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INTRODUCTION

Goal: Implement existing stochastic optimization methods 1n the context
of conditional random field (CRF) autoencoders.

Model: CRF autoencoders are a class of probabilistic models which was
designed to address unsupervised and semi-supervised problems 1n natu-
ral language processing. For concreteness, we will focus on a particular
instantiation of CRF autoencoders for the classic problem of bitext word
alignment.

Problem description: Given an observed sentence pair (s, t), we model
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the alignment variables (a) and a reconstruction of the target sentence (t)
as follows:
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Objective: We optimize the parameters of the CRF autoencoder model by
maximizing the conditional log-likelihood of generating the correct recon-
struction of target sentences (f:), given a pair of source and target sentences
(s, t), marginalizing out the word alignment variables (a), as follows:
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OPTIMIZATION

In theory: the problem 1s non-convex.
In practice: locally-optimal solutions have been found to be usetul, pro-
vided that we start with a good 1nitialization for model parameters.

Optimizing \ using L-BFGS vs. SGD

The sufficient statistics needed for one iteration of L-BFGS require expen-
sive computations and abundant memory since the training sets for word
alignments tend to be large. Since we use L-BFGS to solve for the opti-
mal A inside an outer loop of block-coordinate descent, we cannot afford to
spend too much time optimizing A. Instead, we proposed to use stochastic
gradient descent (SGD) and update A according to an approximation of the
gradient based on a few sentence pairs.

Intuition: one epoch (i.e., full pass over the training set) of SGD consti-

tutes many updates, and incurs the same runtime cost as one update of
L-BFGS.

Optimizing 6 using batch vs. online EM

Expectation Maximization (EM) 1s a popular method for optimizing pa-
rameters of models with latent variables. In each iteration of batch EM, we
update 6 by solving: ming Ejaallog ps(a, t | s, t)] subject to the multinomial
distribution constraints on 6. In order to update  more frequently, we use
online EM (Cappe and Moulines, 2009). The three algorithms are outlined
below, reproduced from (Liang and Klein, 2009):

Batch EM:;

1 = 1nitialize

for each EM 1terationt =1,...,71":

— =0

— for each example 7 : (s, t, t)

—mj:=» pla|s,t,t:60())p(a,s,t,t)[inference]

— 1 == ' +m} [accumulate new]
— 11 = 1 [replace old with new]

Online EM:;

1 = 1itialize, k .= 0
for each EM tterationt =1,....,71" :
— for each example 7 : (s, t,t) in random order

—mj =Y pla|s,t,t:60(u))d(a,s,t,t) [inference]

— = (1 — mp)p + mem; k= k + 1 [interpolate]

In the algorithm, 1 is a vector of expected counts for each element in 6,
¢ 1s a function that maps a sentence pair and 1ts alignment to a vector of
sufficient statistics, and m; are the expected counts for a given sentence
pair.

RESULTS

«105  Variations of SGD vs. L-BFGS x10°

—e—L-BFGS
—»—Geometric |

o5 SGD on Multiple Cores

2.4+

23+

022}
=
Toql

2L

Objective

919+

1.8

4 a—
1.64;_\?
1 2

— }
6

> —
3 4 5
Epoch Epoch

«10° Different Parameters in Online EM «10° Different Batch Sizes in Online EM

—eo—batch —e—Dbatch
—»—alpha=1.0 —s—minibatch=100

alpha=1.2 minibatch=1000
3.2} —»—alpha=2.0| | 3.2} minibat

—s»—minibatch=10000| ]

Objective value

CONCLUSIONS

e Convergence to approximate solution with SGD 1s much faster than with
L-BFGS.

e Using epoch-fixed learning rate in SGD has the best performance, similar
to L-BFGS after many iterations.

e SGD can be scaled to multiple processors (asynchronous updates) with
little loss of accuracy.

e Batch EM converges much faster than online EM.



