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Abstract

Current methods for object detection, segmentation, and
tracking fail in the presence of severe occlusions in busy ur-
ban environments. Labeled real data of occlusions is scarce
(even in large datasets) and synthetic data leaves a domain
gap, making it hard to explicitly model and learn occlu-
sions. In this work, we present the best of both the real
and synthetic worlds for automatic occlusion supervision
using a large readily available source of data: time-lapse
imagery from stationary webcams observing street intersec-
tions over weeks, months, or even years. We introduce a new
dataset, Watch and Learn Time-lapse (WALT), consisting of
12 (4K and 1080p) cameras capturing urban environments
over a year. We exploit this real data in a novel way to au-
tomatically mine a large set of unoccluded objects and then
composite them in the same views to generate occlusions.
This longitudinal self-supervision is strong enough for an
amodal network to learn object-occluder-occluded layer
representations. We show how to speed up the discovery of
unoccluded objects and relate the confidence in this discov-
ery to the rate and accuracy of training occluded objects.
After watching and automatically learning for several days,
this approach shows significant performance improvement
in detecting and segmenting occluded people and vehicles,
over human-supervised amodal approaches.

1. Introduction
While there has been strong progress in data-driven

methods for object detection [10,14,20,40], tracking [7,58,
59, 62], segmentation [4, 22, 30, 39, 50] and reconstruction
[25,27,29,53] with limited occlusions, most methods under-
perform in severely occluded scenarios. Severe occlusions
are common in busy intersections and crowded places. Even
in less dense scenes, pedestrians and vehicles often pass
each other or pass behind other objects. As a result, objects
are either not detected at all, or the 2D bounding boxes and
segments are truncated and produce errors in downstream
processes such as 3D reconstruction [5, 6, 25, 41, 42, 45].

Much of this state of affairs can be attributed to the
fact that occlusions are treated as noise that must be over-

Figure 1. We visualize the prediction of amodal representation
of vehicles and people under severe occlusions trained using our
longitudinal self-supervision framework. The method shows sig-
nificant improvement in amodal detection and segmentation with
images captured from different cameras.

come by robust measures [16, 17, 23, 36, 52, 57]. There are
several challenges that make this strategy hard to succeed.
First, it is much harder to label object bounding boxes or
segments that are occluded, even for humans [47, 49, 63].
Thus, even large datasets like COCO [38] and ImageNet
[34] have relatively few objects labeled that are severely oc-
cluded [47, 63]. This creates a strong bias against learning
robustness to occlusions [11,46,56]. Further, the evaluation
metrics are often reported on the entire datasets [9, 18, 38]
that could hide problems in occluded scenarios.

As a result, there is growing recognition that occlusions
must be explicitly modeled and learned [15, 19, 30, 30, 48,
61]. This has led to new efforts in labeling occlusions ex-
plicitly in multiple datasets [21, 47, 63]. Using such super-
vision, amodal, or holistic, representations (e.g. segmenta-
tions and bounding boxes) of objects are learned from par-
tially occluded observations [28, 54, 60]. While producing
significantly better results than before, these commendable
efforts are still plagued by the same challenges - difficulty
for humans to label occlusions in real scenes and the lim-
ited dataset size. To supplement such limited data, focus
has turned toward synthesizing objects in occluded scenar-
ios using synthetic inpainting [30, 31, 60] using computer
graphics [1,13,24]. CG can generate a large amount of data
for supervision (given today’s cloud computing resources)
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but even the best renderers [8,12,44] leave a notable domain
gap to the real data, which needs to be bridged [33, 51].

In this work, we present the best of both the real and
synthetic worlds for automatic occlusion supervision us-
ing a large source of hitherto unexploited data: time-lapse
imagery from stationary cameras observing street intersec-
tions over weeks, months, and even years1. We exploit this
data in a novel way to first mine a large dataset of real un-
occluded objects over time and then use them to synthe-
size a large number of occlusion scenarios. We develop a
new method to classify unoccluded objects based on the
idea that when objects on the same ground plane occlude
one another, their bounding boxes overlap in a particular
common configuration. Once unoccluded objects are dis-
covered, they are composited in layers back into the same
scene. These compositions have artifacts that perhaps do
not make them too useful for visualization. But they are
close enough to real data to reduce the domain gap for a
deep network that explicitly predicts the object, its occluder,
and the occluded.

