Soft Inference and Posterior Marginals

September 19, 2013

Soft vs. Hard Inference

- Hard inference
 - "Give me a single solution"
 - Viterbi algorithm
 - Maximum spanning tree (Chu-Liu-Edmonds alg.)
- Soft inference
 - Task 1: Compute a distribution over outputs
 - Task 2: Compute functions on distribution
 - marginal probabilities, expected values, entropies, divergences

Why Soft Inference?

- Useful applications of posterior distributions
 - Entropy: how confused is the model?
 - Entropy: how confused is the model of its prediction at time i?
 - Expectations
 - What is the expected number of words in a translation of this sentence?
 - What is the expected number of times a word ending in –ed was tagged as something other than a verb?
 - Posterior marginals: given some input, how likely is it that some (*latent*) event of interest happened?

String Marginals

- Inference question for HMMs
 - What is the probability of a string w?
 Answer: generate all possible tag sequences and explicitly marginalize

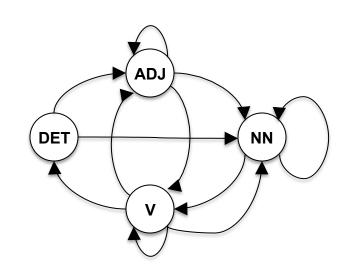
$$O(|\Omega|^{|\mathbf{w}|})$$
 time

Initial Probabilities:

○ →	DET	ADJ	NN	V
	0.5	0.1	0.3	0.1

η Transition Probabilities:

	DET	ADJ	NN	V
DET	0.0	0.0	0.0	0.5
ADJ	0.3	0.2	0.1	0.1
NN	0.7	0.7	0.3	0.2
V	0.0	0.1	0.4	0.1
	0.0	0.0	0.2	0.1



γ Emission Probabilities:

DET		ADJ		NN		V	
the	0.7	green	0.1	book	0.3	might	0.2
а	0.3	big	0.4	plants	0.2	watch	0.3
		old	0.4	people	0.2	watches	0.2
		might	0.1	person	0.1	loves	0.1
				John	0.1	reads	0.19
				watch	0.1	books	0.01

Examples:

	might V	watch V				
		person		•		
DEI	ADJ	NN	V	ADJ	NN	

John might watch $\Pr(x,y)$			John	migh	t watcl	$\mathbf{Pr}(x,y)$	John	John might watch $\Pr(x,y)$			John	ohn might watch $\Pr(x,y)$			
DET	DET	DET	0.0	ADJ	DET	DET	0.0	NN	DET	DET	0.0	V	DET	DET	0.0
DET	DET	ADJ	0.0	ADJ	DET	ADJ	0.0	NN	DET	ADJ	0.0	V	DET	ADJ	0.0
DET	DET	NN	0.0	ADJ	DET	NN	0.0	NN	DET	NN	0.0	V	DET	NN	0.0
DET	DET	V	0.0	ADJ	DET	V	0.0	NN	DET	V	0.0	V	DET	V	0.0
DET	ADJ	DET	0.0	ADJ	ADJ	DET	0.0	NN	ADJ	DET	0.0	V	ADJ	DET	0.0
DET	ADJ	ADJ	0.0	ADJ	ADJ	ADJ	0.0	NN	ADJ	ADJ	0.0	V	ADJ	ADJ	0.0
DET	ADJ	NN	0.0	ADJ	ADJ	NN	0.0	NN	ADJ	NN	0.0000042	V	ADJ	NN	0.0
DET	ADJ	V	0.0	ADJ	ADJ	V	0.0	NN	ADJ	V	0.0000009	V	ADJ	V	0.0
DET	NN	DET	0.0	ADJ	NN	DET	0.0	NN	NN	DET	0.0	V	NN	DET	0.0
DET	NN	ADJ	0.0	ADJ	NN	ADJ	0.0	NN	NN	ADJ	0.0	V	NN	ADJ	0.0
DET	NN	NN	0.0	ADJ	NN	NN	0.0	NN	NN	NN	0.0	V	NN	NN	0.0
DET	NN	V	0.0	ADJ	NN	V	0.0	NN	NN	V	0.0	V	NN	V	0.0
DET	V	DET	0.0	ADJ	V	DET	0.0	NN	V	DET	0.0	V	V	DET	0.0
DET	V	ADJ	0.0	ADJ	V	ADJ	0.0	NN	V	ADJ	0.0	V	V	ADJ	0.0
DET	V	NN	0.0	ADJ	V	NN	0.0	NN	V	NN	0.0000096	V	V	NN	0.0
DET	V	V	0.0	ADJ	V	V	0.0	NN	V	V	0.0000072	V	V	V	0.0

