EM with Features

Nov. 19, 2013

Word Alignment

das Haus ein Buch das Buch

the house a book the book

- Goal: a model $p(\mathbf{e} \mid \mathbf{f}, m)$
- ullet where e and f are complete English and Foreign sentences

- Goal: a model $p(\mathbf{e} \mid \mathbf{f}, m)$
- ullet where e and f are complete English and Foreign sentences

$$\mathbf{e} = \langle e_1, e_2, \dots, e_m \rangle$$

- Goal: a model $p(\mathbf{e} \mid \mathbf{f}, m)$
- ullet where e and f are complete English and Foreign sentences

$$\mathbf{e} = \langle e_1, e_2, \dots, e_m \rangle$$
 $\mathbf{f} = \langle f_1, f_2, \dots, f_n \rangle$

- ullet Goal: a model $p(\mathbf{e} \mid \mathbf{f}, m)$
- ullet where e and f are complete English and Foreign sentences
- Lexical translation makes the following **assumptions**:
 - Each word in e_i in ${\bf e}$ is generated from exactly one word in ${\bf f}$
 - Thus, we have an alignment a_i that indicates which word e_i "came from", specifically it came from f_{a_i} .
 - Given the alignments a, translation decisions are conditionally independent of each other and depend only on the aligned source word f_{a_i} .

- Simplest possible lexical translation model
- Additional assumptions
 - The m alignment decisions are independent
 - The alignment distribution for each a_i is uniform over all source words and NULL

```
for each i \in [1, 2, ..., m]
a_i \sim \text{Uniform}(0, 1, 2, ..., n)
e_i \sim \text{Categorical}(\boldsymbol{\theta}_{f_{a_i}})
```

for each $i \in [1, 2, ..., m]$ $a_i \sim \text{Uniform}(0, 1, 2, ..., n)$ $e_i \sim \text{Categorical}(\boldsymbol{\theta}_{f_{a_i}})$

$$p(\mathbf{e}, \mathbf{a} \mid \mathbf{f}, m) = \prod_{i=1}^{m}$$

for each
$$i \in [1, 2, ..., m]$$

$$a_i \sim \text{Uniform}(0, 1, 2, ..., n)$$

$$e_i \sim \text{Categorical}(\boldsymbol{\theta}_{f_{a_i}})$$

$$p(\mathbf{e}, \mathbf{a} \mid \mathbf{f}, m) = \prod_{i=1}^{m} \frac{1}{1+n}$$

for each
$$i \in [1, 2, ..., m]$$

$$a_i \sim \text{Uniform}(0, 1, 2, ..., n)$$

$$e_i \sim \text{Categorical}(\boldsymbol{\theta}_{f_{a_i}})$$

$$p(\mathbf{e}, \mathbf{a} \mid \mathbf{f}, m) = \prod_{i=1}^{m} \frac{1}{1+n} p(e_i \mid f_{a_i})$$

for each
$$i \in [1, 2, ..., m]$$

$$a_i \sim \text{Uniform}(0, 1, 2, ..., n)$$

$$e_i \sim \text{Categorical}(\boldsymbol{\theta}_{f_{a_i}})$$

$$p(\mathbf{e}, \mathbf{a} \mid \mathbf{f}, m) = \prod_{i=1}^{m} \frac{1}{1+n} p(e_i \mid f_{a_i})$$

for each
$$i \in [1, 2, ..., m]$$

$$a_i \sim \text{Uniform}(0, 1, 2, ..., n)$$

$$e_i \sim \text{Categorical}(\boldsymbol{\theta}_{f_{a_i}})$$

$$p(\mathbf{e}, \mathbf{a} \mid \mathbf{f}, m) = \prod_{i=1}^{m} \frac{1}{1+n} p(e_i \mid f_{a_i})$$
$$p(e_i, a_i \mid \mathbf{f}, m) = \frac{1}{1+n} p(e_i \mid f_{a_i})$$
$$p(\mathbf{e}, \mathbf{a} \mid \mathbf{f}, m) = \prod_{i=1}^{m} p(e_i, a_i \mid \mathbf{f}, m)$$

$$p(e_i, a_i \mid \mathbf{f}, m) = \frac{1}{1+n} p(e_i \mid f_{a_i})$$

$$p(e_i \mid \mathbf{f}, m) = \sum_{a_i=0}^{n} \frac{1}{1+n} p(e_i \mid f_{a_i})$$

$$p(e_i, a_i \mid \mathbf{f}, m) = \frac{1}{1+n} p(e_i \mid f_{a_i})$$

$$p(e_i \mid \mathbf{f}, m) = \sum_{a_i=0}^{n} \frac{1}{1+n} p(e_i \mid f_{a_i})$$

$$p(a, b, c, d) = p(a)p(b)p(c)p(d)$$

$$p(e_i, a_i \mid \mathbf{f}, m) = \frac{1}{1+n} p(e_i \mid f_{a_i})$$

$$p(e_i \mid \mathbf{f}, m) = \sum_{a_i=0}^{n} \frac{1}{1+n} p(e_i \mid f_{a_i})$$

$$p(e_i, a_i \mid \mathbf{f}, m) = \frac{1}{1+n} p(e_i \mid f_{a_i})$$

$$p(e_i \mid \mathbf{f}, m) = \sum_{a_i=0}^{n} \frac{1}{1+n} p(e_i \mid f_{a_i})$$

$$p(\mathbf{e} \mid \mathbf{f}, m) = \prod_{i=1}^{m} p(e_i \mid \mathbf{f}, m)$$

$$p(e_i, a_i \mid \mathbf{f}, m) = \frac{1}{1+n} p(e_i \mid f_{a_i})$$

$$p(e_i \mid \mathbf{f}, m) = \sum_{a_i=0}^{n} \frac{1}{1+n} p(e_i \mid f_{a_i})$$

