + 1 \)
 - For each non-zero feature of \(x_i \) with index \(j \) and value \(x_j \):
 * If \(j \) is not in \(B \), set \(B[j] = 0 \).
 * If \(j \) is not in \(A \), set \(A[j] = 0 \).
 * Simulate the “regularization” updates that would have been performed for the \(k - A[j] \) examples since the last time a non-zero \(x_j \) was encountered by setting \(B[j] = B[j] \cdot (1 - 2\lambda\mu)^{k - A[j]} \)

\(^2\)http://lingpipe.files.wordpress.com/2008/04/lazysgdregression.pdf
Set $B[j] = B[j] + \lambda (y - p)x_j$
Set $A[j] = k$

3. For each parameter β_1, \ldots, β_d, set

$$B[j] = B[j] \cdot (1 - 2\lambda \mu)^{k - A[j]}$$

4. Output the parameters β_1, \ldots, β_d.

The learning rate λ is often decreased over time. On the t-th sweep through the data, set $\lambda = \frac{\eta}{t^2}$; we used $\eta = 0.5$. (Sometimes λ is also scaled by $1/n_e$, where n_e is the number of examples.) We also used a value of $\mu = 0.1$.

When running stochastic gradient descent, it is usual to randomize the order of examples, and scale the feature values so that they are comparable (if they are not already binary). However, randomization is not trivial to do for a large dataset. We recommend implementing SGD as a process that streams once through a data stream, with the number of examples n_e being passed in separately as a command-line argument so that the algorithm is aware of what the current value of t is. Then write a separate module that will input a file of examples and then stream the individual examples out in approximately random order.

Hint: to randomly sort a file in Linux you can do

```
shuf <text_file>
```

To sort it in Mac system, you can install “gshuf” and use it like “shuf’

To fit our model to the memory of a desktop we will use the hash trick discussed in class: map every word to a features id in the range 0 N (allowing collisions), where N is the dictionary size.

Hint: to convert a string to an id between 0 and N you can do something like

```
id = hash(word) \% N
```

4. **Task**

For this assignment, we will be using the same dataset as homework 1b and homework 2. The data appears at `/afs/cs.cmu.edu/project/bigML/dbpedia_17fall_hw3/`

The data format is the same as for Assignment 1. The three columns are separated by tab, and the documents are preprocessed so that there are no tab in the body.

To reduce the experimental load we will only use the abstract data sets for this assignment. Again, they are in increasing size so that you can debug your code on smaller data. The files that start with abstract include Wikipedia text.
In contrast to the previous assignments, we are going to treat the multilabel classification problem as multiple independent binary classification tasks. This means we are going to train 5 binary classifiers. Ideally, to obtain perfect performance (which is often hard in practice), you will need to correctly predict all labels associated with the target document.

Hint: when using “sigmoid” function for classification, you can refer to Part 6 Report Question 1, using the “safe sigmoid” to avoid overflow.

4.1 Checkpoint 1 - 10 marks

As part of the first checkpoint, you are required to implement the expensive regularized SGD (one that does not support sparse updates). You should implement the algorithm by yourself instead of using any existing machine learning toolkit. Autolab would not run any tests for this checkpoint and the code would be hand-graded by the TAs.

4.2 Checkpoint 2 - 90 marks

Now that you have the regularized SGD implemented, convert the code into one that does lazy sparse updates to the regularization term. There is also a report that needs to be uploaded to Autolab for this final checkpoint.

We tested on a Mac with 8GB memory and 2.6 GHZ I5 Core. To achieve good scores on Autolab, your code should run less than 20 seconds to finish 1 iteration on the small dataset. Your code would be graded by Autolab for memory usage, runtime and accuracy.

5 Autolab Implementation Details

Your logistic regression program LR.py should be able to run without the out-of-memory issue, using the follow example command:

```bash
for((i=1;i<=20;i++));
do shuf trainData.txt;
done | python LR.py 10000 0.5 0.1 20 1000 testData.txt
```
Here, the first argument 10000 is the vocabulary size. Second argument 0.5 is the initial value of the learning rate. The third argument 0.1 is the regularization coefficient. The fourth argument 20 is the max iteration (# of passes through data). The fifth argument is the size of the training dataset (which allows you to determine the starting point of a new pass). The command produces output in the following format (one-line-per-test-example):

label1<tab>p_label1,label2<tab>p_label2,label3<tab>p_label3,...

Here, binary classifiers and their prediction scores are separated by comma. For each of the classifier, for example, in the first entry, label1 refers to the name of the classifier, and p_label1 is the posterior probability of the label given the observation. If the posterior is larger than or equal to 0.5, then it means your classifier predicts a positive output for this target label in this document. A tab is used to separate the label name and its posterior. **To reduce the experimental load, fix the number of training iterations (scans of data sets) to 20 for all data sets.**

6 Report

Your report should answer the following questions:

1. **[3 points]** Show values of overall likelihood function for each iteration when training with the small data set having dictionary size 10000 and $\mu = 0.1$. The objective function is defined as the sum of all 5 classes $\sum_i \sum_c LCL_c(\mathbf{x}^i, y_c^i)$. Here c is the label id and i is the document id.