Being patient pays off here. Over time, our method dis-
covers tens of thousands of unoccluded objects at diverse
positions, orientations, and appearances due to lighting and
weather conditions, even in busy scenes. We speed up this
discovery by combining sparse time sampling of the data
with burst local tracking. This step reduces the required ob-
servation period from many months to several days (images
captured every few mins.). The data enables us to analyze
the performance of our approach over different durations
and confidences of self-supervision. Specifically, we re-
late the confidence in unoccluded object prediction to the
rate and accuracy of training occluded objects. In the be-
ginning, including lower confidence predictions increases
more supervision to speed up training, but is quickly passed
by training only on high confidence supervisions.

We introduce a new dataset, Watch and Learn Time-lapse
(WALT), consisting of 12 (4K or 1080p) cameras capturing
urban environments over a year. The cameras view a di-
verse set of scenes from traffic intersections to boardwalks.
The performances of pedestrian and vehicle detection and
segmentation improve significantly on all cameras. Like
in [32, 49, 57], we report performances at different levels of
occlusion and show that the performance drops more slowly
as occlusion increases, compared to methods that do not use
longitudinal self-supervision. Because of this, we achieve
strong results in detecting and tracking objects as they pass
each other - a common failure mode of existing approaches.
The methods we present are simple but provide an effective
baseline to inspire future work on exploiting longitudinal
supervision for computer vision under strong occlusions.

1In the past decades, much analysis on time-lapse data was conducted
for illumination and weather understanding [35] [43], object insertion and
rendering, from thousands of webcams all over the world [2, 26, 37].

Figure 2. Illustrating the region used to classify unoccluded (Blue)
and occluded objects (Red) using planar based IOU (Green) for
different categories of objects like vehicles and people.

2. Watch and Learn Amodal Representation

We address the problem of layer representation of objects in
a scene under severe occlusions. We propose a continuous
learning framework to resolve occlusion ambiguities from
images. Initially, given a time-lapse stream of data from a
stationary camera, we detect and mine all the unoccluded
objects over a long duration of time. These unoccluded ob-
jects collected over time automatically act as supervision
that we term longitudinal self-supervision. We follow a clip
art-based integration method to place these unoccluded ob-
jects within the scene at the same detected location but over-
lapping with another unoccluded object from the database.
This generates many realistic occlusion configurations for
training a network to disentangle holistic object segmenta-
tion from a cluttered scene. We further show how to speed
up the training for learning amodal representations by track-
ing around unoccluded detections.

2.1. Unoccluded Object Mining

We exploit the time-lapse data in a novel way to mine a large
dataset of real unoccluded objects over time. We develop
a new method to classify unoccluded objects based on the
idea that when objects on the same ground plane occlude
one another, their bounding boxes overlap in a particular
common configuration.

Preprocessing Videos: On the time lapse feed from a cam-
era, we run instance segmentation [40] on each frame. We
use Intersection-Over-Union based tracker [3] to track the
detected bounding box and segmentation. We represent the
detections as Dt0....tN

m=0,...,M , where tN represents time, while
N represents the number of images and m corresponds to
the index of the object from a total of M detections.