$$p(\mathbf{e} \mid \mathbf{f}, m) = \prod_{i=1}^{m} p(e_i \mid \mathbf{f}, m)$$

$$p(e_i, a_i \mid \mathbf{f}, m) = \frac{1}{1+n} p(e_i \mid f_{a_i})$$

$$p(e_i \mid \mathbf{f}, m) = \sum_{a_i=0}^n \frac{1}{1+n} p(e_i \mid f_{a_i})$$

$$p(\mathbf{e} \mid \mathbf{f}, m) = \prod_{i=1}^m p(e_i \mid \mathbf{f}, m)$$

$$= \prod_{i=1}^m \sum_{a_i=0}^n \frac{1}{1+n} p(e_i \mid f_{a_i})$$

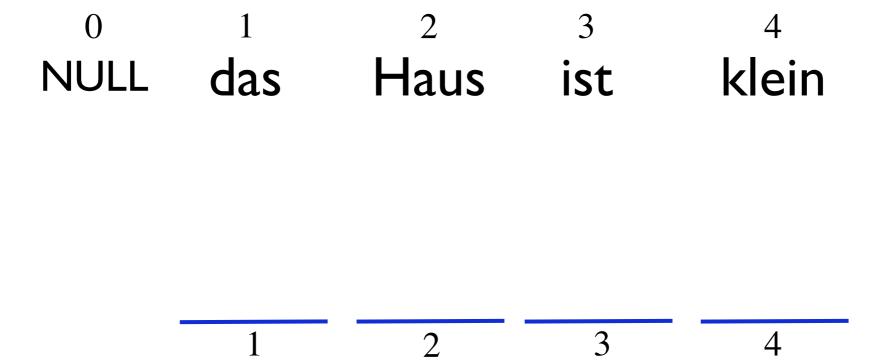
$$p(e_{i}, a_{i} | \mathbf{f}, m) = \frac{1}{1+n} p(e_{i} | f_{a_{i}})$$

$$p(e_{i} | \mathbf{f}, m) = \sum_{a_{i}=0}^{n} \frac{1}{1+n} p(e_{i} | f_{a_{i}})$$

$$p(\mathbf{e} | \mathbf{f}, m) = \prod_{i=1}^{m} p(e_{i} | \mathbf{f}, m)$$

$$= \prod_{i=1}^{m} \sum_{a_{i}=0}^{n} \frac{1}{1+n} p(e_{i} | f_{a_{i}})$$

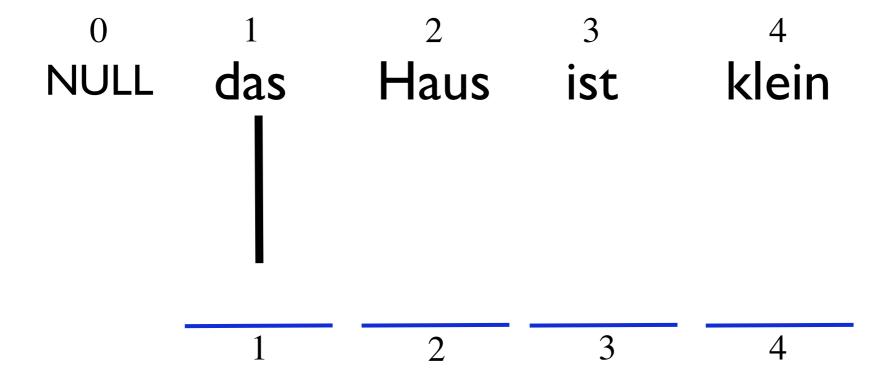
$$= \frac{1}{(1+n)^{m}} \prod_{i=1}^{m} \sum_{a_{i}=0}^{n} p(e_{i} | f_{a_{i}})$$

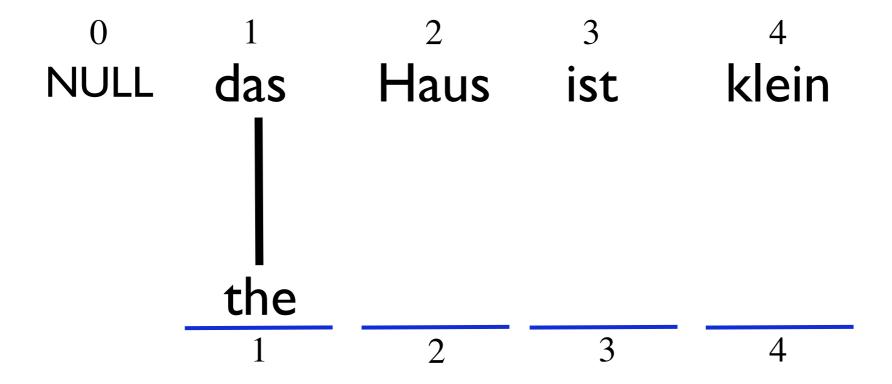


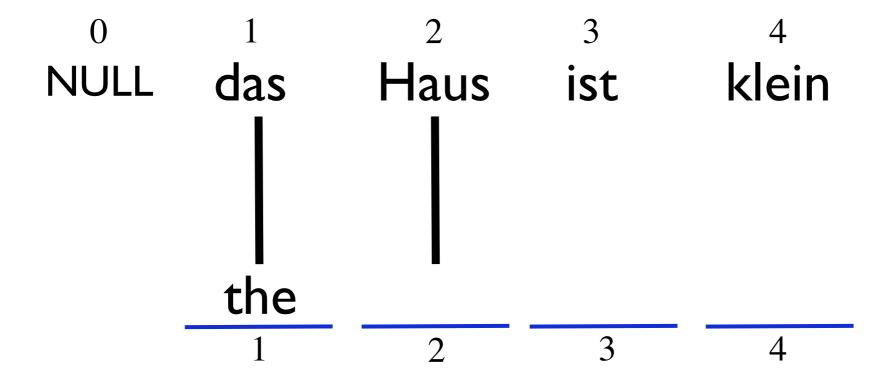
Start with a foreign sentence and a target length.

