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Abstract

Motion detection can play an important role in many
vision tasks. Yet image motion can arise from \unin-
teresting" events as well as interesting ones. In this pa-
per, salient motion is de�ned as motion that is likely to
result from a typical surveillance target (e.g., a person
or vehicle traveling with a sense of direction through a
scene) as opposed to other distracting motions (e.g.,
the scintillation of specularities on water, the oscil-
lation of vegetation in the wind). We propose an al-
gorithm for detecting this salient motion that is based
on intermediate-stage vision integration of optical 
ow.
Empirical results are presented that illustrate the ap-
plicability of the proposed methods to real-world video.
Unlike many motion detection schemes, no knowledge
about expected object size or shape is necessary for re-
jecting the distracting motion.

1 Introduction

Motion detection can play an important role in
many vision tasks, especially those related to detection
and tracking for surveillance. Depending on the spe-
ci�c scene conditions, the di�culty of these tasks can
vary widely. Some of the most challenging domains
are those in which motion is being exhibited not just
by the objects of interest, but also by other non-salient
objects such as vegetation, shadows cast by vegetation,
and specularities on water [3, 19].

Non-salient motions of this type are a common
source of false positives for most simple motion-
detection schemes, which either detect areas of frame-
to-frame intensity change [1, 4, 15, 11, 24], or areas of
intensity change with respect to some reference repre-
sentation [9, 3, 23, 6].1 When the reference represen-

1These are by no means all the work in this area. A more
thorough listing of past work can be found in [20].

tation is a learned probability distribution of intensi-
ties at each pixel, the system can, over time, learn not
to report non-salient change, but it will still give rise
to false positives until the reference representation has
been learned [9]. Motion-based methods for change de-
tection, such as the one presented in this paper, have
the potential to be much more stable than those that
rely on intensity representations.

Typical approaches for suppressing false positive de-
tections are based on their aspect ratio, size, or magni-
tude of the frame-to-frame 
ow or normal 
ow [11, 6].
These approaches are not satisfying, since it is easy to
construct counterexamples to such heuristics, such as
the example we will present in Figure 3. For example,
the frame-to-frame motion of the non-salient objects
may be larger than that of the salient objects, espe-
cially if the non-salient objects are signi�cantly closer
to the camera or if the salient object is moving very
slowly to avoid detection.

A more sound approach is to �lter out false pos-
itives based on some aspect of the distance traveled
by the object. Branches on a tree will stay roughly
in the same place (or at least within some area) over
time. The key problem is how to perform the track-
ing. Typically vegetation gives rise to many regions
of change that are not constant in extent or motion
from frame to frame, and which are therefore di�cult
to instantiate and track with a higher-level vision pro-
cess. Some researchers have begun to examine ways
of performing this detection using lower-level process-
ing. For example, one approach uses multiple frames
to construct \XT" or \YT"' spatiotemporal intensity
slices from a sequence of frame-to-frame change images,
and then to extract lines from these slices [13, 16] or
even from the XYT spatiotemporal volume. An issue
with this approach is how to select the image rows or
columns to be used to construct the slice. For example,
in scenes with extensive motion, it is not su�cient to
simply project all the image columns onto a single X-
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row in order to form the XT image. Another approach
uses spatiotemporal �ltering [19, 20]. However, this in-
troduces an assumption that the object is moving with
a certain velocity due to the velocity-dependent nature
of the spatiotemporal �lters.

In this paper, we take salient motion to be mo-
tion that tends to move in a consistent direction over
time. We propose an approach that works by inte-
grating frame-to-frame optical 
ow over time so that
for each pixel it is possible to compute a rough esti-
mate of the total image distance it has moved. On
each frame, we update a salience measure that is di-
rectly related to the distance over which a point has
traveled with a consistent direction. Because we use
sub-pixel optical 
ow, the algorithm can track an ob-
ject even if it is moving extremely slowly, and we can
maintain our salience even if the object comes to a
stop. (Of course, it may in some cases be desirable
to suppress the salience of objects that stop for an ex-
tended time.) The algorithm is designed to minimize
the salience of both easily-tracked oscillatory motion,
such as a lone branch without leaves swaying period-
ically, as well as complicated assemblies of branches
with 
uttering leaves and occlusions. There are no
user-controlled parameters relating to object size or in-
tensity contrast; all parameters are related to velocity
or distance traveled. Furthermore, the algorithm is not
especially sensitive to these parameters; the same pa-
rameter settings are used for all the examples in this
paper.

A related approach has recently been proposed in
[17] to deal with detecting low-contrast moving objects
in video from a moving airborne camera. Their ap-
proach, which uses normal 
ow to temporally prop-
agate change energy, has been motivated by similar
goals, but does not use consistency of direction as a
�lter.