Occlusion Classification: We locate and segment unoc-
cluded objects in the scene from time lapse video se-
quences. The unoccluded objects are detected by exploiting
overlap between objects detected in an image as shown in
Fig 2. For every detection Di at time instance tj , we com-



Figure 3. We illustrate generated training images(top) from Clip Art WALT dataset. The synthesized Ground-Truth amodal segmentation
map(bottom) captures multiple layers(darker represents higher order of occlusion) of occlusions for training. The Clip Art images have
realistic occlusions because the inpainting is performed by superimposing the object at the same location as it was observed but from
varying time instances.

pute the occlusion indicator O(D
tj
i ) using

O(D
tj
i ) =

{
0, if Dtj

i ∩Dtj = 0 or B(D
tj
i ) ∩Dtj < δ

1, otherwise.
(1)

We use two hypotheses to classify the detected objects as
occluded or fully visible. The first constraint is that the
bounding box should not intersect any other detected ob-
jects Dtj from the same time instance. Secondly, for every
overlapping bounding box, we disentangle the occluded ob-
ject and the occluder assuming planar constraints. When
both objects are on the same plane, we observe that the bot-
tom of the occluded bounding box always intersects with
another bounding box from the scene. We exploit this ob-
servation and find the intersection of the occluding bound-
ing box with the bottom of the occluded bounding box
B(D

tj
i ). If the intersection is larger than a threshold δ, we

classify the object as occluded. This classification is com-
puted iteratively over all the detections Dt0....tN

m=0,...,M and un-
occluded object detections and segmentations are extracted.

2.2. Clip-Art based Self-Supervision

Once unoccluded objects are discovered, they are compos-
ited in layers back into the same scene as shown in Fig 3.
These are close enough to real data to reduce the domain
gap for a deep network that explicitly predicts the object, its
occluder, and the occluded.
Background Computation: Given a sequence of images
from a stationary camera, we compute the median image by
finding the median RGB value per pixel from a collection
of images. Since the camera is captured throughout the day
and in different weather computing a single median image
is unrealistic. To create realistic background images, we
generate median images for varying imaging conditions like
time of the day or different weather i.e. sunny, rainy, etc.
This is computed by sampling the images under different

conditions. We also compute the spatial distribution of the
object occurrence for each median image to simulate the
occlusion patterns similar to the real-world images.

Generating Layered Representation: We randomly select
a background image and its object occurrence data distribu-
tion. We sample P unoccluded objects from the data distri-
bution Dt0....tN

m=0,...,M where O(D
tj
i ) == 0; i ∈ P . These

sampled objects and their segmentation masks are segre-
gated into different layers for generating varied occlusions
of the scene. We iterate through each layer and composite
the objects onto the background image using the segmenta-
tion masks. Since they are composited layer-wise onto the
image, an amodal segmentation map is automatically gen-
erated using the segmentation mask for all the objects in
the scene. Since we use longitudinal information (images
over a long period of time) to generate these objects the
network learns from large variations of objects as well as
different occlusion configurations. The composited image
and the amodal segmentation map are passed to the network
for training the Amodal Representation.

2.3. Watch and Learn Time-lapse Network

We learn the amodal representation of the scene by train-
ing a network using the composite image and its amodal
segmentation map as shown in Fig 4. The input image is
passed through a backbone network [40] to produce fea-
ture maps. The feature map produced from the backbone
is passed through the box head [55] to produce an amodal
bounding box. The amodal bounding box is combined with
the feature map to produce the amodal segmentation by
learning Object-Occluder-Occluded interaction.

Amodal Bounding Box: The feature map from the back-
bone is passed through the box head to compute the amodal
bounding box hypothesis. We train this box head using
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Figure 4. The composite images are passed through our Network to train for amodal representations of the scene. The feature map from
the backbone is passed through the box head to produce the amodal bounding box. This bounding box is combined with the feature map
from the backbone to produce an ROI feature. The ROI feature is used to train for amodal segmentation. The key to predicting holistic
object representation is to understand the occluder and the occluded objects in the amodal bounding box. The features from occluder and
occluded are concatenated with the ROI feature to produce accurate amodal segmentation. We supervise this network with a segmentation
map generated using Clip-Art based Self-Supervision.