John	might	t watch	$\Pr(x,y)$	John	might	t watch	$\Pr(x,y)$	John	might	t watch	$\Pr(x,y)$	John	might	watch	$\Pr(x,y)$
DET	DET	DET	0.0	ADJ	DET	DET	0.0	NN	DET	DET	0.0	V	DET	DET	0.0
DET	DET	ADJ	0.0	ADJ	DET	ADJ	0.0	NN	DET	ADJ	0.0	V	DET	ADJ	0.0
DET	DET	NN	0.0	ADJ	DET	NN	0.0	NN	DET	NN	0.0	V	DET	NN	0.0
DET	DET	V	0.0	ADJ	DET	V	0.0	NN	DET	V	0.0	V	DET	V	0.0
DET	ADJ	DET	0.0	ADJ	ADJ	DET	0.0	NN	ADJ	DET	0.0	V	ADJ	DET	0.0
DET	ADJ	ADJ	0.0	ADJ	ADJ	ADJ	0.0	NN	ADJ	ADJ	0.0	V	ADJ	ADJ	0.0
DET	ADJ	NN	0.0	ADJ	ADJ	NN	0.0	NN	ADJ	NN	0.0000042	V	ADJ	NN	0.0
DET	ADJ	V	0.0	ADJ	ADJ	V	0.0	NN	ADJ	V	0.0000009	V	ADJ	V	0.0
DET	NN	DET	0.0	ADJ	NN	DET	0.0	NN	NN	DET	0.0	V	NN	DET	0.0
DET	NN	ADJ	0.0	ADJ	NN	ADJ	0.0	NN	NN	ADJ	0.0	V	NN	ADJ	0.0
DET	NN	NN	0.0	ADJ	NN	NN	0.0	NN	NN	NN	0.0	V	NN	NN	0.0
DET	NN	V	0.0	ADJ	NN	V	0.0	NN	NN	V	0.0	V	NN	V	0.0
DET	V	DET	0.0	ADJ	V	DET	0.0	NN	V	DET	0.0	V	V	DET	0.0
DET	V	ADJ	0.0	ADJ	V	ADJ	0.0	NN	V	ADJ	0.0	V	V	ADJ	0.0
DET	V	NN	0.0	ADJ	V	NN	0.0	NN	V	NN	0.0000096	V	V	NN	0.0
DET	V	V	0.0	ADJ	V	V	0.0	NN	V	V	0.0000072	V	V	V	0.0

$$p = 0.0000219$$

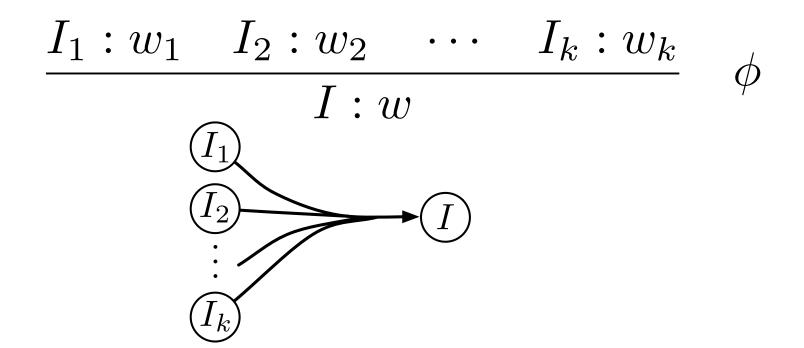
Weighted Logic Programming

- Slightly different notation than the textbook, but you will see it in the literature
- WLP is useful here because it lets us build hypergraphs

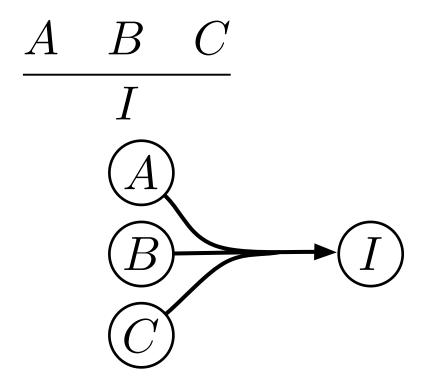
$$\frac{I_1:w_1\quad I_2:w_2\quad \cdots\quad I_k:w_k}{I:w} \quad \phi$$

Weighted Logic Programming

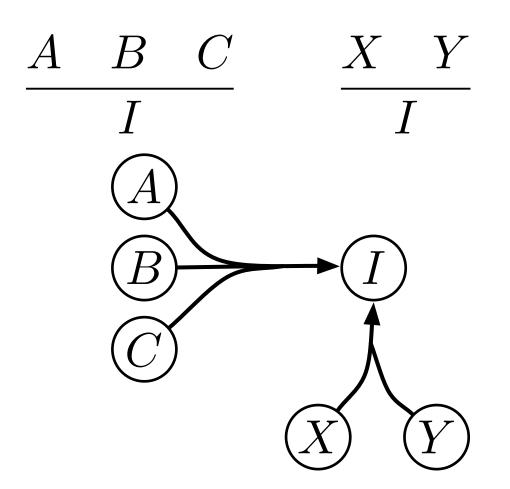
- Slightly different notation than the textbook, but you will see it in the literature
- WLP is useful here because it lets us build hypergraphs



Hypergraphs



Hypergraphs



Hypergraphs

Item form

[q, i]

Item form

[q, i]