2 Algorithm input

We shall denote an image at time t as either It or,
when it is necessary to denote a speci�c image point p,
It(p).

The computation of the salience measure takes as
input a set of frame-to-frame optical 
ow �elds. Let
F(p) = (Fx(p); Fy(p)) denote an optical 
ow vector
�eld that de�nes a 2D vector at each pixel location
p = [x y]. Such a 
ow �eld can be used to warp an
image It(p) to yield a new image. Let the function
that performs such a warp be denoted as

warp(It;F;p) = It(p
0)

Figure 1. Illustration of notation used for flow
fields. Flow field i

jF maps coordinates in im-
age j to image i. Flow field j

iF maps coordi-
nates in image i to image j.

where

p0 = p+F(p)

(It should be noted that when F has been computed
to subpixel precision, then the x0 and y0 components
of p0 will not be integer values. Therefore It(p

0) must
be computed using image interpolation [22]. We use
bilinear interpolation in practice.) The result of apply-
ing the warp function at all pixel locations p shall be
written as warp(I;F).

The warp function also can be used to warp a 2D
vector �eldV. In this case, the warp function is applied
to each component of the vector �eld individually:

warp(V;F;p) =

�
warp(Vx;F;p)
warp(Vy ;F;p)

�
: (1)

Given two images Ii and Ij , the optical 
ow �eld
that maps each pixel in Ij to a coordinate in Ii will
be denoted as i

jF. This notation, developed by Craig
[5], is illustrated in Figure 1. For images taken at two
successive time instances t and t + 1, the 
ow �eld
t
t+1F can be used to warp It into alignment with It+1,
yielding a new image t+1It = warp(It;

t
t+1F).

In practice, we compute 
ow using a multi-
resolution least squares technique [14, 2].2 There are
other variations [18] of this technique with better accu-
racy. However, since in general the motion in the scene
will be complicated and non-rigid, it is unlikely that the

2In practice, there are well-known situations where the 
ow
cannot be recovered if the image patch contains gradients in
only one direction. Our algorithm handles this by computing
only the normal 
ow in regions where only one image gradient
is dominant.
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speci�cs of the 
ow estimation will signi�cantly impact
the algorithm.

The di�culty of recovering perfect 
ow vectors is
well-known [10]. In locations where there is occlusion,
where the temporal sampling used for digitization is
not fast enough to keep up with motion in the scene,
or where there is insu�cient texture, the computed

ow vectors can be incorrect. We identify such 
ow
vectors between two frames t and t + 1 by perform-
ing forwards-backwards checking [8, 12] using the 
ow
�elds t

t+1F and t+1
t F. The forwards-backwards check-

ing examines whether the 
ow vectors in the two 
ow
�elds map to the same points. If not, the 
ow vector is
set to 0. More speci�cally, t

t+1F(p) is reset to [0 0] if

ktt+1 F(p) +
t+1
t F(p+ t

t+1F(p)) k > kc. I.e., the two

ow vectors should cancel each other. The constant kc
is the pixel distance by which the two 
ow vectors can
di�er. Generally, when 
ow vectors are incorrect this
distance will be large, so in practice kc = 3 produces
adequate checking.

3 Cumulative 
ow and salience

Theoretically, given perfect frame-to-frame 
ow
�elds and perfect image warping, one could track an
image point from Ii to Ij by using the frame-to-frame

ow �elds t

t+1F for t = i; : : : ; j � 1. More speci�cally,
the frame-to-frame 
ow �elds could theoretically be
combined into a \cumulative" 
ow �eld i

jC, as shown
in Figure 2. This can be de�ned as

i
jC =

8<
:

i
jF if j = i+ 1

�j + warp(ij�1C;
j�1
j F) if j > i+ 1

(2)

where �j is the contribution, to the cumulative 
ow,
of the frame-to-frame 
ow from frame j�1 to frame j.
Theoretically, �j is simply j�1

j F, but this will change
for the measures we develop below.

The cumulative 
ow �eld de�ned above can be used
to measure the distance between each image point's lo-
cation in a reference image Ii and its location in a sub-
sequent image Ij . We will now develop a variation on
this measure that accumulates the distance that each
point travels in a consistent x- or y-direction, and relate
this to a measure of salience. This measure will also be
a vector �eld over the image, and will be denoted Sj .