FCOS [55] based losses as:

LAmodalBox = LRegression + LCenterness + LClass (2)

The ground truth bounding box is computed using
the amodal segmentation map obtained by compositing.
Bounding box hypotheses are combined with the backbone
feature map to learn the amodal segmentation network.
Object-Occluder-Occluded Interaction: We learn the
interaction between the object and other layers present
in the bounding box. Every amodal bounding box
has three components i.e. the object we want to detect
(amodal object(AO)), object occluding the amodal ob-
ject (occluder(OR)), objects occluded other than back-
ground(occluded(OD)). To learn a holistic representation
of the object, the interaction of the object with both the
occluder and occluded must be exploited by the learning
framework. To train for such interactions we propose using
different modules for each of the categories. The occluder
network takes as input the ROI features and predicts the oc-
cluder layer in the amodal bounding box. The occluded net-
work predicts the occluded layer of the amodal bounding
box from the ROI features. The object network predicts the
amodal object segmentation by robustness to the occluder
and the occluded. We combine the occluder and occluded
features with the object features to make the network robust
to different occlusions. We use both the boundary and seg-
mentation mask to learn the amodal segmentation. We train
the boundary for each component using the loss function
LB :

LB
M = LBCE(WBF

B
M , GTB

M ) (3)

We train the segmentation for each component using the
loss function LS :

LS
M = LBCE(WSF

S
M , GTS

M ) (4)

Here, M ∈ [AO,OR,OD] denotes different network com-
ponents, and LBCE denotes binary cross-entropy loss be-
tween the Ground-Truth GT and the predicted heatmap.
WS and WB denote the weights trained for segmentation
and boundary respectively. FS

M and FS
M are the computed

feature map for segmentation and boundary respectively for
each M . To make the amodal segmentation robust, we com-
bine the occluder FOC , occluded FOD and input feature
maps to produce the amodal object feature map FAO.
End-to-End Parameter Learning: The whole amodal rep-
resentation framework can be trained in an end-to-end man-
ner defined by a multi-task loss function L as,

L = λbLAmodalBox + LAO + LOR + LOD (5)

LObject = λS
AOL

S
AO + λB

AOL
B
AO (6)

where, LAO,LOR,LOD are losses for Amodal object, Oc-
cluder and Occluded networks, respectively. As shown in
Eq(6), for each layer the loss is a summation of the bound-
ary loss and the segmentation loss. Similar to Eq(6), we
compute the boundary and segmentation loss for both the
occluder and occluded layers. Finally the network is trained
with an end-to-end framework optimizing all the losses.

2.4. Speeding Up Amodal Learning

The accuracy of the amodal representation is affected by
the quality and quantity of the unoccluded objects. We
speed up the discovery of unoccluded objects by combin-
ing sparse time sampling of the data with burst local track-
ing. This step reduces the required observation period from
many months to several days (images captured every few
mins.). We discover nearly 3 times more unoccluded ob-
jects with different thresholds of detection using this strat-
egy, as shown by the thin transparent lines on the left of Fig
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Figure 5. We compare the number of detected unoccluded ob-
jects (bold) using our unoccluded tracking framework compared
to uniform sampling (transparent) on the left image. Using the
new module, achieving high accuracy faster(within 15 days) com-
pared to uniform sampling for nearly all thresholds of γ (right).

5. These additional mined unoccluded objects speed up the
training by more than 5 times and plateau in just 14 days
of observation as shown in Fig 5 for different thresholds δ.
Another important insight is that the network learns faster
with higher δ but loses accuracy as the mined unoccluded
objects are erroneous. On the other hand, lower δ shows
that the network takes longer to learn but gains accuracy
with the addition of more samples. We reduce δ linearly
with the number of days captured for faster training.