Axioms

[START, 0]:1

Item form

Axioms

Goals

[STOP,
$$|\mathbf{x}| + 1$$
]

Item form

[q,i]

Axioms

[START, 0]:1

Goals

[STOP,
$$|\mathbf{x}| + 1$$
]

Inference rules

$$[r, i+1]: w \otimes \eta(q \rightarrow r) \otimes \gamma(r \downarrow x_{i+1})$$

Item form

[q,i]

Axioms

[START, 0]:1

Goals

[STOP,
$$|\mathbf{x}| + 1$$
]

Inference rules

$$[r, i+1]: w \otimes \eta(q \rightarrow r) \otimes \gamma(r \downarrow x_{i+1})$$

$$|q,|\mathbf{x}||:w$$

[STOP,
$$|\mathbf{x}| + 1$$
]: $w \otimes \eta(q \to \text{STOP})$

 \mathbf{w} =(John, might, watch) Goal: [STOP, 4]

String Marginals

- Inference question for HMMs
 - What is the probability of a string w?

Answer: generate all possible tag sequences and explicitly *marginalize*

$$O(|\Omega|^{|\mathbf{w}|})$$
 time

Answer: use the forward algorithm

$$O(|\Omega|^2 imes |\mathbf{w}|)$$
 time $O(|\Omega|)$ space

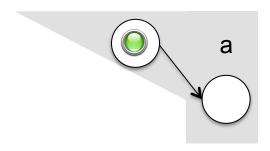
Forward Algorithm

- Instead of computing a max of inputs at each node, use addition
- Same run-time, same space requirements
- Viterbi cell interpretation
 - What is the score of the best path through the lattice ending in state q at time i?
- What does a forward node weight correspond to?

Forward Algorithm Recurrence

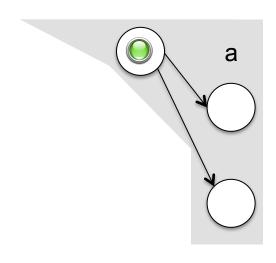
$$\alpha_0(\text{START}) = 1$$

$$\alpha_t(y) = \sum_{q \in \Omega} \eta(q \to y) \times \gamma(y \downarrow x_i) \times \alpha_{t-1}(q)$$



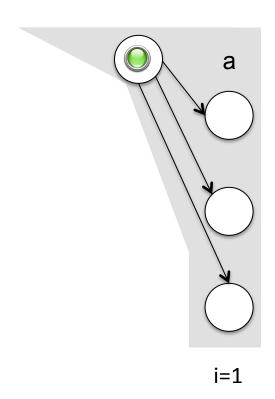
i=1

$$\alpha_t(q) = p(\text{START}, x_1, \dots, x_t, y_t = q)$$

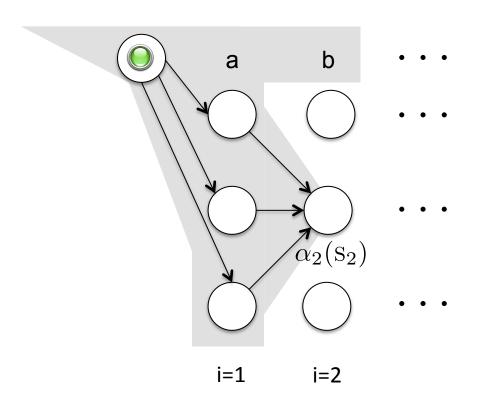


i=1

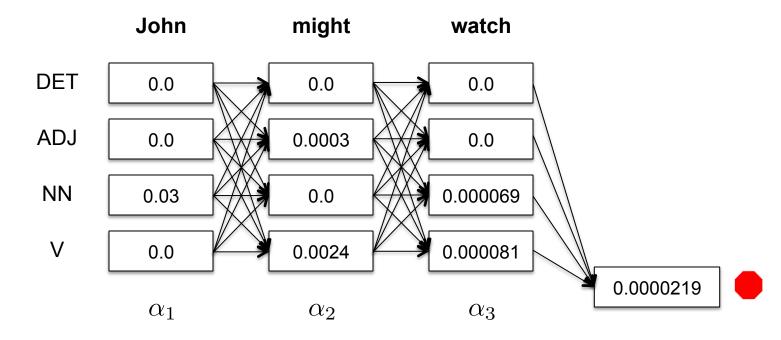
$$\alpha_t(q) = p(\text{START}, x_1, \dots, x_t, y_t = q)$$



 $\alpha_t(q) = p(\text{START}, x_1, \dots, x_t, y_t = q)$



$$\alpha_t(q) = p(\text{START}, x_1, \dots, x_t, y_t = q)$$



p = 0.0000219

Posterior Marginals

- Marginal inference question for HMMs
 - Given x, what is the probability of being in a state q at time i?

$$p(x_1, ..., x_i, y_i = q \mid y_0 = \text{START}) \times p(x_{i+1}, ..., x_{|\mathbf{x}|} \mid y_i = q)$$

– Given x, what is the probability of transitioning from state q to r at time i?