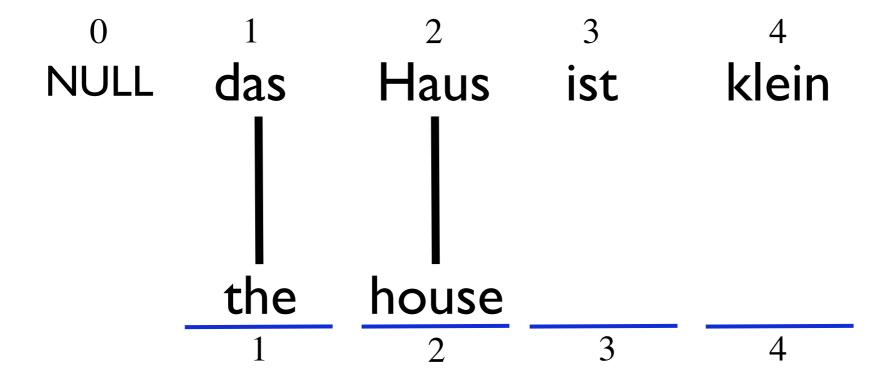
0 1 2 3 4
NULL das Haus ist klein

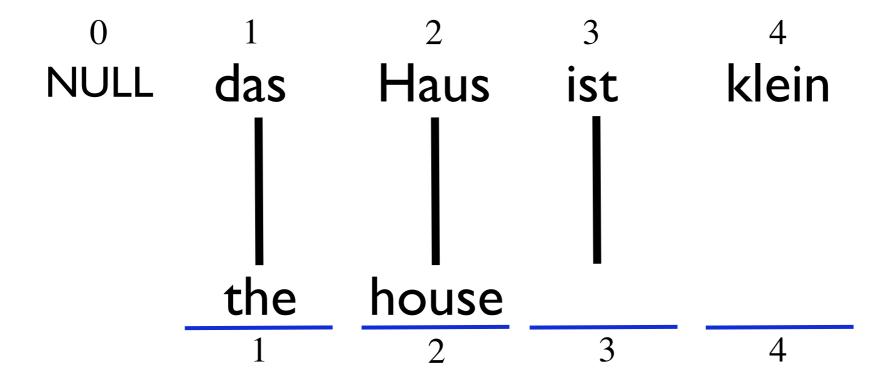
1 2 3 4

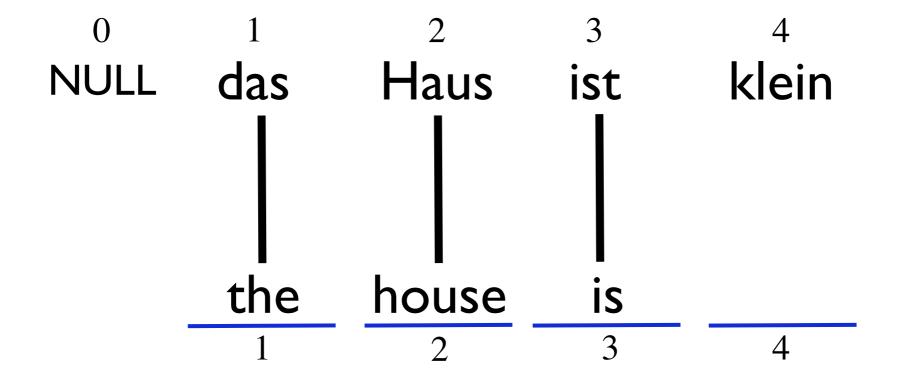


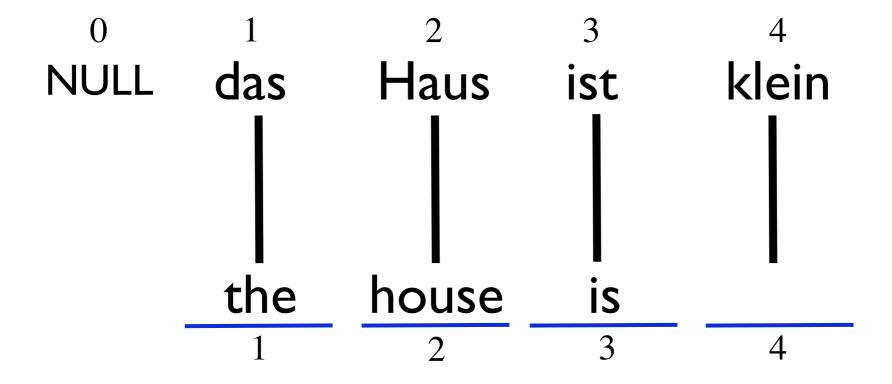


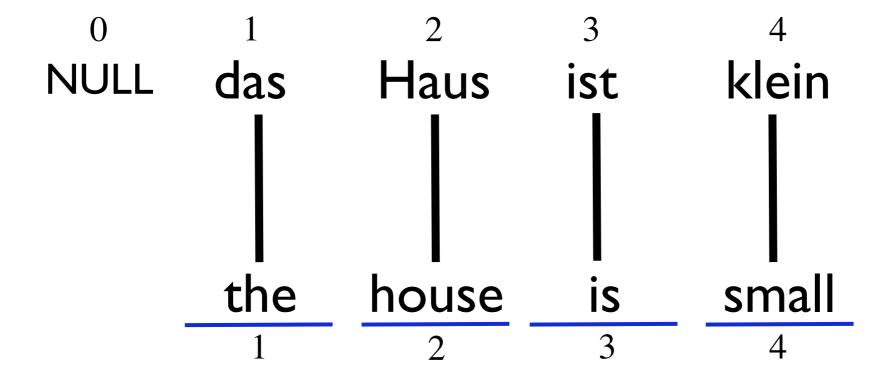






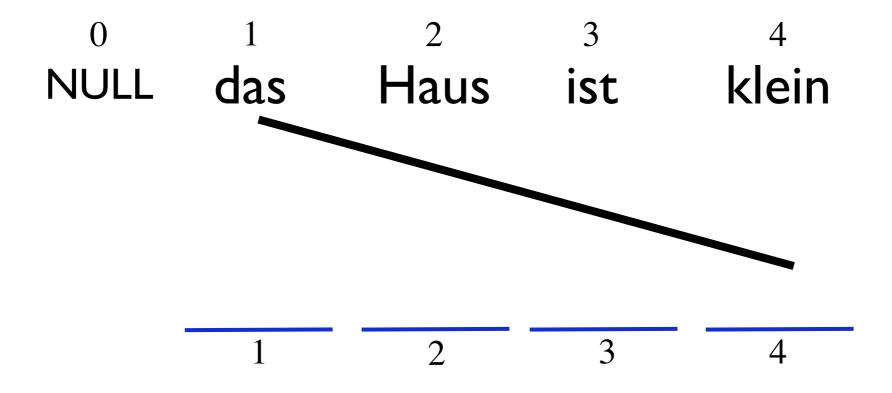


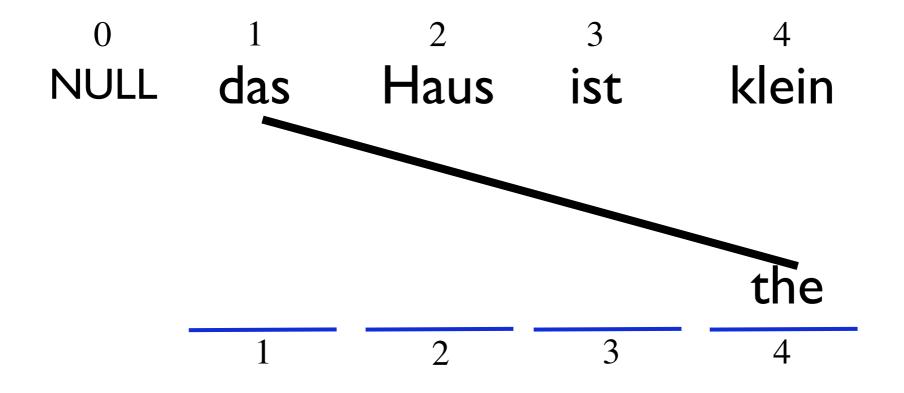


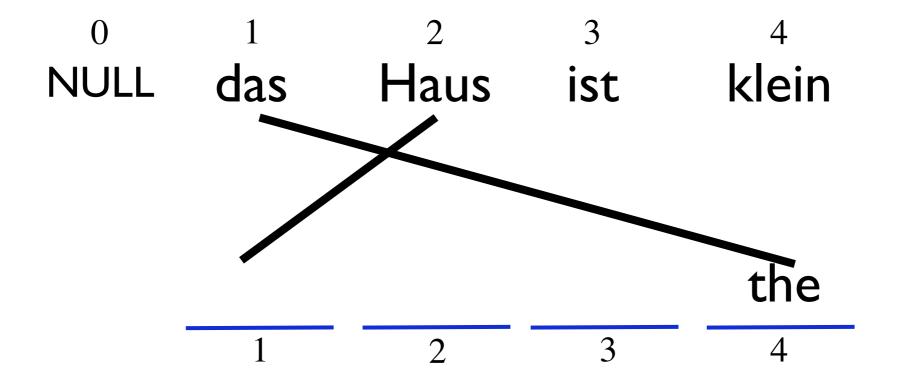


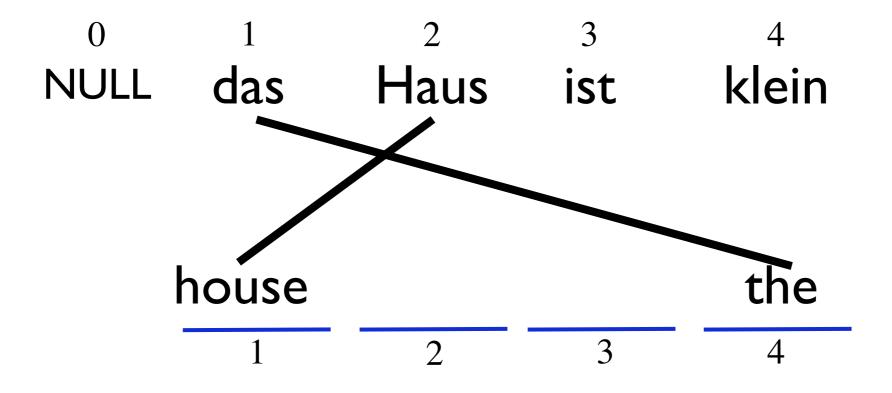
0 1 2 3 4
NULL das Haus ist klein

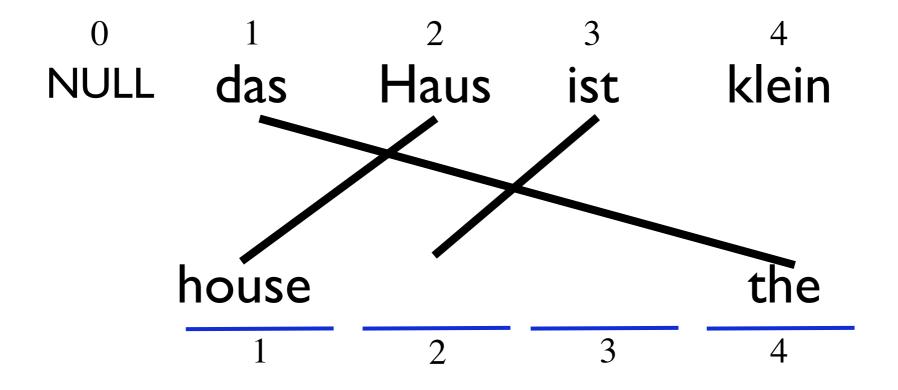
1 2 3 4

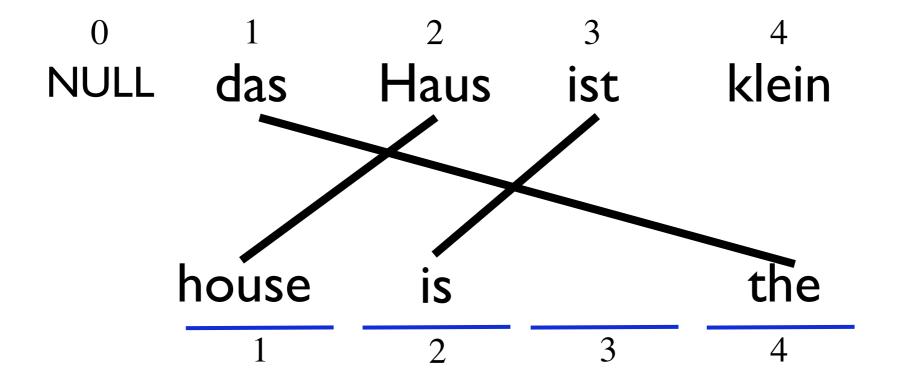




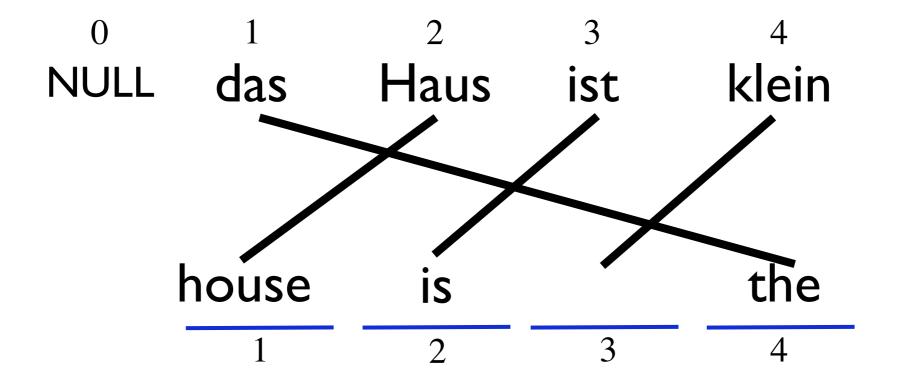




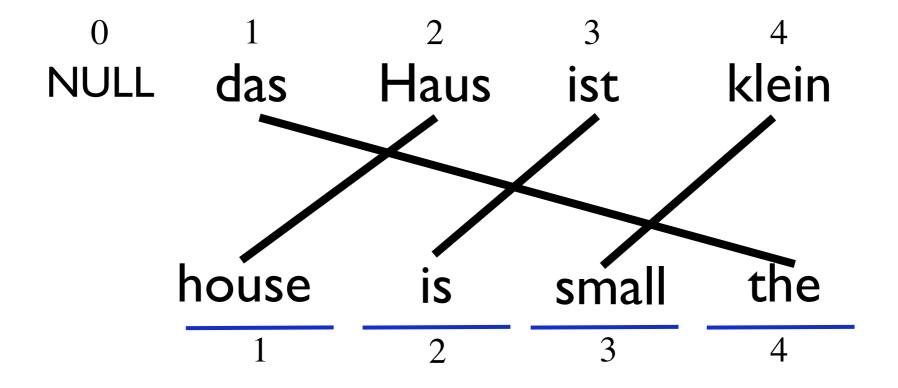


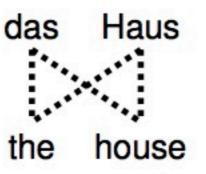


Example

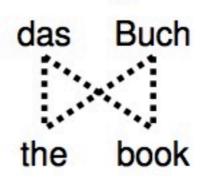


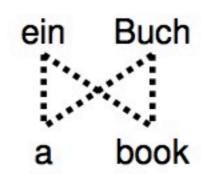
Example





e	f	initial					
the	das	0.25					
book	das	0.25					
house	das	0.25					
the	buch	0.25					
book	buch	0.25					
a	buch	0.25					
book	ein	0.25					
