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INTRODUCTION

Goal: Implement existing stochastic optimization methods in the context
of conditional random field (CRF) autoencoders.

Model: CRF autoencoders are a class of probabilistic models which was
designed to address unsupervised and semi-supervised problems in natu-
ral language processing. For concreteness, we will focus on a particular
instantiation of CRF autoencoders for the classic problem of bitext word
alignment.

Problem description: Given an observed sentence pair (s, t), we model
the alignment variables (a) and a reconstruction of the target sentence (̂t)

as follows:

p(a, t̂ | s, t) = pλ(a | s, t)pθ(̂t | s, a)
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Objective: We optimize the parameters of the CRF autoencoder model by
maximizing the conditional log-likelihood of generating the correct recon-
struction of target sentences (̂t), given a pair of source and target sentences
(s, t), marginalizing out the word alignment variables (a), as follows:

maximizeλ,θ
∑
〈s,t,̂t〉

log
∑
a

pλ,θ(a, t̂ | s, t)
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OPTIMIZATION

In theory: the problem is non-convex.
In practice: locally-optimal solutions have been found to be useful, pro-
vided that we start with a good initialization for model parameters.

Optimizing λ using L-BFGS vs. SGD
The sufficient statistics needed for one iteration of L-BFGS require expen-
sive computations and abundant memory since the training sets for word
alignments tend to be large. Since we use L-BFGS to solve for the opti-
mal λ inside an outer loop of block-coordinate descent, we cannot afford to
spend too much time optimizing λ. Instead, we proposed to use stochastic
gradient descent (SGD) and update λ according to an approximation of the
gradient based on a few sentence pairs.
Intuition: one epoch (i.e., full pass over the training set) of SGD consti-
tutes many updates, and incurs the same runtime cost as one update of
L-BFGS.

Optimizing θ using batch vs. online EM
Expectation Maximization (EM) is a popular method for optimizing pa-
rameters of models with latent variables. In each iteration of batch EM, we
update θ by solving: minθEθold[log pθ(a, t̂ | s, t)] subject to the multinomial
distribution constraints on θ. In order to update θ more frequently, we use
online EM (Cappe and Moulines, 2009). The three algorithms are outlined
below, reproduced from (Liang and Klein, 2009):

Batch EM:

µ := initialize
for each EM iteration t = 1, . . . , T :

– µ′ := 0

– for each example i : 〈s, t, t̂〉
—- m′i :=

∑
a

p(a | s, t, t̂; θ(µ))φ(a, s, t, t̂)[inference]

—- µ′ := µ′ +m′i [accumulate new]
– µ := µ′ [replace old with new]

Online EM:

µ := initialize, k := 0

for each EM iteration t = 1, . . . , T :

– for each example i : 〈s, t, t̂〉 in random order

—- m′i :=
∑
a

p(a | s, t, t̂; θ(µ))φ(a, s, t, t̂) [inference]

—- µ := (1− ηk)µ + ηkm
′
i; k := k + 1 [interpolate]

In the algorithm, µ is a vector of expected counts for each element in θ,
φ is a function that maps a sentence pair and its alignment to a vector of
sufficient statistics, and m′i are the expected counts for a given sentence
pair.

RESULTS

CONCLUSIONS

•Convergence to approximate solution with SGD is much faster than with
L-BFGS.
•Using epoch-fixed learning rate in SGD has the best performance, similar

to L-BFGS after many iterations.
•SGD can be scaled to multiple processors (asynchronous updates) with

little loss of accuracy.
•Batch EM converges much faster than online EM.