3. Dataset and Metrics
We introduce a new dataset, called WALT, of 12 (4K and
1080p) cameras capturing data over a year in short bursts.
Further, we propose a novel evaluation method using sta-
tionary objects to improve on the shortcomings of human-
annotated or synthetic datasets on real images.
Watch And Learn Time-lapse (WALT) Dataset: The
dataset consists of 6 4K resolution cameras setup by us and
6 1080p YouTube public live streams. The cameras over-
look public urban settings analyzing the flow of traffic and
people with severe occlusions, as shown in Fig 6. We used
4 cameras from our setup and 6 cameras from YouTube for
training. Data captured from 2 cameras are used for testing.
The data is captured for 3-second bursts at 30 FPS every few
minutes. Only the images with notable changes from the
previous image are stored. This results in storing approxi-
mately 5000 images per day for a year. We will be releas-
ing months of data captured from cameras set up by us and
publish a live stream video of the cameras on YouTube for
research purposes. The code to automatically capture and
process data from YouTube live streams will be released.
Potential Societal Impact: We do not perform any human
subject studies from these cameras. To discourage any hu-
man subject study and preserve the privacy of the object
captured in the images, we blur the faces and license plates
in all the images to be released. The data is captured in short
bursts around random time instances to discourage identifi-
cation of movement patterns of particular persons or vehi-
cles. This study is designated as non-human subjects re-
search by our Institutional Review Board (IRB).

Figure 6. Sample visualizations from the WALT(Right) and Ren-
dered WALT(Left) dataset. The dataset contains diverse objects
with severe occlusions captured over years. The results show sig-
nificant performance in amodal representation learning on such
large scale real data for the first time.

Rendered WALT Dataset(RWALT): We replicate the
WALT Dataset using computer graphics rendering [8]. We
use a parking lot 3D model and simulate object trajectories
similar to the real-world parking lot. We render 1000 time-
lapse images of the scene from multiple viewpoints. The
cameras for rendering are placed on the dashboard of the
vehicles or on infrastructure around the parking lot. Sample
rendered images from the dataset are shown in Fig 6. We
use rendering from 100 cameras for training and 20 cam-
eras for testing. We use the dataset to compute the ablation
study of the network using Ground-Truth from rendering.
Metrics: We use average precision (AP) for evaluating
bounding box and segmentation accuracy throughout our
experiments unless specified otherwise. We evaluate our
method on three different categories of data generated from
the WALT Dataset: the Rendered WALT Dataset (RWALT),
Clip Art WALT Dataset (CWALT), and Stationary Objects
WALT Dataset (SWALT). For the Rendered WALT Dataset,
the amodal representation is computed on the synthetic im-
age and compared to the Ground-Truth silhouette produced
from rendering. For Clip Art WALT Dataset, we compute
the unoccluded objects for 90 days on the test and train cam-
eras of the WALT Dataset and synthesize 10000 composite
images per camera using the method from Sec 2.2. We pass
the layered image through the network and compare the re-
sults with generated Ground-Truth for test images.
Stationary Object-Based Evaluation (SWALT): Since
human annotators can only hallucinate the object extent in
the occluded region, their labeling is not reliable. To cir-
cumvent this problem, we propose using consistency in sta-
tionary object segmentation and detection under occlusions
as a metric to quantify the accuracy of the algorithm. From
the test set of WALT, we mine unoccluded stationary ob-
jects by clustering objects detected at the same location. We
use unoccluded bounding box and segmentation of the sta-
tionary object as ground truth to compare predictions when
the object is occluded by another object at a different time
instance. The mean Intersection-over-union (IOU) between
the Ground Truth and prediction is computed for the station-



Dataset Amodal Object(AO) Occluder(+OR) Occluded(+OD)
B M BM B M BM B M BM

RWALT 55.3 60.5 61.4 64.2 65.5 66.3 66.2 67.9 68.1
CWALT 62.3 65.5 66.1 70.2 71.2 73.2 73.9 74.2 75.3

Table 1. Ablation analysis of the proposed learning architecture
on Rendered and CWALT Dataset. Note that each component .i.e
Occluder (+OR) and Occluded (+OD) network improves the accu-
racy of segmentation. Training with Boundary(B) and Segmenta-
tion Mask(M) consistently outperforms models trained only with
Boundary or Segmentation Mask.

ary object when it is occluded by greater than a threshold of
γ. γ is computed as the overlap between the Ground-Truth
bounding box and the bounding box of other objects in the
scene. Using this strategy, we extracted 536 stationary ob-
jects observed over 60k frames for evaluation.