$$p(x_1, \dots, x_i, y_i = q \mid y_0 = \text{START}) \times$$

$$\eta(q \to r) \times \gamma(r \downarrow x_{i+1}) \times$$

$$p(x_{i+2}, \dots, x_{|\mathbf{x}|} \mid y_{i+1} = r)$$

Posterior Marginals

- Marginal inference question for HMMs
 - Given x, what is the probability of being in a state <u>q at time i?</u>

$$p(x_1,\ldots,x_i,y_i=q\mid y_0=\text{START})\times$$

$$p(x_{i+1},\ldots,x_{|\mathbf{x}|} \mid y_i = q)$$

– Given x, what is the probability of transitioning from state q to r at time i?

$$p(x_1, \dots, x_i, y_i = q \mid y_0 = \text{START}) \times$$

$$\eta(q \to r) \times \gamma(r \downarrow x_{i+1}) \times$$

$$p(x_{i+2}, \dots, x_{|\mathbf{x}|} \mid y_{i+1} = r)$$

Posterior Marginals

- Marginal inference question for HMMs
 - Given x, what is the probability of being in a state q at time i?

$$p(x_1,\ldots,x_i,y_i=q\mid y_0=\text{START})\times$$

$$p(x_{i+1},\ldots,x_{|\mathbf{x}|} \mid y_i = q)$$

– Given x, what is the probability of transitioning from state q to r at time i?

$$p(x_1, \dots, x_i, y_i = q \mid y_0 = \text{START}) \times$$

 $\eta(q \to r) \times \gamma(r \downarrow x_{i+1}) \times$

$$|p(x_{i+2},\ldots,x_{|\mathbf{x}|} | y_{i+1} = r)|$$

Backward Algorithm

- Start at the goal node(s) and work backwards through the hypergraph
- What is the probability in the goal node cell?
- What if there is more than one cell?
- What is the value of the axiom cell?

Backward Recurrence

$$\beta_{|\mathbf{x}|+1}(\text{STOP}) = 1$$

$$\beta_i(q) = \sum_{r \in \Omega} \beta_{i+1}(r) \times \gamma(r \downarrow x_{i+1}) \times \eta(q \to r)$$

. . .

• • •

. . .

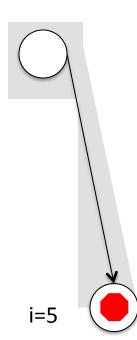
• • •

• • •

• • •

. . .

. . .

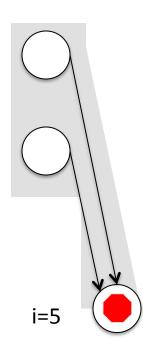


• • •

• • •

. . .

. . .

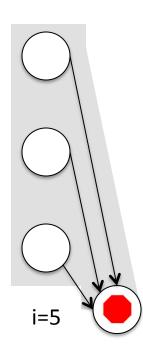


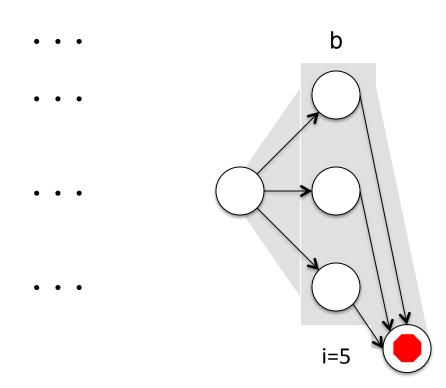
• • •

• • •

. . .

. . .

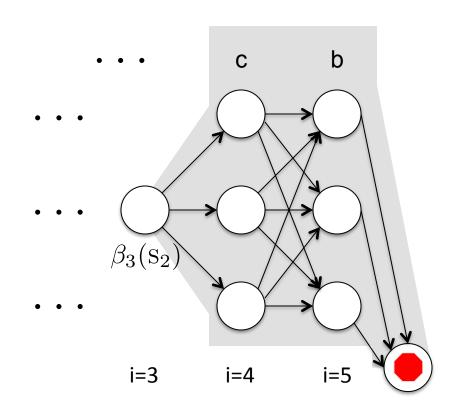




Backward Chart

b
...

Backward Chart



$$\beta_t(q) = p(x_{t+1}, \dots, x_{|\mathbf{x}|} \mid y_t = q)$$

Forward-Backward

Compute forward chart

$$\alpha_t(q) = p(\text{START}, x_1, \dots, x_t, y_t = q)$$

Compute backward chart

$$\beta_t(q) = p(x_{t+1}, \dots, x_{|\mathbf{x}|}, \text{STOP} \mid y_t = q)$$

What is
$$\alpha_t(q) \times \beta_t(q)$$
 ?

