Stochastic Optimization for CRF Autoencoders

Waleed Ammar & Fan Yang

Carnegie Mellon University

INTRODUCTION

Goal: Implement existing stochastic optimization methods in the context of conditional random field (CRF) autoencoders.

Model: CRF autoencoders are a class of probabilistic models which was designed to address unsupervised and semi-supervised problems in natural language processing. For concreteness, we will focus on a particular instantiation of CRF autoencoders for the classic problem of bitext *word alignment*.

Problem description: Given an observed sentence pair (s, t), we model the alignment variables (a) and a reconstruction of the target sentence (\hat{t}) as follows:

$$p(\mathbf{a}, \hat{\mathbf{t}} \mid \mathbf{s}, \mathbf{t}) = p_{\lambda}(\mathbf{a} \mid \mathbf{s}, \mathbf{t})p_{\theta}(\hat{\mathbf{t}} \mid \mathbf{s}, \mathbf{a})$$

$$= \frac{\exp \lambda^{\top} \sum_{i=1}^{n_{\mathbf{t}}} f(a_i, a_{i-1}, \mathbf{s}, \mathbf{t})}{\sum_{\mathbf{a}'} \exp \lambda^{\top} \sum_{i=1}^{n_{\mathbf{t}}} f(a'_i, a'_{i-1}, \mathbf{s}, \mathbf{t})} \times \prod_{i=1}^{n_{\mathbf{t}}} \theta_{\hat{t}_i \mid s_{a_i}}$$

Objective: We optimize the parameters of the CRF autoencoder model by maximizing the conditional log-likelihood of generating the correct reconstruction of target sentences $(\hat{\mathbf{t}})$, given a pair of source and target sentences (\mathbf{s}, \mathbf{t}) , marginalizing out the word alignment variables (\mathbf{a}) , as follows:

OPTIMIZATION

In theory: the problem is non-convex.

In practice: locally-optimal solutions have been found to be useful, provided that we start with a good initialization for model parameters.

Optimizing λ using L-BFGS vs. SGD

The sufficient statistics needed for one iteration of L-BFGS require expensive computations and abundant memory since the training sets for word alignments tend to be large. Since we use L-BFGS to solve for the optimal λ inside an outer loop of block-coordinate descent, we cannot afford to spend too much time optimizing λ . Instead, we proposed to use stochastic gradient descent (SGD) and update λ according to an approximation of the gradient based on a few sentence pairs.

Intuition: one epoch (i.e., full pass over the training set) of SGD constitutes **many updates**, and incurs the same runtime cost as **one update** of L-BFGS.

Optimizing θ using batch vs. online EM

Expectation Maximization (EM) is a popular method for optimizing parameters of models with latent variables. In each iteration of batch EM, we update θ by solving: $\min_{\theta} E_{\theta^{old}}[\log p_{\theta}(\mathbf{a}, \hat{\mathbf{t}} \mid \mathbf{s}, \mathbf{t})]$ subject to the multinomial distribution constraints on θ . In order to update θ more frequently, we use online EM (Cappe and Moulines, 2009). The three algorithms are outlined below, reproduced from (Liang and Klein, 2009):

Batch EM:

$$\mu := \text{initialize}$$
 for each EM iteration $t = 1, \dots, T$:
$$-\mu' := 0$$

$$- \text{ for each example } i : \langle \mathbf{s}, \mathbf{t}, \hat{\mathbf{t}} \rangle$$

$$--m_i' := \sum_{\mathbf{a}} p(\mathbf{a} \mid \mathbf{s}, \mathbf{t}, \hat{\mathbf{t}}; \theta(\mu)) \phi(\mathbf{a}, \mathbf{s}, \mathbf{t}, \hat{\mathbf{t}}) [\text{inference}]$$

$$--\mu' := \mu' + m_i' [\text{accumulate new}]$$

$$-\mu := \mu' [\text{replace old with new}]$$

Online EM:

$$\begin{split} \mu &:= \text{initialize}, k := 0 \\ \text{for each EM iteration } t = 1, \dots, T : \\ - &\text{for each example } i : \langle \mathbf{s}, \mathbf{t}, \hat{\mathbf{t}} \rangle \text{ in random order} \\ --- &m_i' := \sum_{\mathbf{a}} p(\mathbf{a} \mid \mathbf{s}, \mathbf{t}, \hat{\mathbf{t}}; \theta(\mu)) \phi(\mathbf{a}, \mathbf{s}, \mathbf{t}, \hat{\mathbf{t}}) \text{ [inference]} \\ --- &\mu := (1 - \eta_k) \mu + \eta_k m_i'; k := k + 1 \text{ [interpolate]} \end{split}$$

In the algorithm, μ is a vector of expected counts for each element in θ , ϕ is a function that maps a sentence pair and its alignment to a vector of sufficient statistics, and m'_i are the expected counts for a given sentence pair.

RESULTS

CONCLUSIONS

- Convergence to approximate solution with SGD is much faster than with L-BFGS.
- Using epoch-fixed learning rate in SGD has the best performance, similar to L-BFGS after many iterations.
- SGD can be scaled to multiple processors (asynchronous updates) with little loss of accuracy.
- Batch EM converges much faster than online EM.