4. Evaluations and Ablation Analysis
The performances of pedestrian and vehicle detection and
segmentation improve significantly in all of the cameras.
we report performances at different levels of occlusion and
show that the performance drops more slowly as occlusion
increases, compared to methods that do not use Clip-Art
Based self-supervision.
Notations: Modal represents a model trained using visi-
ble segmentations or bounding boxes, while Amodal uses
our amodal supervision. In Amodal methods, just using the
Amodal object network is represented as AO, while adding
just occluder network as +OR. +OD is given as a com-
bination of final layers from both occluder and occluded
networks. B and M represent boundary and segmentation
Mask respectively, while BM represents training jointly.
Occluder and Occluded Networks Analysis: We observe
that adding features from the occluder and occluded net-
works to the amodal object prediction network increases the
accuracy of amodal segmentation for the Rendered WALT
Dataset and the Clip Art WALT Dataset as shown in Fig 1.
We observe robust segmentation accuracy with an increase
in occlusion percentage when using the occluder and oc-
cluded networks in Fig 7 for both vehicles and people.
Boundary and Mask Prediction Analysis: Segmenta-
tion based methods are observed to be better than bound-
ary based methods. We observe that combining the object
boundary with segmentation mask consistently improves
accuracy on both the Datasets as shown in Tab 1.
Robustness to Occlusions: We evaluate the accuracy of
our algorithm with different percentages of occlusions us-
ing CWALT Dataset. We use the Ground-Truth segmenta-
tion masks from the dataset to group objects based on the
percentage of occlusion. Fig 7 shows the accuracy of detec-
tion and segmentation on the Clip Art WALT Dataset with
different occlusion percentages. Clearly, we observe that
the proposed method is very robust to occlusion compared
to other methods for both people and vehicles.
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Figure 7. Comparative analysis of Segmentation and Detection
accuracy of people and vehicles. Clearly Amodal(Holistic Rep-
resentation) based methods outperform Modal(only visible repre-
sentation) based methods in detection and segmentation. Addition
of each Network(AO, +OD, +OR) to amodal training improves
accuracy of segmentation for severely occluded scenarios. At 50
% occlusion we observe nearly 90 % and 60 % improvement in
detection accuracy compared to modal based for people and ve-
hicle respectively. Similarly, at 50 % occlusion we observe 20
% and 12 % improvement in segmentation accuracy compared to
Occluder(+OR) for people and vehicles respectively.
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Figure 8. Heatmap of accuracy with different occlusion levels over
time on the CWALT Dataset. Observe that the accuracy improves
drastically with time for severe occlusions(.i.e >50%) emphasis-
ing that our framework learns robust amodal segmentation.

Occlusions Over Time: We analyze the accuracy of
amodal representation with respect to training data from dif-
ferent lengths of the Clip Art WILD dataset, in Fig 8. The
N-th day plot corresponds to a model trained with N days of
unoccluded object detection. We observe from the heatmap
that the accuracy increases with time as more unoccluded
objects are used to train but decrease with occlusion per-
centage. We further observe that accuracy improves over
time for more severe occlusions, emphasizing that longitu-
dinal learning is important to handle severe occlusions.
Comparison to Human Annotated Datasets: We reit-
erate that human annotations, especially for strong occlu-
sions, are imprecise to learn amodal representations. Com-
pared to human annotated datasets i.e. KINS or COCOA,
our SWALT based evaluation methodology produces more
accurate ground truth. Further, SWALT methodology gen-
erates much larger test sets compared to any existing human



Figure 9. Accurate amodal segmentation of vehicles during occlusion while passing each other(Top) or when a vehicle is parking. Our
method is able to provide consistent segmentation and detection of all the vehicles in severe occlusions and motions. This can lead to a
drastic improvement in tracking objects with occlusions.

Figure 10. Accurate prediction of amodal segmentation of people
when a person passes by another(top) or when they walk occlud-
ing throughout the video(bottom). Such representation directly ex-
trapolates to improved tracking of people in generic videos.

