
10-710/11-763 Homework 3
Due: 10/29/2013

1 Introduction

The purpose of this homework is to gain familiarity with dual decomposition as well as inference in
generative models. First, you will implement a first-order HMM decoder for part-of-speech tagging
and a CYK parser for context-free parsing. Then, you will use the dual decomposition method
to integrate the tagger and the parser in an efficient decoder that maximizes the sum of the two
models’ log-probabilities. A similar integration has been shown to improve the performance of both
the tagging and the parsing subproblems (Rush et al., 2010).

2 Tasks

2.1 POS tagger

Your first task is to implement a decoder for a first-order hidden Markov model for Arabic part-of-
speech tagging. The decoder expects three input files which specify HMM transition probabilities,
HMM emission probabilities, and input sentences. Given input sentence x, the job of the tagger
is to find the highest scoring tag sequence ẑ = arg maxz log phmm(z | x). Feel free to modify your
CRF decoder from homework 1 for this task. sentence boundary is a special POS tag which is
used to mark the beginning and end of a sentence.
You can evaluate the output of your tagger (e.g. candidate-postags) against gold standard POS
tags of the development set dev sents as follows:

./eval.py --reference_postags_filename=dev_postags \

--candidate_postags_filename=candidate-postags

Deliverable: submit the output of your tagger with input files hmm trans, hmm emits,
test sents.

2.2 Context free grammar parser

Your second task is to implement a parser for a Chomsky normal form probabilistic context-free
grammar (PCFG) of Arabic syntax. The parser expects two input files which specify the PCFG,
and input sentences. Given input sentence x, the job of the tagger is to find the highest scoring
derivation ŷ = arg maxy log ppcfg(y | x).

You can evaluate the output of your parser (e.g. candidate-parses) against gold standard
parses of the development set dev sents as shown below. The evaluation script provided eval.py

reports the precision and recall on the binary trees, contrary to the common practice of reporting
precision and recall with the original grammar.

./eval.py --reference_parses_filename=dev_parses \

--candidate_parses_filename=candidate-parses

Deliverable: submit the output of your parser with input files pcfg, test sents.

2.3 Dual decomposition

Given input sentence x, it is required to find the highest scoring derivation:

ŷ = arg max
y

log ppcfg(y | x) + log phmm(l(y) | x)) (1)

where l(y) maps a derivation y to the sequence of POS tags in y. Since each of the PCFG and
the HMM captures different types of information, combining both models may improve both the
accuracy of parsing as well as POS tagging, compared to solving the two problems in isolation.

We use the same notation and definitions used in (Rush and Collins, 2012): T is the set of POS
tags, y(i, t) = 1 iff parse tree y has a tag t ∈ T at position i in a sentence, y(i, t) = 0 otherwise.
z(i, t) = 1 iff POS tagging sequence z has a tag t ∈ T at position i, z(i, t) = 0 otherwise. u(i, t) is
a Lagrange multiplier enforcing the constraint y(i, t) = z(i, t).

The dual decomposition algorithm for integrating parsing and tagging, adapted from (Rush and
Collins, 2012), is as follows:

initialization: u ← 0 ;
for k=1 . . .K do

ŷ← arg maxy log ppcfg(y | x) +
∑

i,t u(i, t)y(i, t) ;

ẑ← arg maxz log phmm(z | x)−
∑

i,t u(i, t)z(i, t) ;

if ŷ(i, t) = ẑ(i, t)∀i, t then
print ŷ ;

else
u(i, t)← u(i, t)− δk(y(i, t)− z(i, t)) ;

end

end
Algorithm 1: The dual decomposition algorithm.

Modify your implementation of the POS tagger and the CFG parser in order to account for
the extra Lagrange multiplier terms, without degrading the runtime of the tagger and the parser.
Then, implement the dual decomposition algorithm as described in Figure 1. The decoder expects
four input files which specify HMM transitions, HMM emissions, a PCFG, and input sentences.
Given an input sentence x, solve the optimization problem 1, finding ŷ. The decoder outputs two
files: one for parse trees and another for the POS tag sequences. You can evaluate the two output
files of your tagger using the development set as shown earlier.

Deliverables:

• show that the algorithm given in Figure 1 indeed optimizes the objective in Equation 1, when
it converges.

• submit the output files of your dual decomposition decoder with input files hmm trans,

hmm emits, pcfg, test sents.

3 Data formats

3.1 Parameter files

Three parameter files are provided: hmm trans, hmm emits, pcfg. Each file specifies a number of
conditional distribution p(decision | context). Each line consists of three tab-separated columns:

context decision log p(decision | context)

In pcfg, the start non-terminal is S and the decision consists of either one terminal symbol (e.g.
‘dog’) or two space-separated nonterminal symbols (e.g. ‘ADJ N’).

3.2 Plain text files

Two plain text files are provided: dev sents, test sents. Each of the two files consist of one
tokenized sentence per line. Tokens are space-separated.

3.3 POS tagging files

We describe the format of the provided gold standard POS tags file dev postags as well as your
output for the HMM tagging task and the dual decomposition task. Each line consists of a space-
separated POS tag sequence. The number of tags must be equal to the number of tokens in the

corresponding sentence (i.e. use sentence boundary tags at the beginning and the end while
decoding to find the Viterbi POS tag sequence, but do not write sentence boundary tags to the
output file).

3.4 Parse files

We describe the format of the provided gold standard parse trees file dev parses as well as your
output for the CFG parser and dual decomposition task. Each line consists of a complete syntactic
derivation for the corresponding sentence in a plain text file. For example, in the simple parse
below, S is the root with two children: NP and V. NP has two children: ADJ and N. ADJ, N and V each
has a single child: bad, tornado and coming, respectively. The provided parses are a little more
complicated [evil laugh].

(S (NP (ADJ bad) (N tornado)) (V coming))

4 Submission procedures

Starting from this homework, you will submit the deliverables in a Google Drive directory shared
with the course instructors. You will receive information about your directory soon. In this
homework, your deliverable files should be named as follows: test-plain-postags-andrewid

, test-plain-parses-andrewid , test-dd-postags-andrewid , test-dd-parses-andrewid ,
proof-andrewid.pdf For questions, please email Waleed at waleed.ammar@gmail.com

References

Y. Bar-Hillel, M. Perles, and E. Shamir. 2064. On formal properties of simple phrase structure grammars.

A. Rush and M. Collins. 2012. A tutorial on dual decomposition and lagrangian relaxation for inference in
natural language processing. In Tutorial at ACL.

A. Rush, D. Sontag, M. Collins, and T. Jaakkola. 2010. On dual decomposition and linear programming
relaxations for natural language processing. In Proc. EMNLP.