 Hint: You can try drawing the average LCL per example per class. Average LCL is easier to identify whether the results are in a reasonable range, since in can be transferred to probability.

 Hint: in order to prevent overflow when calculating p as defined in equation (2) you can use a special version of sigmoid function as the following:

   ```python
   import math
   def sigmoid(score):
       overflow = 20.0
       if score > overflow:
           score = overflow
       elif score < -overflow:
           score = -overflow
       exp = math.exp(score)
       return exp / (1 + exp)
   ```
2. [3 points] Show accuracy curves for the small data set, using 20 iterations, with varying regularization parameter \(\mu = 0, 10^{-5}, 10^{-4}, 10^{-3}, 10^{-2}, 10^{-1}, 0.2, 0.5, 1 \) and fixed dictionary size \(10^4 \), and discuss. Set the \(\mu \) as x-axis to draw the figure.

3. [3 points] Show accuracy curves for the small data set, using 20 iterations, with varying dictionary sizes \(D = 10, 100, 10^3, 10^4, 10^5 \) and the best \(\mu \) values you found in the previous step, and discuss. Set the \(D \) as x-axis to draw the figure.

4. [3 points] Use the best parameters you found in the above questions and run your algorithm on the full data set for 1 iteration. (It may take an hour, go and drink some coffee). Report the training time per epoch for each dataset, and the size of each dataset, and discuss how your implementation scales with dataset size.

5. [4 points] Currently we are using an “on-line” style SGD in training, which means we approximated the true gradients over the whole corpus by gradients at a single example. This is easy to implement and especially efficient with a lazy regularizer for sparse data.

Besides the “on-line” style, we can also do optimization in a “mini-batch” style, which is to approximate true gradients with more than one training examples. This means we will aggregate gradients from several training examples before we updating \(\beta \). Usually this can result in smoother convergence, as the gradient computed at each step uses more training examples. For more details, you can refer to:

Suppose we are using L2-Norm regularized logistic regression, please design a lazy regularized SGD in “mini-batch” style. You can assume the “mini-batch” size is 200, which means you will aggregate gradients for 200 training examples and then update \(\beta \). You do not need to implement this algorithm, just give pseudo code or detailed steps. Also please discuss if “mini-batch” style lazy regularizer is supposed to be as efficient as “on-line” style lazy regularizer. i.e. compare the effect of applying lazy regularization trick on both algorithms.

Hint: the “on-line” style lazy regularizer is efficient because it takes advantages of the sparsity of a single training example. If the feature space of a single training example is not sparse, “on-line” style lazy regularizer will not be efficient.

6. [4 points] There are 2 approximations in pseudocode compared to the actual algorithm, can you point them out? You can list them separately or proposed a fixed pseudocode.

Hint: Is \(B[j] \) updated the exact number of times with exact values?

7. Answer the questions in the collaboration policy on page 1.
7 Submission

You should tar the following items into `hw3.tar` and submit to the homework 3 assignment via Autolab:

- LR.py
- all other auxiliary functions you have written

Tar the files directly using `tar -cvf hw3.tar *.py`. Do NOT put the above files in a folder and then tar the folder. You do not need to upload the saved temporary files. Please make sure your code is working fine on `unix.andrew.cmu.edu` machines before you submit.

- HW3a: SGD: This is where you should submit your checkpoint 1 code.
- HW3: Validation: You will be notified by Autolab if you can successfully finish your job on the Autolab virtual machines for checkpoint 2. Note that this is NOT the place you should debug or develop your algorithm. All development should be done on `unix.andrew.cmu.edu` machines. This is basically an Autolab debug mode. There will be NO feedback on your performance in this mode. You have unlimited amount of submissions here. To avoid Autolab queues on the submission day, the validation link will be closed 24 hours prior to the official deadline. If you have received a score of 1000, this means that you code has passed the validation.
- HW3b: SGD: This is where you should submit your validated final submission (checkpoint 2). You have a total of 10 possible unpenalized submissions after which each additional submission will be penalized by an additional 2 percent. Your performance will be evaluated, and feedback will be provided immediately.
- HW3: Report: This is where you should submit your report (checkpoint 2). Name your report as `hw3.pdf`

8 Grading

The total grade of this assignment is 100 points. The first checkpoint is worth 10 points. For the second checkpoint, you will be graded based on the memory usage (25 points) and runtime (25 points) for your code, and your final test performance (20 points). Note that each pass in SGD is randomized, and there will be sampling variance when measuring your memory and runtime information. The report (20 points) will be graded manually.