Forward-Backward

Compute forward chart

$$\alpha_t(q) = p(\text{START}, x_1, \dots, x_t, y_t = q)$$

Compute backward chart

$$\beta_t(q) = p(x_{t+1}, \dots, x_{|\mathbf{x}|}, \text{STOP} \mid y_t = q)$$

What is
$$\alpha_t(q) \times \beta_t(q)$$
 ?

$$p(\mathbf{x}, y_t = q) = \alpha_t(q) \times \beta_t(q)$$

Edge Marginals

 What is the probability that x was generated and q -> r happened at time t?

$$p(x_1, \dots, x_i, y_i = q \mid y_0 = \text{START}) \times$$

$$\eta(q \to r) \times \gamma(r \downarrow x_{i+1}) \times$$

$$p(x_{i+2}, \dots, x_{|\mathbf{x}|} \mid y_{i+1} = r)$$

Edge Marginals

 What is the probability that x was generated and q -> r happened at time t?

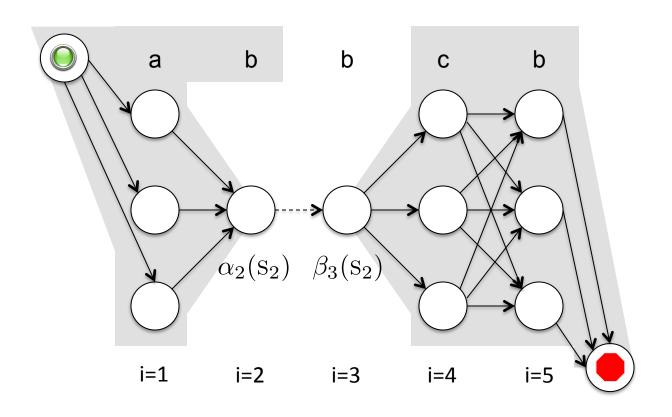
$$p(x_1, \dots, x_i, y_i = q \mid y_0 = \text{START}) \times$$

$$\eta(q \to r) \times \gamma(r \downarrow x_{i+1}) \times$$

$$p(x_{i+2}, \dots, x_{|\mathbf{x}|} \mid y_{i+1} = r)$$

$$\alpha_t(q) \times \\ \eta(q \to r) \times \gamma(r \downarrow x_{t+1}) \times \\ \beta_{t+1}(r)$$

Forward-Backward



Generic Inference

- Semirings are useful structures in abstract algebra
 - Set of values
 - Addition, with additive identity 0: (a + 0 = a)
 - Multiplication, with mult identity 1: (a * 1 = a)
 - Also: a * 0 = 0
 - Distributivity: a * (b + c) = a * b + a * c
 - Not required: commutativity, inverses

So What?

 You can unify Forward and Viterbi by changing the semiring

$$FORWARD(\mathcal{G}) = \bigoplus_{\pi \in \mathcal{G}} \bigotimes_{e \in \pi} w[e]$$

Table 2.1: Elements of common semirings.

semiring	\mathbb{K}	\oplus	\otimes	$\overline{0}$	$\overline{1}$	notes
Boolean	{0,1}	V	Λ	0	1	idempotent
count	$\mathbb{N}_0 \cup \{\infty\}$	+	×	0	1	
probability	$\mathbb{R}_+ \cup \{\infty\}$	+	×	0	1	
tropical	$\mathbb{R} \cup \{-\infty,\infty\}$	max	+	-∞	0	idempotent
log	$\mathbb{R} \cup \{-\infty,\infty\}$	\oplus_{\log}	+	-∞	0	

Semiring Inside

- Probability semiring
 - marginal probability of output
- Counting semiring
 - number of paths ("taggings")
- Viterbi semiring
 - best scoring derivation
- Log semiring $w[e] = \mathbf{w}^{\mathsf{T}} \mathbf{f}(e)$
 - $-\log(Z) = \log partition function$

Semiring Edge-Marginals

Probability semiring

posterior marginal probability of each edge

Counting semiring

number of paths going through each edge

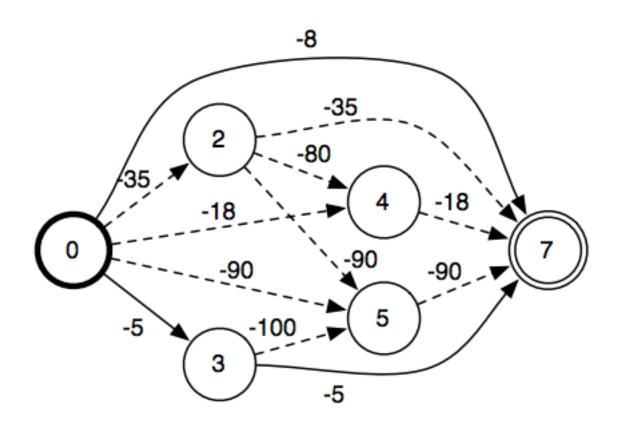
Viterbi semiring

score of best path going through each edge

Log semiring

- log (sum of all exp path weights of all paths with e)
 - = log(posterior marginal probability) + log(Z)

Max-Marginal Pruning



Generalizing Forward-Backward

- Forward/Backward algorithms are a special case of Inside/Outside algorithms
- It's helpful to think of I/O as algorithms on PCFG parse forests, but it's more general
 - Recall the 5 views of decoding: decoding is parsing
 - More specifically, decoding is a weighted proof forest