Our desired cumulative measure must have two
properties. First, it must take on values that, for each
point, are proportional to the distance that point has
traveled in a consistent x- or y- direction. Second,
since a 
ow �eld is rarely perfect, and since a salient
object may temporarily pass behind small occlusions,

Cj
i

Fj
j-1

F
j-2
j-1

i jj - 1

Fi+1
i

Figure 2. Given perfect frame-to-frame flow
fields F, the theoretical cumulative flow field
C would be identical to that obtained by
composing the individual frame-to-frame flow
vectors.

we would like the accumulation to be tolerant of small
temporal gaps in the frame-to-frame tracking of a point
where the frame-to-frame 
ow is incorrect.

3.1 The salience field

We now de�ne a vector-valued salience measure Sj
with the �rst property, i.e. it takes on values that, for
each point, are related to the distance that point has
traveled in a consistent x- or y- direction. This mea-
sure is similar to the theoretical cumulative 
ow �eld,
except that we augment the system with a method of
resetting the salience to 0 when the direction of each
tracked point's 
ow reverses course, and use an \ex-
tended" 
ow �eld j�1

j E rather than the original 
ow

�eld j�1
j F for each new frame j. The extended 
ow

�eld is introduced to handle errors and occlusions that
occur in real 
ow �elds and will be explained in the
next section; for the time being it su�ces to consider
it identical to the original 
ow �eld.

Given a new frame j, the computation of the salience
measure is divided into three steps. The �rst simply
updates an intermediate measure S0j in the same man-
ner as the theoretical cumulative 
ow updating shown
in Equation 2, using the extended 
ow �eld:

S0j :=

8<
:
0 if j = 0

�j + warp(Sj�1;
j�1
j E) otherwise

(3)

The second and third steps detect locations that
have reversed direction, and reset their salience to zero.
Detecting direction reversals is non-trivial, as it is com-
mon for a point's 
ow to reverse course slightly on
some frames either due to errors in 
ow computation
or occasional small backwards movement. Therefore,
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to detect reversals in course we maintain a \maximum
salience" 2D vector �eld that holds for each point the
maximum value of the x- and y- components that the
point's salience has taken on since the salience at that
point was last reset. Direction reversals are detected
when the maximum salience of a point is above some
threshold ks but the point's current salience is below
some fraction kr of the maximum.

We reset the salience separately for motion in the x-
and y-directions, so that the overall salience magnitude
at a point is not reset to 0 if the point reverses course in
one direction but not the other (for example a person
zigzagging while running forward).3

Let us now turn to the speci�cs of the second and
third steps. In step two, the maximum cumulative 
ow
�eld Mj is computed by warping it from the previ-
ous frame and updating those locations at which the
one component of the salience vector is directionally
consistent with the maximum cumulative 
ow vector
and has a larger magnitude than the corresponding
component of the maximum cumulative 
ow vector.
Speci�cally, the x-component of the maximum cumu-
lative 
ow vector on frame j, Mj;x, is updated at each
point p as follows. Let mx be the value of the x-
component of the maximum cumulative 
ow vector
at point p's location in the previous frame j � 1, i.e.
mx =Mj�1;x(p + j�1

j E(p)). Then

Mj;x(p) :=

8>><
>>:

S0

j;x(p) if sign(S0

j;x(p)) = sign(mx) and
j S0

j;x(p) j > j mx j

mx otherwise
(4)

The y-component, Mj;y, is updated similarly.
Finally, the third step detects direction reversals

and resets the appropriate x- or y- component of the
salience measure accordingly. The x-component of the
salience measure, Sj;x, is assigned as follows.
Sj;x(p) :=8<
:

0 if j Mj;x(p) j > ks and
j S0

j;x(p)�Mj;x(p) j = jMj;x(p) j > kr
S0

j;x(p) otherwise
(5)

If Sj;x(p) is reset to 0, Mj;x(p) is also reset to 0.
The y-component of the salience measure, Sj;y, is

computed similarly. Typically the minimum salience
ks is set to 8 to ensure that some minimal salience has
a chance to accumulate before it can be reset to 0. The
fractional change kr is typically set to .1, indicating

3This can in some situations mean that zigzagging movement
while running along the image diagonal may have slightly dif-
ferent resetting properties than those moving along image axes,
but we have not observed any di�culties to date.

that if the cumulative 
ow drops to 90% of the largest
value previously observed, a direction change is occur-
ring. The precise setting is not particularly important,
since in general pixels on vegetation will exhibit direc-
tion reversals that represent large percentage changes
relative to their maximum value.