a	ein	0.25					
the	haus	0.25					
house	haus	0.25					

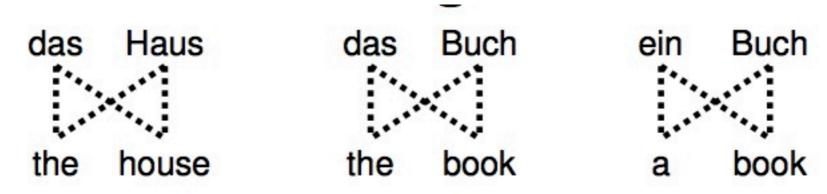




$$freq(\mathsf{Buch},\mathsf{book}) = \sum_i \mathbb{I}(ilde{e}_i = \mathsf{book}, ilde{f}_{a_i} = \mathsf{Buch})$$

$$\mathbb{E}_{p_{\mathbf{w}^{(1)}}(\mathbf{a}|\mathbf{f}=\mathsf{das}\;\mathsf{Buch},\mathbf{e}=\mathsf{the}\;\mathsf{book})}\sum_{i}\mathbb{I}[e_i=\mathsf{book},f_{a_i}=\mathsf{Buch}]$$

Convergence



e	f	initial	1st it.	2nd it.	3rd it.		final
the	das	0.25	0.5	0.6364	0.7479		1
book	das	0.25	0.25	0.1818	0.1208		0
house	das	0.25	0.25	0.1818	0.1313	••••	0
the	buch	0.25	0.25	0.1818	0.1208		0
book	buch	0.25	0.5	0.6364	0.7479		1
a	buch	0.25	0.25	0.1818	0.1313		0
book	ein	0.25	0.5	0.4286	0.3466		0
a	ein	0.25	0.5	0.5714	0.6534		1
the	haus	0.25	0.5	0.4286	0.3466		0
house	haus	0.25	0.5	0.5714	0.6534	•••	1

Evaluation

• Since we have a probabilistic model, we can evaluate **perplexity**.

