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Abstract

We introduce new methods for estimating and
evaluating embeddings of words from dozens
of languages in a single shared embedding
space. Our estimation methods, multiCluster
and multiCCA, use dictionaries and monolin-
gual data; they do not require parallel data.
Our new evaluation method, multiQVEC+, is
shown to correlate better than previous ones
with two downstream tasks (text categoriza-
tion and parsing). On this evaluation and oth-
ers, our estimation methods outperform exist-
ing ones. We also describe a web portal for
evaluation that will facilitate further research
in this area, along with open-source releases
of all our methods.

1 Introduction

Vector-space representations of words are widely
used in statistical models of natural language. In
addition to improvements on standard monolingual
NLP tasks (Collobert and Weston, 2008), shared
representation of words across languages offer in-
triguing possibilities (Klementiev et al., 2012). For
example, in machine translation, translating a word
never seen in parallel data may be overcome by
seeking its vector-space neighbors, provided the em-
beddings are learned from both plentiful monolin-
gual corpora and more limited parallel data. A sec-
ond opportunity comes from transfer learning, in
which models trained in one language can be de-
ployed in other languages. While previous work
has used hand-engineered features that are cross-
linguistically stable as the basis model transfer (Ze-
man and Resnik, 2008; McDonald et al., 2011), au-

tomatically learned embeddings offer the promise of
better generalization at lower cost (Klementiev et
al., 2012; Hermann and Blunsom, 2014; Guo et al.,
2016). We therefore conjecture that developing es-
timation methods for “massively” multilingual word
embeddings (i.e., embeddings for words in a large
number of languages) will play an important role in
the future of multilingual NLP.

This paper makes the following contributions to
this area. First, we articulate the desiderata for mul-
tilingual embeddings and propose two new estima-
tion methods that fulfill these (§2). These methods
are designed to use only monolingual data in each
language and pairwise parallel dictionaries (no par-
allel corpora are required), and they scale to any
number of languages (a number of previous models
have been limited to only pairs of languages). Sec-
ond, we propose an automatic evaluation method-
ology designed to test how well these goals are
fulfilled (§3). This includes multiQVEC+, an in-
expensive to compute evaluation which correlates
well with performance on two downstream multi-
lingual tasks, cross-lingual document categorization
and cross-lingual parsing. Although intrinsic evalu-
ations will never be perfect,1 a standard set of eval-
uation metrics will help drive research. We evaluate
our two proposed methods and two existing meth-
ods on various sets of languages consisting of 3, 12,
and 59 languages (§5). Our proposed methods out-
perform existing methods on existing intrinsic met-
rics, the two extrinsic tasks, and our newly proposed
multiQVEC+. Finally, in addition to an open-source

1Goodhart’s eponymous law warns that “When a measure
becomes a target, it ceases to be a good measure.”



implementation of our methods, we include a link
to a public web portal for uploading arbitrary mul-
tilingual embeddings and evaluating them automat-
ically using a suite of intrinsic and extrinsic evalua-
tion methods (§4).

2 Estimating Multilingual Embeddings

Let L be a set of languages, and let Vm be the
set of surface forms (word types) in m ∈ L. Let
V =

⋃
m∈L Vm. Our goal is to estimate a partial

embedding function E : L × V 7→ Rd (allowing a
surface form that appears in two languages to have
different vectors in each). We would like to esti-
mate this function such that: (i) semantically similar
words in the same language are nearby, (ii) transla-
tionally equivalent words in different languages are
nearby, and (iii) the domain of the function covers
as many words in V as possible.

We use distributional similarity in a monolingual
corpus Mm to model semantic similarity between
words in the same language. For cross-lingual sim-
ilarity, either a parallel corpus Pm,n or a bilingual
dictionary Dm,n ⊂ Vm × Vn can be used. Our meth-
ods focus on the latter, in some cases extracting Dm,n

from a parallel corpus.2

With three notable exceptions (see §2.3, §2.4,
§6), previous work on multilingual embeddings only
considered the bilingual case, | L |= 2. In this
section, we focus on estimating multilingual embed-
dings for | L |> 2 and describe two novel meth-
ods (multiCluster and multiCCA), then review the
translation-invariance matrix factorization method
(Gardner et al., 2015) and a variant of the multiSkip
method (Guo et al., 2016).3