3.2 The extended flow field

To achieve robustness to errors in computed 
ow
and temporal gaps created when a moving object tem-
porarily passes behind small occlusions, we update the
salience measure using an \extended" 
ow �eld j�1

j E

rather than the original 
ow �eld j�1
j F for a new frame

j. The extended �eld is derived from the original by
checking for each point p in the original 
ow �eld,
whether there exists a scalar multiple s of the orig-
inal vector j�1

j F(p) that extends the vector so that
it connects to a location with large salience. More
precisely, suppose we have Sj�1, the salience mea-
sure from the previous frame. Then the vector-valued
salience measure g at point p's location in the previ-
ous frame, assuming an extension by a factor of s, is
g = Sj�1(p+s j�1

j F(p)). We test whether there exists
an s > 1 that meets the following �ve criteria:

1. The 
ow vector to be extended must be large
enough to be signi�cant. Speci�cally,
k j�1

j F(p) k � kf , where kf is a user-speci�ed
distance (typically 1).

2. The extended 
ow vector can't be more than ke
pixels longer than the original vector. Speci�cally,
k s j�1

j F(p)� j�1
j F(p) k < ke where ke is a user-

speci�ed distance (typically 6).

3. The point to which the 
ow is to be extended
must have a reasonably large salience. Speci�cally,
k g k � kg , where kg is a user-speci�ed salience
(typically 15).

4. The salience magnitude resulting from the exten-
sion must be more than the salience that would
be obtained without an extension. Speci�cally,
k g k > k Sj�1(p+

j�1
j F(p)) + j�1

j F(p) k.

5. The vectors j�1
j F(p) and g must lie in the same

quadrant (i.e., the signs of their components must
be identical).

If all of the above criteria are met, then we select
the s that maximizes k g k and assign:

j�1
j E(p) := s j�1

j F(p)

�j(p) := 0
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This has the e�ect of setting the 
ow vector to be the
extended 
ow vector, but the salience update term to 0.
Intuitively, this allows the salience value of the tracked
point to remain the same as that of the point to which it
has been linked by the extension, but not to increase.
The motivation for this policy is that since the 
ow
was not actually observed, it should not increment the
salience.

If not all of the criteria for extending the 
ow vector
are met, then the extended 
ow and salience update is
identical to the original 
ow:

j�1
j E(p) := j�1

j F(p)

�j(p) := j�1
j F(p)

4 Empirical studies

Figure 3 illustrates the algorithm on a challenging
video sequence in which camou
aged soldiers are visi-
ble as very small objects while bushes in the foreground
are large and sway wildly. To the human eye, the peo-
ple are not visible in still frames from the sequence,
and can only be seen when the sequence is played as a
movie. Column 2 of the �gure shows the x-component
of the frame-to-frame 
ow. The regions correspond-
ing to the salient objects (people at a distance) has
been circled. The frame-to-frame velocity of the peo-
ple varies from .6 to 2.5 pixels/frame, while that of the
vegetation varies from 0 to 12 pixels/frame. Clearly
the people cannot be distinguished from the foreground
clutter on the basis of their size or their frame-to-frame
motion magnitude. Column 3 of the �gure shows the
evolution of the x-component of the salience measure,
Sj;x. Over time, Sj;x for pixels on the soldiers increases
(on the rightwards-moving soldier) or decreases (on the
leftwards-moving soldier).

Notice that salient objects leave a streak behind
them in the salience imagery. This is because the
salience of a pixel location persists inde�nitely until
it is reset by a direction reversal. This policy has the
bene�t that it allows the salience measure to be largely
una�ected by variations in the object velocity, even if
the object comes to a stop. The trail could even be use-
ful for further analysis or display of the object's history.
On the other hand, in applications where objects paths
cross or where an accurate delineation of the object is
desired, further techniques can be applied to cause the
trail to decay where it does not lie on the salient object.
This will be discussed further below.

The magnitude of the salience is shown in Column
4. Over all the frames in the sequence, the salience
magnitude found on the vegetation is no more than
55. In the �rst frame shown, (frame 37), the salience

magnitude of the object is 31, so it would not yet be
distinguishable from vegetation by thresholding. But
by the second frame (frame 70), its salience magnitude
is 60. Until this point in the sequence, the salience
has increased slowly compared to the actual distance
traveled by the object (160 pixels). This is because the
object is so small that it is di�cult to extract reliable

ow vectors and so the 
ow vector extension is being
used heavily, which does not increase salience. After
frame 70, however, the object increases slightly in size
and 
ow can be more reliably computed, so salience in-
creases directly in proportion to the distance traveled.
By the time the object reaches its leftmost position
in the �nal frame (frame 150), its salience is 140. A
second object also becomes visible, moving leftwards,
in the third frame (frame 113). Its salience increases
rapidly, since its 
ow is reliable. (The small linear ex-
tension protruding ahead of the object is the person's
shadow on the ground.)