Item form

Item form

Goals

$$[S, 1, |\mathbf{x}| + 1]$$

Item form

Goals

$$[S, 1, |\mathbf{x}| + 1]$$

Axioms

$$\overline{[N, i, i+1]:w}$$

$$(N \xrightarrow{w} x_i) \in G$$

Item form

Goals

$$[S, 1, |\mathbf{x}| + 1]$$

Axioms

$$\overline{[N, i, i+1]:w}$$

$$(N \xrightarrow{w} x_i) \in G$$

Inference rules

$$rac{[X,i,k]:u\quad [Y,k,j]:v}{[Z,i,j]:u\otimes v\otimes w}$$

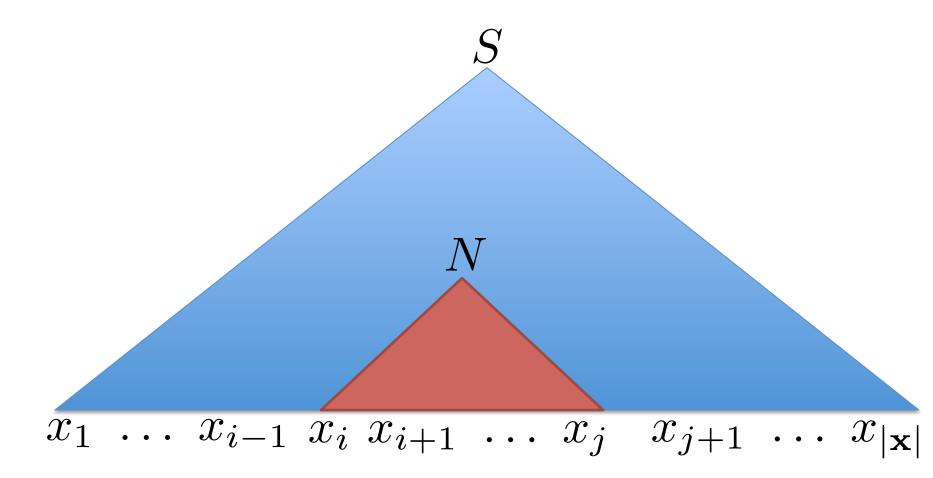
$$(Z \xrightarrow{w} X Y) \in G$$

Posterior Marginals

- Marginal inference question for PCFGs
 - Given w, what is the probability of having a constituent of type Z from i to j?
 - Given w, what is the probability of having a constituent of any type from i to j?
 - Given w, what is the probability of using rule Z -> XY to derive the span from i to j?