2.1 Multilingual cluster (multiCluster)
embeddings

In this approach, we decompose the problem into
two simpler subproblems: E = Eembed ◦ Ecluster,
where Ecluster : L × V 7→ C deterministically maps

2To do this, we align the corpus using fast align (Dyer et
al., 2013) in both directions. The estimated parameters of the
word translation distributions are used to select pairs: Dm,n ={
(u, v) | u ∈ Vm, v ∈ Vn, pm|n(u | v)× pn|m(v | u) > τ

}
,

where the threshold τ trades off dictionary recall and precision.
We fixed τ = 0.1 early on based on manual inspection of the
resulting dictionaries.

3We developed the multiSkip method independently of Guo
et al. (2016).

words to multilingual clusters C, and Eembed : C →
Rd assigns a vector to each cluster. We use a bilin-
gual dictionary to find clusters of translationally
equivalent words, then use distributional similarities
of the clusters in monolingual corpora from all lan-
guages in L to estimate an embedding for each clus-
ter. By forcing words from different languages in a
cluster to share the same embedding, we create an-
chor points in the vector space to bridge languages.

More specifically, we define the clusters as the
connected components in a graph where nodes are
(language, surface form) pairs and edges correspond
to translation entries in Dm,n. We assign arbitrary
IDs to the clusters and replace each word token
in each monolingual corpus with the correspond-
ing cluster ID, and concatenate all modified corpora.
The resulting corpus consists of multilingual clus-
ter ID sequences. We can then apply any mono-
lingual embedding estimator; here, we use the skip-
gram model from Mikolov et al. (2013a).

2.2 Multilingual CCA (multiCCA) embeddings

Faruqui and Dyer (2014) proposed a bilingual em-
bedding estimation method based on canonical cor-
relation analysis (CCA) and showed that the re-
sulting embeddings for English words outperform
monolingually-trained English embeddings on word
similarity tasks. First, they use monolingual corpora
to train monolingual embeddings for each language
independently (Em and En), capturing semantic sim-
ilarity within each language separately. Then, using
a bilingual dictionary Dm,n, they use CCA to esti-
mate linear projections from the ranges of the mono-
lingual embeddings Em and En, yielding a bilingual
embedding Em,n. The linear projections are defined
by Tm→m,n and Tn→m,n ∈ Rd×d; they are selected
to maximize the correlation between Tm→m,nEm(u)
and Tn→m,nEn(v) where (u, v) ∈ Dm,n. The bilin-
gual embedding is then defined as ECCA(m, u) =
Tm→m,nEm(u) (and likewise for ECCA(n, v)).

In this work, we use this method as a building
block to construct multilingual embeddings for more
languages. We let the vector space of the initial
(monolingual) English embeddings serve as the mul-
tilingual vector space (since English typically offers
the largest corpora and wide availability of bilingual
dictionaries). We then estimate projections from the
monolingual embeddings of the other languages into



the English space.
We start by estimating, for each m ∈ L \
{en}, the two projection matrices: Tm→m,en and
Ten→m,en; these are guaranteed to be non-singular.
We then define the multilingual embedding as
ECCA(en, u) = Een(u) for u ∈ Ven, and
ECCA(m, v) = T−1en→m,enTm→m,enEm(v) for v ∈
Vm,m ∈ L \ {en}.

Though not explored here, this approach gener-
alizes even without a single “hub” language (En-
glish) with which every other language shares a
bilingual dictionary. If the languages are all con-
nected by bilingual dictionaries, then we can select
any spanning tree of the “language graph” induced
by the bilingual dictionaries, and any language as
the “root.” Words in any language can be iteratively
projected into the vector spaces along the path to the
root using the technique described above. In future
work, non-linear transformations might be explored
as well.

2.3 MultiSkip embeddings

Luong et al. (2015b) proposed a method for estimat-
ing a bilingual embedding which only makes use
of parallel data; it extends the skipgram model of
Mikolov et al. (2013a). The skipgram model defines
a distribution over words u that occur in a context
window (of size K) of a word v:

p(u | v) =
expEskipgram(m, v)>Econtext(m, u)∑

u′∈Vm expEskipgram(m, v)>Econtext(m, u′)

In practice, this distribution can be estimated using
a noise contrastive estimation approximation (Gut-
mann and Hyvärinen, 2012) while maximizing the
log-likelihood:∑

i∈pos(Mm)

∑
k∈{−K,...,−1,1,...,K}

log p(ui+k | ui)

where pos(Mm) are the indices of words in the
monolingual corpus Mm.

