
10-405 Assignment 1a: Streaming Naive Bayes

Due: Monday, Jan. 29, 2018 23:59 EST via Autolab

January 22, 2018

Policy on Collaboration among Students

These policies are the same as were used in Dr. Rosenfeld’s previous version of 10601 from
2013. The purpose of student collaboration is to facilitate learning, not to circumvent it.
Studying the material in groups is strongly encouraged. It is also allowed to seek help
from other students in understanding the material needed to solve a particular homework
problem, provided no written notes are shared, or are taken at that time, and provided
learning is facilitated, not circumvented. The actual solution must be done by each student
alone, and the student should be ready to reproduce their solution upon request. The
presence or absence of any form of help or collaboration, whether given or received, must
be explicitly stated and disclosed in full by all involved, on the first page of their assignment.
Specifically, each assignment solution must start by answering the following questions in
the report:

• Did you receive any help whatsoever from anyone in solving this assignment? Yes /
No. If you answered ‘yes’, give full details: (e.g. “Jane explained
to me what is asked in Question 3.4”)

• Did you give any help whatsoever to anyone in solving this assignment? Yes / No. If
you answered ‘yes’, give full details: (e.g. “I pointed Joe to section
2.3 to help him with Question 2”.

Collaboration without full disclosure will be handled severely, in compliance with
CMU’s Policy on Cheating and Plagiarism. As a related point, some of the homework
assignments used in this class may have been used in prior versions of this class, or in
classes at other institutions. Avoiding the use of heavily tested assignments will detract
from the main purpose of these assignments, which is to reinforce the material and stim-
ulate thinking. Because some of these assignments may have been used before, solutions
to them may be (or may have been) available online, or from other people. It is explicitly
forbidden to use any such sources, or to consult people who have solved these problems
before. You must solve the homework assignments completely on your own. I will mostly

1

rely on your wisdom and honor to follow this rule, but if a violation is detected it will be
dealt with harshly. Collaboration with other students who are currently taking the class
is allowed, but only under the conditions stated below.

1 Important Note

Assigments 1a and 1b are a pair. 1a WILL NOT be graded but you do need to submit
your code (need not be fully working) on Autolab by 01/29/2018. The submitted code will
be checked manually. This will help you to start early and budget your time. 1b WILL be
graded. You should plan to finish 1a before 1b is released so you have time to finish 1b.
You need to finish all the assignments in Python.

Sarthak Garg (sarthakg@andrew.cmu.edu) and Vivek Shankar (vshanka1@andrew.cmu.edu)
are the contact TAs for this assignment. Please post clarification questions to the Piazza,
and the instructors can be reached at the following email address: 10405-Instructors@cs.cmu.edu.

2 Naive Bayes

Much of machine learning with big data involves - sometimes exclusively - counting events.
Multinomial Naive Bayes fits nicely into this framework. The classifier needs just a few
counters.

For this assignment we will be performing document classification using streaming
Multinomial Naive Bayes. We call it streaming because we won’t load the training data
into memory: instead we will load one document at a time, use that document to update
the statistics that define the classifier, and then discard the document. The streaming
formulation allows us to process large amounts of data—more than can fit in memory.

Let y be the labels for the training documents and wi be the ith word in a document.
Here are the counters we need to maintain:

(Y=y) for each label y the number of training instances of that class

(Y=*) here * means anything, so this is just the total number of training instances.

(Y=y,W=w) number of times token w appears in a document with label y.

(Y=y,W=*) total number of tokens for documents with label y.

The learning algorithm just increments counters:

for each example {y [w1,...,wN]}:

increment #(Y=y) by 1

increment #(Y=*) by 1

for i=i to N:

2

increment #(Y=y,W=wi) by 1

increment #(Y=y,W=*) by N

You should use a tab-separated format for the event counters as well: eg, a pair
<event,count> is stored on a line with two tab-separated fields, with field one the event,
and field two the count. Classification will take a new documents with words w1,...,wN
and score each possible label y with the log probability of y (as covered in class).