$$PPL = 2^{-\frac{1}{\sum_{(\mathbf{e}, \mathbf{f}) \in \mathcal{D}} |\mathbf{e}|} \log \prod_{(\mathbf{e}, \mathbf{f}) \in \mathcal{D}} p(\mathbf{e}|\mathbf{f})}$$

	lter I	Iter 2	Iter 3	Iter 4	•••	lter ∞
-log likelihood	-	7.66	7.21	6.84	•••	-6
perplexity	-	2.42	2.30	2.21	•••	2

Hidden Markov Models

- GMMs, the aggregate bigram model, and Model I don't have conditional dependencies between random variables
- Let's consider an example of a model where this is not the case

$$p(\boldsymbol{x}) = \sum_{\boldsymbol{y}' \in \mathcal{Y}_{\boldsymbol{x}}} \eta(y_{|\boldsymbol{x}|} \to \text{STOP}) \prod_{i=1}^{|\boldsymbol{x}|} \eta(y_{i-1} \to y_i) \times \gamma(y_i \downarrow x_i)$$

EM for HMS

 What statistics are sufficient to determine the parameter values?

```
freq(q \downarrow x) How often does q emit x?

freq(q \rightarrow r) How often does q transition to r?

freq(q) How often do we visit q?
```

EM for HMS

 What statistics are sufficient to determine the parameter values?