To establish a bilingual embedding, with a par-
allel corpus Pm,n of source language m and target
language n, Luong et al. (2015b) estimate condi-
tional models of words in both source and target
positions. The source positions are selected as sen-
tential contexts (similar to monolingual skipgram),

and the bilingual contexts come from aligned words.
The bilingual objective is to maximize:∑
i∈m-pos(Pm,n)

∑
k∈{−K,...,−1,1,...,K}

log p(ui+k | ui)
+ log p(va(i)+k | ui)

+
∑

j∈n-pos(Pm,n)

∑
k∈{−K,...,−1,1,...,K}

log p(vj+k | vj)
+ log p(ua(j)+k | vj)

(1)

where m-pos(Pm,n) and n-pos(Pm,n) are the inde-
ces of the source and target tokens in the parallel
corpus respectively, a(i) and a(j) are the positions
of words that align to i and j in the other language.
It is easy to see how this method can be extended for
more than two languages by summing up the bilin-
gual objective in Eq. 1 for all available parallel cor-
pora.

2.4 Translation-invariant matrix factorization
Gardner et al. (2015) proposed that multilingual em-
beddings should be translation invariant. Consider
a matrix X ∈ R|V|×|V| which summarizes the point-
wise mutual information statistics between pairs of
words in monolingual corpora, and let UV> be a
low-rank decomposition of X where U,V ∈ R|V|×d.
Now, consider another matrix A ∈ R|V|×|V| which
summarizes bilingual alignment frequencies in a
parallel corpus. Gardner et al. (2015) solves for a
low-rank decomposition UV> which both approxi-
mates X as well as its transformations A>X, XA and
A>XA by defining the following objective:

minU,V ‖X − UV>‖2 + ‖XA− UV>‖2

+ ‖A>X − UV>‖2 + ‖A>XA− UV>‖2

The multilingual embeddings are then taken to be
the rows of the matrix U.

3 Evaluating Multilingual Embeddings

One of our main contributions is to streamline the
evaluation of multilingual embeddings. In addition
to assessing goals (i–iii) stated in §2, a good evalua-
tion metric should also (iv) show good correlation
with performance in downstream applications and
(v) be computationally efficient.

It is easy to evaluate the coverage (iii) by count-
ing the number of words covered by an embedding



function in a closed vocabulary. Intrinsic evalua-
tion metrics are generally designed to be compu-
tationally efficient (v) but may or may not meet
the goals (i, ii, iv). By design, standard (mono-
lingual) word similarity tasks meet (i) while cross-
lingual word similarity tasks and the word trans-
lation tasks meet (ii). We propose another evalu-
ation method (multiQVEC+), designed to simulta-
neously assess goals (i, ii). MultiQVEC+ extends
QVEC (Tsvetkov et al., 2015), a recently proposed
monolingual evaluation method, addressing funda-
mental flaws and extending it to multiple languages.
To assess the degree to which these evaluation met-
rics meet (iv), in §5 we perform a correlation anal-
ysis looking at which intrinsic metrics are best cor-
related with downstream task performance—i.e., we
evaluate the evaluation metrics.

3.1 Word similarity

Word similarity datasets such as WS-353-SIM
(Agirre et al., 2009) and MEN (Bruni et al., 2014)
provide human judgments of semantic similarity. By
ranking words by cosine similarity and by their em-
pirical similarity judgments, a ranking correlation
can be computed that assesses how well the esti-
mated vectors capture human intuitions about se-
mantic relatedness.

Some of previous work on bilingual and multilin-
gual embeddings has focused on monolingual word
similarity to evaluate embeddings (e.g., Faruqui and
Dyer., 2014). This approach is limited because it
cannot measure the degree to which embeddings
from different languages are similar (ii). For this
paper, we report results on an English word simi-
larity task, the Stanford RW dataset (Luong et al.,
2013), as well as a combination of several cross-
lingual word similarity datasets (Camacho-Collados
et al., 2015).