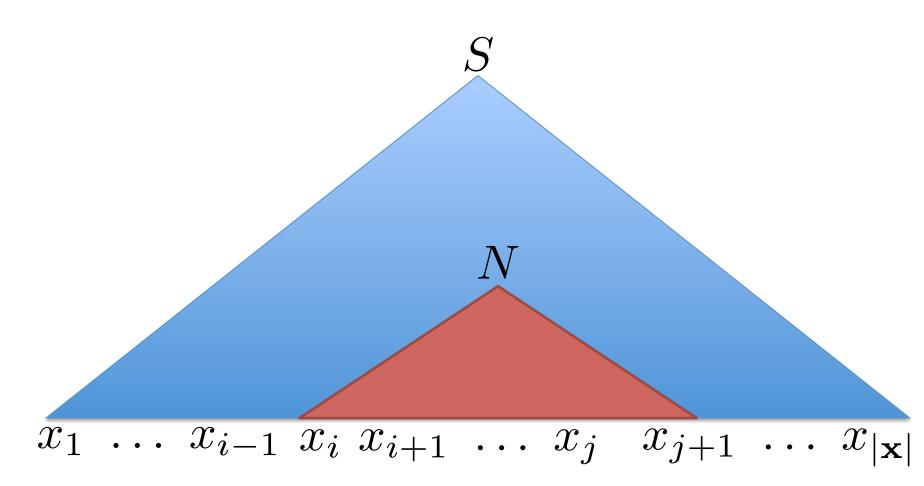
Inside Algorithm

$$\alpha_{[i,j]}(N) = p(x_i, x_{i+1}, \dots, x_j \mid N; \mathcal{G})$$



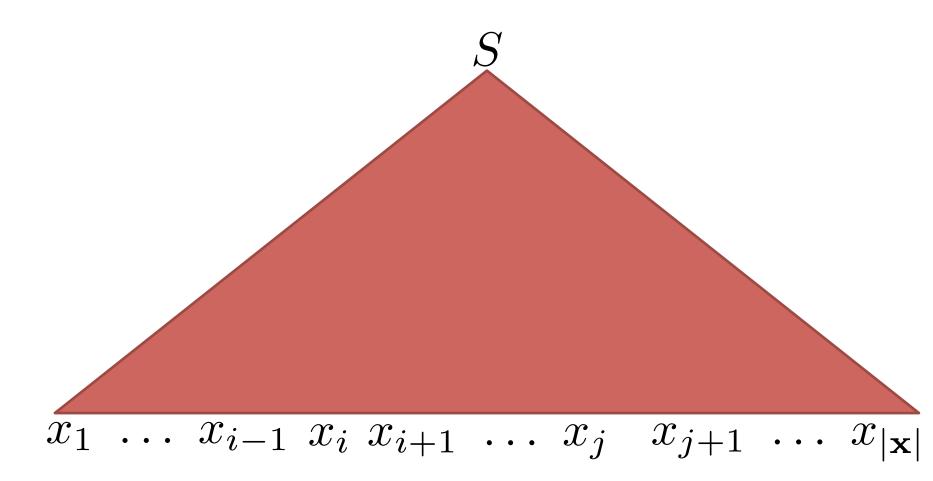
Inside Algorithm

$$\alpha_{[i,j]}(N) = p(x_i, x_{i+1}, \dots, x_j \mid N; \mathcal{G})$$



Inside Algorithm

$$\alpha_{[i,j]}(N) = p(x_i, x_{i+1}, \dots, x_j \mid N; \mathcal{G})$$



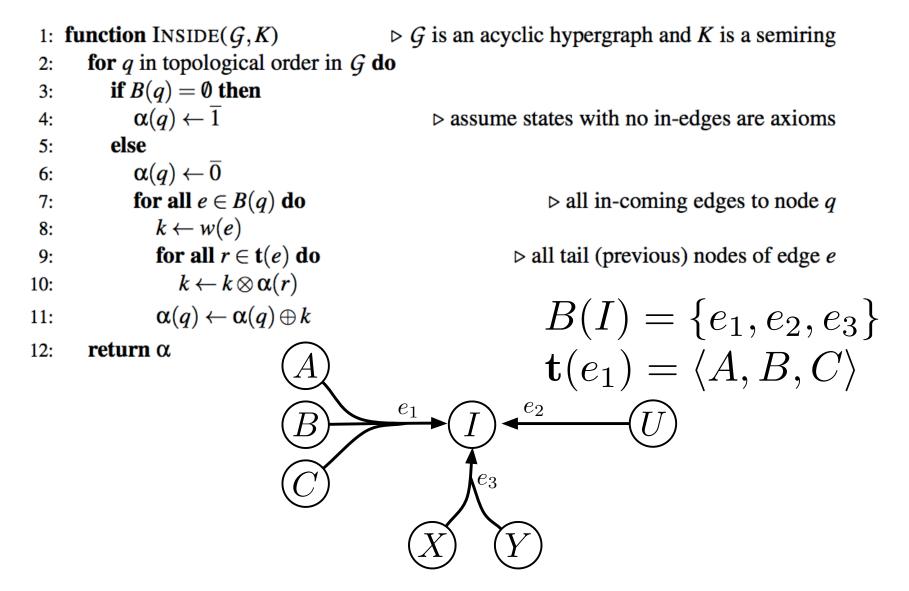
CKY Inside Algorithm

Base case(s)

$$\alpha_{[i,i+1]}(Z) = p(Z \to x_i)$$

$$\alpha_{[i,j]}(Z) = \sum_{k=i+1}^{J-1} \sum_{(Z \to XY) \in G} \alpha_{[i,k]}(X) \times \alpha_{[k,j]}(Y) \times p(Z \to XY)$$

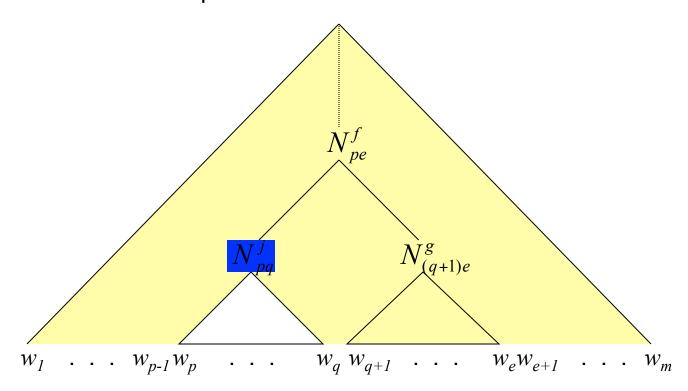
Generic Inside



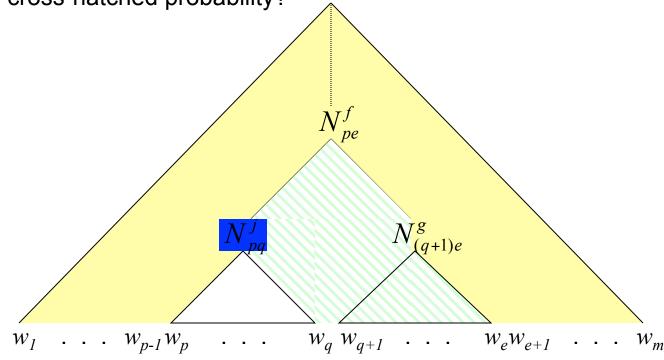
Questions for Generic Inside

- Probability semiring
 - Marginal probability of input
- Counting semiring
 - Number of paths (parses, labels, etc)
- Viterbi semiring
 - Viterbi probability (max joint probability)
- Log semiring
 - log Z(input)