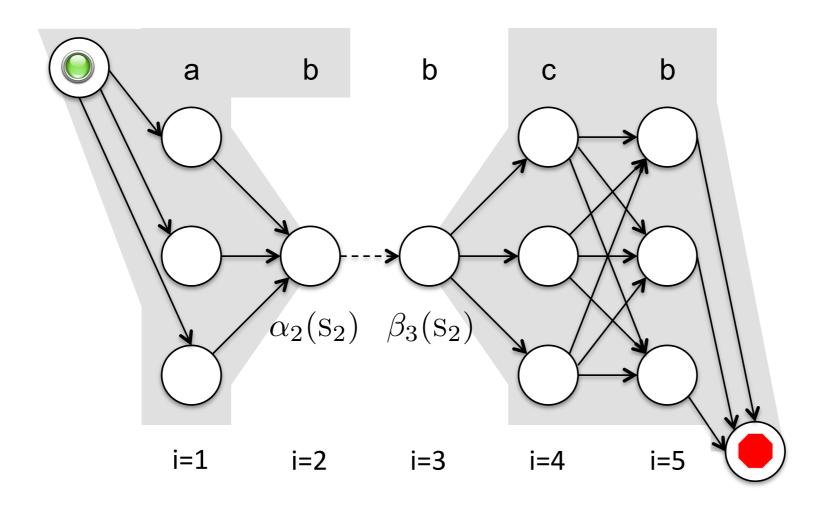
$$freq(q\downarrow x)$$
 How often does q emit x ?

 $freq(q\to r)$ How often does q transition to r ?

 $freq(q)$ How often do we visit q ?

And of course...

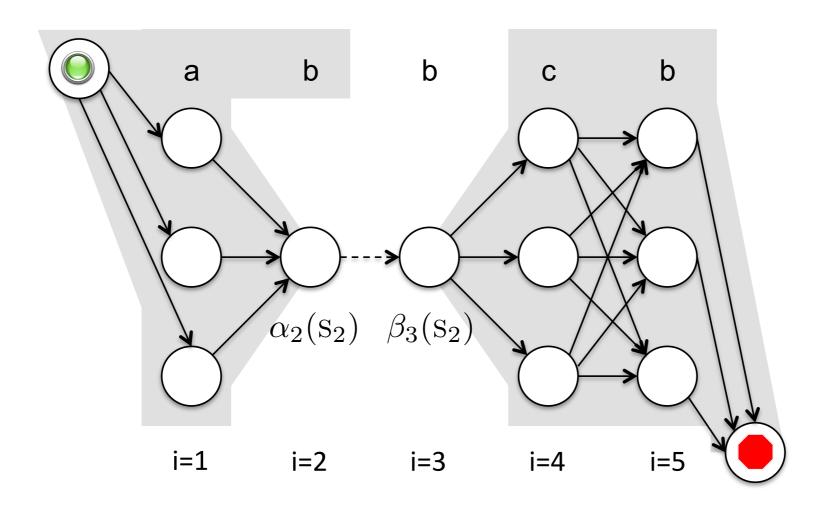
$$freq(q) = \sum_{r \in \mathcal{Q}} freq(q \to r)$$



$$p(y_{2} = q, y_{3} = r \mid \boldsymbol{x}) \propto p(y_{2} = q, y_{3} = r, \boldsymbol{x})$$

$$= \frac{\alpha_{2}(q) \times \beta_{3}(r) \times \eta(q \to r) \times \eta(r \downarrow x_{3})}{\sum_{q', r' \in \mathcal{Q}} \alpha_{2}(q') \times \beta_{3}(r') \times \eta(q' \to r') \times \eta(r' \downarrow x_{3})}$$

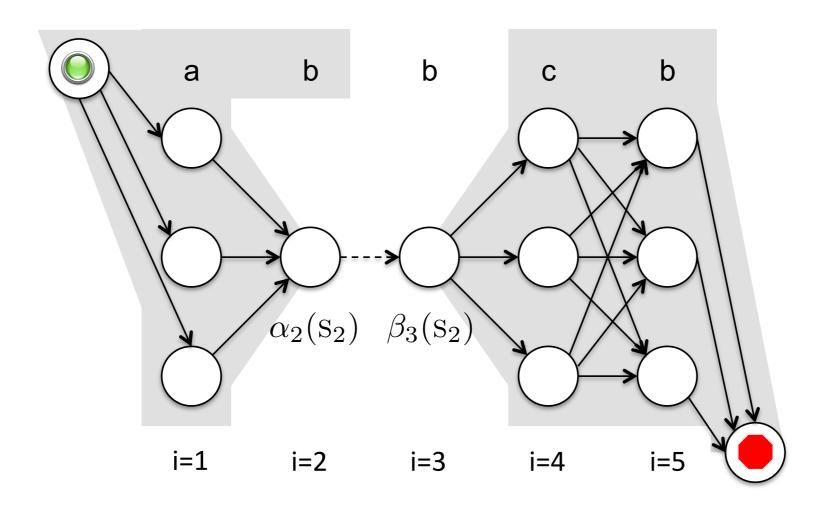
$$= \frac{\alpha_{2}(q) \times \beta_{3}(r) \times \eta(q \to r) \times \eta(r \downarrow x_{3})}{p(\boldsymbol{x}) = \alpha_{|\boldsymbol{x}|}(\text{STOP})}$$



$$p(y_{2} = q, y_{3} = r \mid \boldsymbol{x}) \propto p(y_{2} = q, y_{3} = r, \boldsymbol{x})$$

$$= \frac{\alpha_{2}(q) \times \beta_{3}(r) \times \eta(q \to r) \times \eta(r \downarrow x_{3})}{\sum_{q', r' \in \mathcal{Q}} \alpha_{2}(q') \times \beta_{3}(r') \times \eta(q' \to r') \times \eta(r' \downarrow x_{3})}$$