3.2 Word translation

This task directly assesses the degree to which
translationally equivalent words in different lan-
guages are nearby in the embedding space. The
evaluation data consists of word pairs which
are known to be translationally equivalent.
The score for one word pair (l1,w1), (l2,w2)
both of which are covered by an embed-
ding E is 1 if cosine(E(l1,w1),E(l2,w2)) ≥

cosine(E(l1,w1),E(l2,w′2))∀w′2 ∈ Gl2 where Gl2

is the set of words of language l2 in the evaluation
dataset, and cosine is the cosine similarity function.
Otherwise, the score for this word pair is 0. The
overall score is the average score for all word
pairs covered by the embedding function. This
is a variant of the method used by Mikolov et al.
(2013b) to evaluate bilingual embeddings.

3.3 Correlation-based evaluation
We introduce QVEC+—an intrinsic evaluation mea-
sure of the quality of monolingual and multilingual
word embeddings. Our method is a monolingual im-
provement and a multilingual extension of QVEC—a
recently proposed monolingual evaluation based on
alignment of embeddings to a matrix of features ex-
tracted from a linguistic resource (Tsvetkov et al.,
2015). We review QVEC, and then describe QVEC+.

QVEC. The main idea behind QVEC is to quantify
the linguistic content of word embeddings by max-
imizing the correlation with a manually-annotated
linguistic resource. Let the number of common
words in the vocabulary of the word embeddings
and the linguistic resource be N. To quantify the se-
mantic content of embeddings, a semantic linguistic
matrix S ∈ RP×N is constructed from a semantic
database, with a column vector for each word. Each
word vector is a distribution of the word over P lin-
guistic properties, based on annotations of the word
in the database. Let X ∈ RD×N be embedding ma-
trix with every row as a dimension vector x ∈ R1×N .
D denotes the dimensionality of word embeddings.
Then, S and X are aligned to maximize the cumu-
lative correlation between the aligned dimensions of
the two matrices. Specifically, let A ∈ {0, 1}D×P

be a matrix of alignments such that aij = 1 iff xi is
aligned to sj, otherwise aij = 0. If r(xi, sj) is the
Pearson’s correlation between vectors xi and sj, then
QVEC is defined as:

QVEC = maxA:
∑

j aij≤1

X∑
i=1

S∑
j=1

r(xi, sj)× aij

The constraint
∑

j aij ≤ 1, warrants that one distri-
butional dimension is aligned to at most one linguis-
tic dimension.

QVEC has been shown to correlate strongly with
downstream semantic tasks. However, it suffers



from two major weaknesses. First, it is not invariant
to linear transformations of the embeddings’ basis,
whereas the bases in word embeddings are gener-
ally arbitrary (Szegedy et al., 2014). Second, a sum
of correlations produces an unnormalized score: the
more dimensions in the embedding matrix the higher
the score. This precludes comparison of models of
different dimensionality. QVEC+ simultaneously ad-
dresses both problems.

QVEC+. To measure correlation between the em-
bedding matrix X and the linguistic matrix S, in-
stead of cumulative dimension-wise correlation we
employ CCA. CCA finds two sets of basis vectors,
one for X> and the other for S>, such that the corre-
lations between the projections of the matrices onto
these basis vectors are maximized. Formally, CCA
finds a pair of basis vectors v and w such that

QVEC+ = CCA(X>,S>) = maxv,w r(X>v,S>w)

Thus, QVEC+ ensures invariance to the matrices
bases rotation, and since it is a single correlation, it
produces a score in [−1, 1]. Both QVEC and QVEC+
rely on a matrix of linguistic properties constructed
from a manually crafted linguistic resource. In this
paper, instead of only constructing the linguistic ma-
trix based on monolingual annotations, we use su-
persense tag annotations for English (Miller et al.,
1993), Danish (Martınez Alonso et al., 2015) and
Italian (Montemagni et al., 2003) to create exten-
sions of QVEC and QVEC+ for the multilingual case;
henceforth, multiQVEC and multiQVEC+.

3.4 Extrinsic tasks

In order to evaluate how useful the word embeddings
are for a downstream task, we use the embedding
vector as a dense feature representation of each word
in the input, and deliberately remove any other fea-
ture available for this word (e.g., prefixes, suffixes,
part-of-speech). For each task, we train one model
on the aggregate training data available for several
languages, and evaluate on the aggregate evaluation
data in the same set of languages. We apply this
for multilingual document classification and multi-
lingual dependency parsing.