Figure 4 provides more examples of the algorithm
on three other sequences. Identical algorithm param-
eters were used for all four sequences. In the top ex-
ample, a person walks right to left while a fan blows
the leaves of a potted plant at the left side of the im-
age. The largest computed salience magnitude on the
leaves was 25, while that of the person quickly rises
with the distance traveled. In the frame shown, the
person has traveled approximately 150 pixels and the
typical salience of a pixel on the person is 140.

In the middle example a person walks upper-left to
lower-right against a background of gently-swaying tree
branches. The largest computed salience magnitude
on the branches was 14, while that of the person rises
quickly. In the frame shown, the person has traveled
126 pixels and his salience is approximately 122.

In the bottom example a person walks top to bot-
tom while the branches on the tree sway violently in a
strong wind. Furthermore, a car is visible for a brief
period in the upper left corner as it moves from be-
hind the tree and o� the top edge of the frame. The
largest computed salience magnitude on the tree was
35. Again, the salience of the person and vehicle rises
quickly. In the frame shown, the person has traveled
48 pixels and his salience is approximately 45. His
salience increases further as he travels further in sub-
sequent frames.

5 Temporal decay

As noted above, salient objects leave a streak behind
them in the salience image. In many applications, it
may be desirable to add a mechanism that allows the
salience to either decay gradually over time or rapidly
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be set to 0 once the object has moved past. For ex-
ample, this might be desirable if one wished to use the
salience magnitude to delineate the object. The appro-
priate approach depends on the application. Here we
report one possible mechanism, whose goal is to reset
the salience of a pixel to 0 when the moving object no
longer is imaged in the pixel.

We achieve this goal by determining, for each pixel
p, whether there exists another pixel p0 within some
distance kd whose frame-to-frame 
ow magnitude ex-
ceeds that of p by more than some factor ka. If so, then
Sj(p) and Mj(p) are reset to 0 before the next new
frame is processed. The intuition behind this scheme
is that if there is nearby motion that is substantially
larger than the motion at this pixel, then this this is
likely to have happened because the object has moved
o� this image pixel.

This approach usually gives good results (see the
bottom two examples in Figure 4). However, there are
some scenarios where it does not su�ce. Consider, for
example, an intruder crawling slowly beneath waving
tree limbs. The proximity to the tree limbs might result
in the suppression of the intruder's salience. Obviously,
there exist a gamut of variations that might be appro-
priate, such as basing the reset on whether the salience
at p changes by some amount within a user-speci�ed
time window.

6 Discussion

This paper has outlined a salience measure that at
each pixel is based on the straight-line distance that
the pixel has moved in a consistent direction. Our ex-
amples have shown that objects moving in a straight
line rapidly take on salience magnitudes that are sig-
ni�cantly larger than that of vegetation. This suggests
that for surveillance tasks, it might be possible to trig-
ger a detection alarm at a pixel when the magnitude of
its salience exceeds a threshold, and that it will be pos-
sible to choose a threshold that results in signi�cantly
fewer false positives than more conventional change de-
tection schemes. This threshold would be based on the
expected amount of side-to-side movement of vegeta-
tion in the scene. Alternatively, other more sophis-
ticated analysis techniques might be applied to the
salience \trails" left by objects.

The algorithm has some further advantages. It does
not need to explictly detect and track hypothetical tar-
gets to assess their salience. It does not make assump-
tions about the size or intensity contrast of salient ob-
jects. Because it uses multi-resolution optical 
ow it is
applicable to a broad range of image velocities, and
can even handle image stops. Of course, it still is

possible for salient objects to move either so slowly
or so quickly that the 
ow is not reliable. To han-
dle very slow-moving objects, it may be necessary to
select among various temporal scales when computing

ow. However, in surveillance scenarios involving ob-
jects that move by only a small fraction of a pixel per
frame, shape change as recovered from stereo [7] is a
more appropriate cue than motion.

The algorithm also has some weaknesses. An object
that moves in a straight line but oscillates forwards
and backwards, such as taking two steps forward and
then one backward would have low salience. Again, in
surveillance scenarios where subjects are actively try-
ing to fool the salience measure, it is probably nec-
essary to supplement this motion-based method with
a shape-based method such as stereo. Another issue
is computational expense. However, this issue is only
temporary; as 
ow-warping hardware becomes widely
available, the salience computation will rapidly become
tractable.

Finally, optical 
ow has received widespread criti-
cism as being inaccurate and error-prone. However,
our results show that it can nonetheless be used to de-
�ne e�ective salience measures. Future work, therefore,
may examine its use in other grouping measures, such
as those of Williams [21].
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