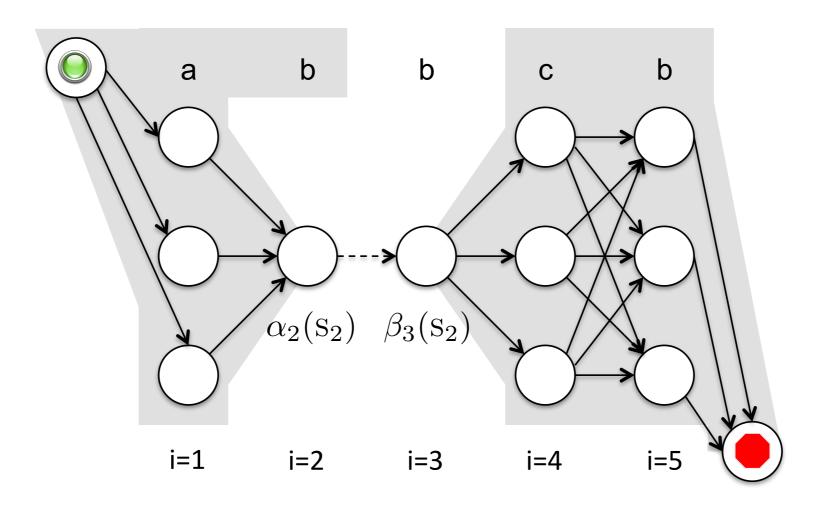
$$= \frac{\alpha_{2}(q) \times \beta_{3}(r) \times \eta(q \to r) \times \eta(r \downarrow x_{3})}{p(\boldsymbol{x}) = \alpha_{|\boldsymbol{x}|}(\text{STOP})}$$



$$p(y_2 = q, y_3 = r \mid \boldsymbol{x}) \propto p(y_2 = q, y_3 = r, \boldsymbol{x})$$

$$= \frac{\alpha_2(q) \times \beta_3(r) \times \eta(q \to r) \times \eta(r \downarrow x_3)}{\sum_{q', r' \in \mathcal{Q}} \alpha_2(q') \times \beta_3(r') \times \eta(q' \to r') \times \eta(r' \downarrow x_3)}$$

$$= \frac{\alpha_2(q) \times \beta_3(r) \times \eta(q \to r) \times \eta(r \downarrow x_3)}{p(\boldsymbol{x}) = \alpha_{|\boldsymbol{x}|}(\text{STOP})}$$



$$p(y_2 = q, y_3 = r \mid \boldsymbol{x}) \propto p(y_2 = q, y_3 = r, \boldsymbol{x})$$

$$= \frac{\alpha_2(q) \times \beta_3(r) \times \eta(q \to r) \times \eta(r \downarrow x_3)}{\sum_{q', r' \in \mathcal{Q}} \alpha_2(q') \times \beta_3(r') \times \eta(q' \to r') \times \eta(r' \downarrow x_3)}$$

$$= \frac{\alpha_2(q) \times \beta_3(r) \times \eta(q \to r) \times \eta(r \downarrow x_3)}{p(\boldsymbol{x}) = \alpha_{|\boldsymbol{x}|}(\text{STOP})}$$

$$p(y_2 = q, y_3 = r \mid \boldsymbol{x}) \propto p(y_2 = q, y_3 = r, \boldsymbol{x})$$

$$= \frac{\alpha_2(q) \times \beta_3(r) \times \eta(q \to r) \times \eta(r \downarrow x_3)}{\sum_{q', r' \in \mathcal{Q}} \alpha_2(q') \times \beta_3(r') \times \eta(q' \to r') \times \eta(r' \downarrow x_3)}$$

$$= \frac{\alpha_2(q) \times \beta_3(r) \times \eta(q \to r) \times \eta(r \downarrow x_3)}{p(\boldsymbol{x}) = \alpha_{|\boldsymbol{x}|}(\text{STOP})}$$

The expectation over the full structure is then

$$\mathbb{E}[freq(q \to r)] = \sum_{i=1}^{|\boldsymbol{x}|} p(y_i = q, y_{i+1} = r \mid \boldsymbol{x})$$

$$p(y_{2} = q, y_{3} = r \mid \boldsymbol{x}) \propto p(y_{2} = q, y_{3} = r, \boldsymbol{x})$$

$$= \frac{\alpha_{2}(q) \times \beta_{3}(r) \times \eta(q \to r) \times \eta(r \downarrow x_{3})}{\sum_{q', r' \in \mathcal{Q}} \alpha_{2}(q') \times \beta_{3}(r') \times \eta(q' \to r') \times \eta(r' \downarrow x_{3})}$$

$$= \frac{\alpha_{2}(q) \times \beta_{3}(r) \times \eta(q \to r) \times \eta(r \downarrow x_{3})}{p(\boldsymbol{x}) = \alpha_{|\boldsymbol{x}|}(\text{STOP})}$$

The expectation over the full structure is then

$$\mathbb{E}[freq(q \to r)] = \sum_{i=1}^{|\boldsymbol{x}|} p(y_i = q, y_{i+1} = r \mid \boldsymbol{x})$$

The expectation over state occupancy is

$$\mathbb{E}[freq(q)] = \sum_{r \in \mathcal{Q}} \mathbb{E}[freq(q \to r)]$$

$$p(y_{2} = q, y_{3} = r \mid \boldsymbol{x}) \propto p(y_{2} = q, y_{3} = r, \boldsymbol{x})$$

$$= \frac{\alpha_{2}(q) \times \beta_{3}(r) \times \eta(q \to r) \times \eta(r \downarrow x_{3})}{\sum_{q', r' \in \mathcal{Q}} \alpha_{2}(q') \times \beta_{3}(r') \times \eta(q' \to r') \times \eta(r' \downarrow x_{3})}$$

$$= \frac{\alpha_{2}(q) \times \beta_{3}(r) \times \eta(q \to r) \times \eta(r \downarrow x_{3})}{p(\boldsymbol{x}) = \alpha_{|\boldsymbol{x}|}(\text{STOP})}$$

The expectation over the full structure is then

$$\mathbb{E}[freq(q \to r)] = \sum_{i=1}^{|\boldsymbol{x}|} p(y_i = q, y_{i+1} = r \mid \boldsymbol{x})$$