For document classification, we follow Klemen-
tiev et al. (2012) in using the RCV corpus of

newswire text, and train a classifier which differ-
entiates between four topics. While most previous
work which used this data only in a bilingual setup,
we simultaneously train the classifier on documents
in seven languages,4 and evaluate on the develop-
ment/test section of those languages. For this task,
we report the average classification accuracy on the
test set.

For dependency parsing, we train the stack-LSTM
parser of Dyer et al. (2015) on a subset of the lan-
guages in the universal dependencies v1.15, and test
on the same languages, reporting unlabeled attach-
ment scores. We remove all part-of-speech and
morphology features from the data, and prevent the
model from optimizing the word embeddings used
to represent each word in the corpus, thereby forcing
the parser to rely completely on the provided (pre-
trained) embeddings as the token representation.

4 Evaluation Portal

In order to facilitate future research on multilin-
gual word embeddings, we developed a web portal6

to enable researchers who develop new estimation
methods to evaluate them using a suite of evaluation
tasks. The portal serves the following purposes:

• Download the monolingual and bilingual data
we used to estimate multilingual embeddings
in this paper,

• Download standard development/test data sets
for each of the evaluation metrics to help re-
searchers working in this area report trustwor-
thy and replicable results,7

• Upload arbitrary multilingual embeddings,
scan which languages are covered by the em-
beddings, allow the user to pick among the
compatible evaluation tasks, and receive eval-
uation scores for the selected tasks, and

• Register a new evaluation data set or a new
evaluation metric via the github repository

4Danish, German, English, Spanish, French, Italian and
Swedish.

5http://hdl.handle.net/11234/LRT-1478
6http://128.2.220.95/multilingual
7Except for the original RCV documents, which are re-

stricted by the Reuters license and cannot be republished. All
other data is available for download.



metric language ISO 639-1 codes
document classification da, de, en, it, fr, sv

dependency parsing bg, cs, da, de, el, en, es, fi, fr, hu, it, sv
(multi)QVEC+/(multi)QVEC da, en, it

word similarity de, en, es, fa, fr, it, pt
word translation bg, cs, da, de, el, en, es, fi, fr, hu,

it, sv, zh, af, ca, iw, cy, ar, ga, zu,
et, gl, id, ru, nl, pt, la, tr, ne, lv,

lt, tg, ro, is, pl, yi, be, hy, hr, jw,
ka, ht, fa, mi, bs, ja, mg, tl, ms, uz,

kk, sr, mn, ko, mk, so, uk, sl, sw

Table 1: Evaluation metrics on the corpus and languages for

which evaluation data are available.

which mirrors the backend of the web portal.

Table 1 lists the evaluation metrics used on the
web portal along with the languages currently avail-
able.

5 Experiments

Our experiments are designed to show two primary
sets of results: (i) how well the proposed intrin-
sic evaluation metrics correlate with downstream
tasks that use multilingual word vectors (§5.1) and
(ii) which estimation methods work best (§5.2).

5.1 Correlations between intrinsic vs. extrinsic
evaluation metrics

In this experiment, we consider four intrinsic eval-
uation metrics (cross-lingual word similarity, word
translation, multiQVEC and multiQVEC+) and two
extrinsic evaluation metrics (multilingual document
classification and multilingual parsing).

Data: All evaluation data sets we used are avail-
able for download on the evaluation portal. For
the cross-lingual word similarity task, we use the
307 English-Italian word pairs in the multilingual
MWS353 dataset (Leviant and Reichart, 2015). For
the word translation task, we use a subset of 647
translation pairs from Wiktionary in English, Ital-
ian and Danish. For multiQVEC and multiQVEC+,
we used the 41 supersense tag annotations (26 for
nouns and 15 for verbs) as described in §3. For the
downstream tasks, we use the English, Italian and
Danish subsets of the RCV corpus and the universal
dependencies v1.1.

Setup: Estimating correlations between the pro-
posed intrinsic evaluation metrics and downstream

(→) extrinsic task document dependency
(↓) intrinsic metric classification parsing

word similarity 0.386 0.007
word translation 0.066 -0.292

multiQVEC 0.635 0.444
multiQVEC+ 0.896 0.273

Table 2: Correlations between intrinsic evaluation metrics

(rows) and downstream task performance (columns).

task performance requires a sample of different vec-
tor embeddings with their intrinsic and extrinsic task
scores. To create this sample, we trained a total of
17 different multilingual embeddings8 for three lan-
guages (English, Italian and Danish).