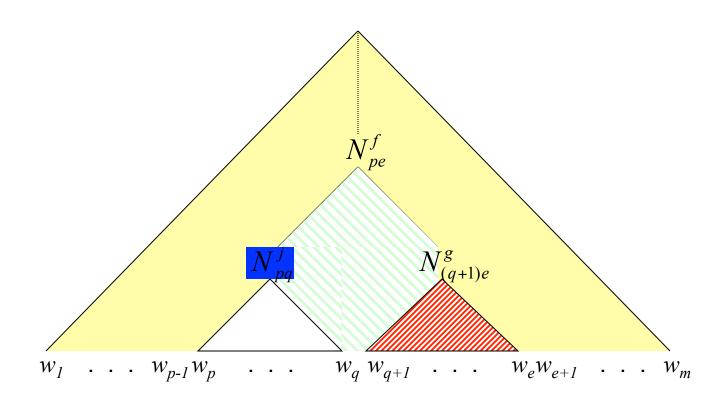
The shaded area represents the outside probability $\alpha_j(p,q)$ which we need to calculate. How can this be decomposed?

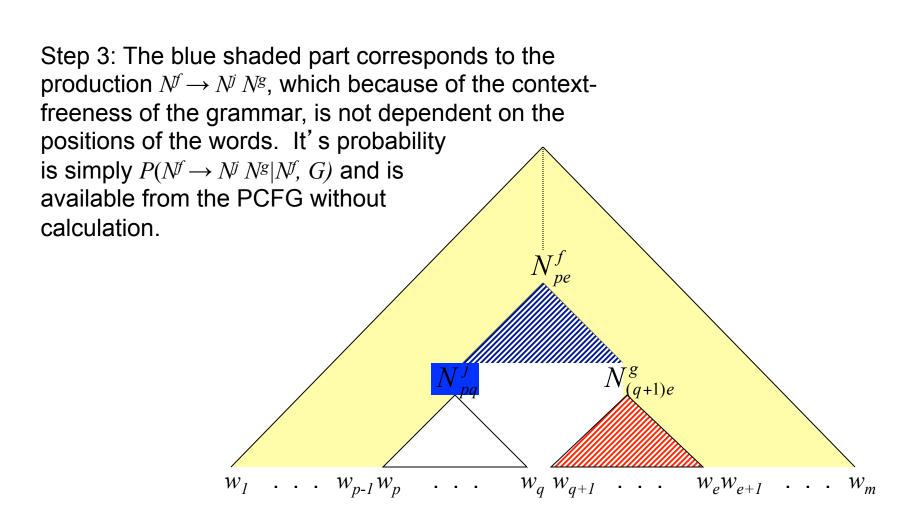


Step 1: We assume that N_{pe}^f is the parent of N_{pq}^f . Its outside probability, $\alpha_f(p,e)$, (represented by the yellow shading) is available recursively. How do we calculate the cross-hatched probability?



Step 2: The red shaded area is the inside probability of $N_{(a+1)e}^g$, which is available as $\beta_g(q+1,e)$.





Generic Outside

```
1: function OUTSIDE(G, K, \alpha)
                                                                              \triangleright \alpha is the result of INSIDE(G, K)
        for all q \in \mathcal{G} do
 2:
            \beta(q) \leftarrow \overline{0}
 3:
        \beta(q_{goal}) = \overline{1}
 4:
        for q in reverse topological order in G do
 5:
            for all e \in B(q) do
                                                                                \triangleright all in-coming edges to node q
 6:
               for all r \in \mathbf{t}(e) do
                                                                           \triangleright all tail (previous) nodes of edge e
 7:
                   k \leftarrow w(e) \otimes \beta(q)
 8:
                   for all s \in \mathbf{t}(e) do
                                                                 \triangleright all tail (previous) nodes of edge e, again
 9:
                      if r \neq s then
10:
                          k \leftarrow k \otimes \alpha(s)
11:
                                                                                        \beta(r) \leftarrow \beta(r) \oplus k
12:
        return β
13:
```

Generic Inside-Outside

```
1: function InsideOutside(G, K)
                                                                              \alpha \leftarrow \text{INSIDE}(G, K)
2:
      \beta \leftarrow \text{OUTSIDE}(G, K, \alpha)
3:
      for edge e in G do
4:
         \gamma(e) \leftarrow w(e) \otimes \beta(n(e)) > edge weight and outside score of edge's head node
5:
         for all q \in \mathbf{t}(e) do
6:
             \gamma(e) \leftarrow \gamma(e) \otimes \alpha(q)

    inside score of tail nodes

7:
                                                                        \triangleright \gamma(e) is the edge marginal of e
      return γ
8:
```

Inside-Outside

- Inside probabilities are required to compute Outside probabilities
- Inside-Outside works where Forward-Backward does, but not vice-versa
- Implementation considerations
 - Building a hypergraph explicitly simplifies code,
 but it can be expensive in terms of memory