The expectation over state occupancy is

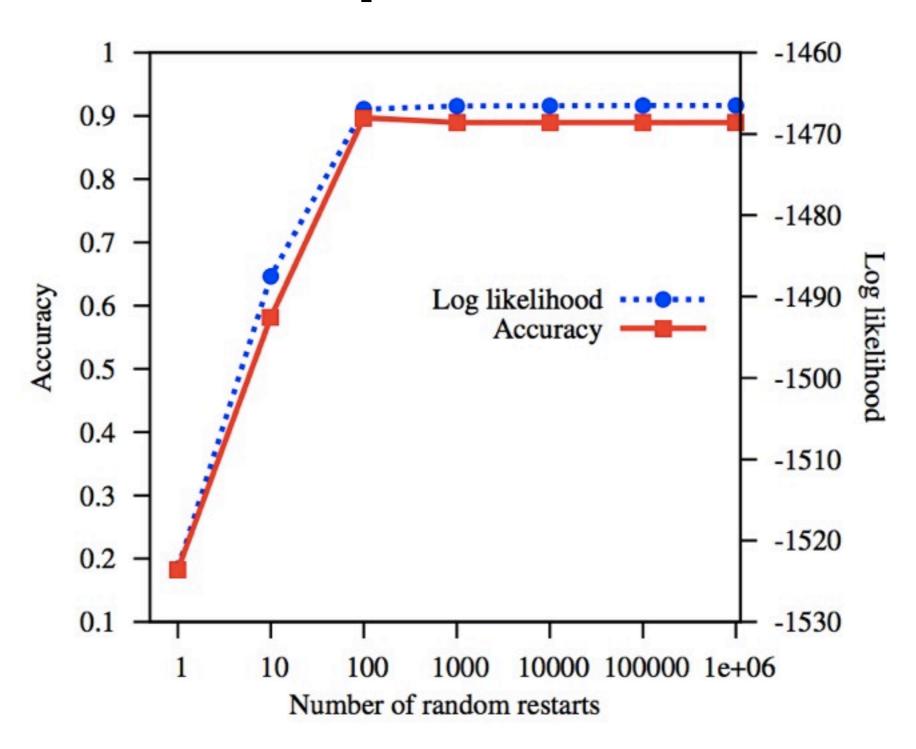
$$\mathbb{E}[freq(q)] = \sum_{r \in \mathcal{Q}} \mathbb{E}[freq(q \to r)]$$

What is $\mathbb{E}[freq(q\downarrow x)]$?

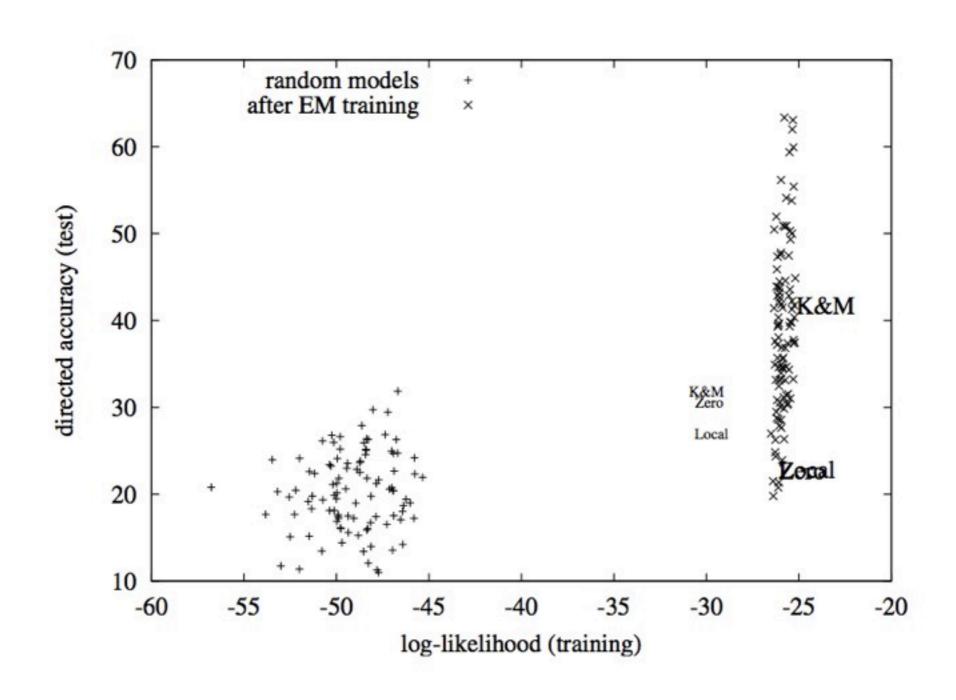
Random Restarts

- Non-convex optimization only finds a local solution
- Several strategies
 - Random restarts
 - Simulated annealing

Decipherment



Grammar Induction



Inductive Bias

- A model can learn nothing without inductive bias ... whence inductive bias?
 - Model structure
 - Priors (next week)
 - Posterior regularization (Google it)
- Features provide a very flexible means to bias a model

EM with Features

 Let's replace the multinomials with log linear distributions

$$egin{aligned} \eta(q
ightarrow r) &= heta_{q,r} \ &= rac{\exp \mathbf{w}^{ op} oldsymbol{f}(q,r)}{\sum_{q' \in \mathcal{Q}} \exp \mathbf{w}^{ op} oldsymbol{f}(q',r)} \end{aligned}$$

How will the likelihood of this model compare to the likelihood of the previous model?

EM with Features

 Let's replace the multinomials with log linear distributions

$$egin{aligned} \eta(q
ightarrow r) &= heta_{q,r} \ &= rac{\exp \mathbf{w}^{ op} oldsymbol{f}(q,r)}{\sum_{q' \in \mathcal{Q}} \exp \mathbf{w}^{ op} oldsymbol{f}(q',r)} \end{aligned}$$

How will the likelihood of this model compare to the likelihood of the previous model?

Learning Algorithm I

- E step
 - given model parameters, compute posterior distribution over transitions (states, etc)
 - lacksquare compute $\mathbb{E}_{q(oldsymbol{y})} \sum oldsymbol{f}(q,r)$
 - These are your "empirical" expectations

Learning Algorithm I

- M step
 - The gradient of the expected log likelihood of x,y under q(y) is

$$\nabla \mathbb{E}_{q(\boldsymbol{y})} \log p(\boldsymbol{x}, \boldsymbol{y}) = \mathbb{E}_{q} \sum_{q,r} \boldsymbol{f}(q,r) - \sum_{q,r} \mathbb{E}_{q} [freq(q)] \mathbb{E}_{p(r|q;\boldsymbol{w})} \boldsymbol{f}(q,r)$$

Use LBFGS or gradient descent to solve