Results: Table 2 shows the correlations of the four
intrinsic metrics against the performance of the vec-
tors on the two downstream tasks. We establish (i)
that intrinsic methods used in the literature (cross-
lingual word similarity and word translation) are
poorly correlated with downstream tasks, and (ii)
that both intrinsic methods we propose for evaluat-
ing multilingual word embeddings (i.e., multiQVEC

and multiQVEC+) strongly correlate with both mul-
tilingual document classification and multilingual
dependency parsing.

5.2 Evaluating multilingual estimation
methods

We now turn to evaluating multilingual embeddings
obtained using the estimation methods in §2.

Languages: We compare the four estimation
methods in §2 on three language sets of {3, 12, 59}
languages.9 Since the multiSkip and translation-
invariance methods require word translation prob-
abilities, we were only able to use them with the
{3, 12}-language sets for which we have parallel
corpora.

817 = 12 multiCluster embeddings +1 multiCCA embed-
dings +1 multiSkip embeddings +2 translation-invariance em-
beddings.

9The ISO 639-1 codes of the three language sets we used
are: {da, en, it}, {bg, cs, da, de, el, en, es, fi, fr, hu, it, sv}, and
{ bg, cs, da, de, el, en, es, fi, fr, hu, it, sv, zh, af, ca, iw, cy, ar,
ga, zu, et, gl, id, ru, nl, pt, la, tr, ne, lv, lt, tg, ro, is, pl, yi, be, hy,
hr, jw, ka, ht, fa, mi, bs, ja, mg, tl, ms, uz, kk, sr, mn, ko, mk,
so, uk, sl, sw }.



Data: As mentioned in §2, the multiCluster and
multiCCA estimation methods only require mono-
lingual corpora and bilingual dictionaries, while
the multiSkip and translation-invariance methods re-
quire parallel data. Details and pointers for down-
loading the data used to estimate and evaluate em-
beddings in each set of languages can be found on
the evaluation portal.

Setup: All embeddings trained for this evaluation
have 40 dimensions. We used the development sec-
tion of the evaluation methods (see §4) for tuning hy-
perparameters. All skipgram-based models (multi-
CCA, multiSkip, and multiCluster) were trained us-
ing 10 epochs of stochastic gradient descent. We
used a context window size of 3 for the translation-
invariance method.10 For the other methods, we
used a context window size of 3 (for the 3-language
and 59-language embeddings) and 5 (for the 12-
language embeddings). We only estimated embed-
dings for words/clusters which occur 5 times or
more in the monolingual corpora.

Results: We report results of this experiment sep-
arately for each set of languages in Tables 3, 4, and
5. Looking at the performance of downstream tasks
in Tables 3, 4, we establish that both our proposed
dictionary-based methods (multiCCA and multi-
Cluster) outperform the multiSkip and translation-
invariance methods. This is consistent for both clas-
sification and parsing. It is also clear that multiCCA
outperforms multiCluster on most tasks. However,
the intrinsic metrics do not always agree with the
extrinsic results.

Although the results are not always compa-
rable across the three tables,11 some of them
are. For instance, the results of (multi)QVEC and
(multi)QVEC+ are comparable across the three ta-
bles, since the semantic annotations required for
computing the score are only available in Danish,
English and Italian. We can see that the performance
tends to decline as we go from three to twelve to
fifty-nine languages. This is especially true for the
multiCluster method because using bilingual dictio-

10Constructing the pointwise mutual information matrix for
larger context window sizes was computaionally challenging.

11For example, the evaluation set used for word translation
task in Tables 3, 4, and 5 uses word pairs in 3, 12, and 59 lan-
guages, respectively.

naries for more languages result in conflating more
and more words in the same cluster, and all words
in the same cluster share the same embedding. To
avoid this problem, it may be worth exploring bet-
ter ways of constructing multilingual word cluster-
ing from bilingual dictionaries (e.g., spectral clus-
tering).