KINS COCOA SWALT
γ = 0.01 γ = 0.5

ASN 24.9 29.6 79.4 76.91
BCN 27.3 32.7 82.79 77.44
Ours 27.9 33.1 83.6 78.2

(a) Trained on KNIS [47]+COCOA [63]

CWALT SWALT
γ = 0.01 γ = 0.5

ASN 66.1 83.1 81.9
BCN 73.2 89.9 88.3
Ours 75.3 92.19 91.7

(b) Trained on CWALT

Table 2. Amodal Segmentation comparisons trained on Human
annotated datasets (a) and Clip-Art WALT Dataset (CWALT) (b)
with respect to three different network architectures ASN [47],
BCNet [63] and Ours. Tab. 2a shows that Human annotated
dataset training only achieves around 78% accuracy on SWALT.
On the other hand, Tab.2b reports 91.7% accuracy on SWALT
showing the advantage of training on CWALT. In fact, all methods
show improvement on SWALT by training on CWALT. γ repre-
sents the percentage of occlusion for each object in SWALT but
needs further study to report for human-annotated datasets.

annotated datasets (60K images from WALT dataset com-
pared to 6157 images in KINS dataset) and is expected to
grow significantly as data is captured from more cameras in
the following years. Scaling human annotations on such
expanding datasets is costly and infeasible and our self-
supervision based methodology automatically generates ac-
curate and large training and testing datasets for amodal
evaluation. Nonetheless, we report accuracy of our method
when trained on Human annotated datasets and tested on
KINS, COCOA and SWALT in Tab 2a. Our method slightly
outperforms previous methods here.

Comparisons to other Networks: We analyze the ad-
vantage of training/testing different methods on our data
(CWALT/SWALT). The test scores show improvement in
amodal accuracy as compared to other methods. In fact,
all methods improve by training on CWALT and testing on
SWALT as shown in Tab 2b. We show a qualitative compar-
ison of these methods on multiple real-world images with
severe occlusions in Fig 11.
Robust Tracking Using Amodal Representations: We
demonstrate that learning robust amodal representation au-
tomatically improves tracking of severely occluded objects,
as shown in Fig 10 for people and Fig 9 for vehicles. Specif-
ically, observe that the objects are well-segmented and con-
sistent across frames with various levels of occlusions. See
supplementary material for more results and videos.

5. Conclusion and Limitations
Limitations: Generalization of the amodal segmentation on
new cameras that view significantly different scenes needs
to be analyzed. Speeding up learning rate even further needs
to be investigated for broader application of our approach.
Conclusion: This work demonstrates that real longitudinal
data can be used effectively to self-supervise amodal
learning. The key insight is that it is easier to discover
unoccluded objects accurately and quickly (over several
days) and use them to learn amodal segmentations from
any stationary camera observing a scene over time. The
confidence of this discovery can be used as a quasi-learning
rate to speed up amodal training of occluded objects. We
introduce a new dataset, called WALT, of 12 (4K and
1080p) cameras capturing data over a year in short bursts
every 5 minutes or so. The data will be released with faces
and license plates anonymized to help preserve privacy.
The results show significant performance in amodal repre-
sentation learning on large scale real data for the first time.
In the future, we will extend our approach to learn from
cameras placed on vehicles for self-driving applications.
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Figure 11. Quantitative results comparing our method to the state-of-the-art images captured from different datasets. The first two rows
show vehicles occluding vehicles scenarios while the next two show people occluding people. Finally, we also show examples of people and
vehicles occluding each other in the bottom two rows. Observe that our method consistently outperforms other baselines in predicting the
amodal segmentation due to longitudinal self-supervision formulation. We perform accurate segmentation in difficult occlusions scenarios
like objects having similar colors (Second Row) or large occlusions(Third Row, Sixth Row) or multiple layers of occlusions(First Row,
Fifth Row). Our method even works with low-resolution images(Fourth Row) and inter-object interactions(Fifth Row, Sixth Row).
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