For now, you may keep a hashtable(note: hashtables are implemented with ’dict’ in
python) in memory, with keys like “Y=news”, “Y=sports,W=aardvark”, etc. You may
NOT load all the training documents in memory. That is, you must make one pass through
the data to collect the count statistics you need to do classification. Then, write these
counts (feature dictionary) to disk, via stdout.

You will use a second invocation of your program to read statistics from stdin, and
classify a test file. For example, you could do training and testing like the following, with
Unix pipes.

cat train.txt | python NBTrain.py | python NBTest.py -t test.txt

Important Notes:

• At classification time, use Laplace smoothing with α = 1 as described here: http:

//en.wikipedia.org/wiki/Additive_smoothing.

• You may assume that all of the test documents will fit into memory.

• With the exception of the test set, all files should be read from stdin and written to
stdout

• Use this function to change documents into features:

import re

def tokenizeDoc(cur_doc):

return re.findall(’\\w+’,cur_doc)

3 The Data

For this assignment, we are using the Reuters Corpus, which is a set of news stories split
into a hierarchy of categories. There are multiple class labels per document. This means
that there is more than one correct answer to the question “What kind of news article is
this?” For this assignment, we will ignore all class labels except for those ending in CAT.
This way, we’ll just be classifying into the top-level nodes of the hierarchy:

• CCAT: Corporate/Industrial

3

• ECAT: Economics

• GCAT: Government/Social

• MCAT: Markets

There are some documents with more than one CAT label. Treat those documents as if
you observed the same document once for each CAT label (that is, add to the counters for
all labels ending in CAT). If you’re interested, a description of the class hierarchy can be
found at http://www.jmlr.org/papers/volume5/lewis04a/lewis04a.pdf.

The data for this assignment is at: /afs/cs.cmu.edu/project/bigML/RCV1
Note that you may need to issue the command kinit before you can access the afs files.
The format is one document per line, with the class labels first (comma separated), a tab
character, and then the document. There are three file sets:

RCV1.full.*

RCV1.small.*

RCV1.very_small.*

The two file sets with “small” in the name contain smaller subsamples of the full data set.
They are provided to assist you in debugging your code. Each data set appears in full in
one file, and is split into a train and test set, as indicated by the file suffix.

4 Deliverables

Your classification code should print out the classification results, including the log prob-
abilities of the best class y:

ln(p(Y = y)) +
∑
wi

ln(p(W = wi|Y = y)) (1)

Notice that we’re using the natural logarithm here. The output format should have one
test result per line, and each line should have the format:

[Label1, Label2, ...]<tab>Best Class<tab>Log prob

where [Label1, Label2, ...] are the true labels of the test instance, Best Class is the
class with the maximum log probability (as in Equation 1), and the last field is the log
probability. The last line of the file should give the percent correct. Here’s the expected
output of very small dataset to help you debug:

[’C24’, ’CCAT’, ’M14’, ’MCAT’] MCAT -9893.7510

[’E51’, ’E512’, ’ECAT’, ’GCAT’, ’GDIP’] ECAT -3912.7886

[’C15’, ’C152’, ’C18’, ’C181’, ’CCAT’] CCAT -1121.6191

4

[’GCAT’] ECAT -1610.1366

[’C13’, ’CCAT’, ’GCAT’, ’GHEA’] CCAT -701.3665

[’C13’, ’CCAT’, ’M11’, ’MCAT’] CCAT -1453.3629

[’C11’, ’C13’, ’CCAT’, ’E12’, ’ECAT’, ’M13’, ’M132’, ’MCAT’] ECAT -2218.3008

[’C31’, ’CCAT’] CCAT -2285.0896

Percent correct: 7/8=0.8750

You may count a document correct if the most probable class matches any of the labels
(as in the first line of the example above). This way you get credit for multiply labeled
documents if you get any of the labels correct. You can ignore those test instances where
none of true labels ends in CAT.

5 Autolab Submission

Submit a tarball containing the code and a pdf containing answers to questions mentioned
in the policy collaboration section on autolab.

tar -cvf hw1a.tar *.py *.pdf

5