6 Previous Work

We focused on methods for training multilingual
embeddings for many languages, but there is a rich
body of literature on bilingual embeddings, includ-
ing work on machine translation (Zou et al., 2013;
Hermann and Blunsom, 2014; Cho et al., 2014; Lu-
ong et al., 2015b; Luong et al., 2015a, inter alia),12

cross-lingual dependency parsing (Guo et al., 2015;
Guo et al., 2016), and cross-lingual document clas-
sification (Klementiev et al., 2012; Gouws et al.,
2014; Kociskỳ et al., 2014). Word clusters is a re-
lated form of distributional representation; in clus-
tering, cross-lingual distributional representations
were proposed as well (Täckström et al., 2012).

7 Conclusion

We introduced two estimation methods for multilin-
gual word embeddings, multiCCA and multiCluster,
which only require bilingual dictionaries and mono-
lingual corpora, and used them to train embeddings
for 59 languages. We found the embeddings esti-
mated using our dictionary-based methods to out-
perform those estimated using other methods for two
downstream tasks: multilingual dependency parsing
and multilingual document classification. We also
developed a new intrinsic method to evaluate multi-
lingual embeddings and showed that it strongly cor-
relates with downstream tasks (and runs faster). Fi-
nally, in order to help future research in this area, we
created a web portal for users to upload their multi-
lingual embeddings and easily evaluate them on nine
evaluation metrics, with two modes of operation (de-
velopment and test) to encourage sound experimen-
tation practices.

12Hermann and Blunsom (2014) showed that the bicvm
method can be extended to more than two languages, but the re-
leased software library only supports bilingual embeddings. We
tried following the first author’s recommendation at https://
github.com/karlmoritz/bicvm/issues/4, but we
were not able to reproduce their results.



Task multiCluster multiCCA multiSkip invariance
extrinsic
metrics

dependency parsing 0.723 0.745 0.651 0.612
document classification 0.823 0.802 0.770 0.759

intrinsic
metrics

English word similarity 0.309 0.371 0.327 0.436
multilingual word similarity 0.411 0.442 0.407 0.450

word translation 0.422 0.107 0.470 0.464
monolingual QVEC 0.173 0.174 0.129 0.166

multiQVEC 0.171 0.162 0.124 0.116
monolingual QVEC+ 0.269 0.282 0.241 0.302

multiQVEC+ 0.233 0.225 0.197 0.226

Table 3: Results for multilingual embeddings that cover Danish, English and Italian. Each row corresponds to one of the embedding

evaluation metrics we use (higher is better). Each column corresponds to one of the embedding estimation methods we consider;

i.e., numbers in the same row are comparable.

Task multiCluster multiCCA multiSkip invariance
extrinsic
metrics

dependency parsing 0.669 0.708 0.607 0.670
document classification 0.843 0.842 0.817 0.821

intrinsic
metrics

monolingual word similarity 0.290 0.376 0.402 0.491
multilingual word similarity 0.347 0.522 0.457 0.523

word translation 0.324 0.2 0.479 0.593
monolingual QVEC 0.154 0.183 0.142 0.163

multiQVEC 0.151 0.170 0.124 0.133
monolingual QVEC+ 0.250 0.280 0.254 0.304

multiQVEC+ 0.211 0.226 0.202 0.253
Table 4: Results for multilingual embeddings that cover Bulgarian, Czech, Danish, Greek, English, Spanish, German, Finnish,

French, Hungarian, Italian and Swedish. Each row corresponds to one of the embedding evaluation metrics we use (higher is

better). Each column corresponds to one of the embedding estimation methods we consider; i.e., numbers in the same row are

comparable.

Task multiCluster multiCCA
extrinsic
metrics

dependency parsing 0.653 0.700
document classification 0.809 0.840

intrinsic
metrics

monolingual word similarity 0.093 0.376
multilingual word similarity 0.035 0.521

word translation (Wiktionary) 0.237 0.204
word translation (Google) 0.087 0.264

monolingual QVEC 0.115 0.183
multiQVEC 0.135 0.170

monolingual QVEC+ 0.189 0.280
multiQVEC+ 0.177 0.226

Table 5: Results for multilingual embeddings that cover 59 languages. Each row corresponds to one of the embedding evaluation

metrics we use (higher is better). Each column corresponds to one of the embedding estimation methods we consider; i.e., numbers

in the same row are comparable.
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