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Abstract

Energy has become an increasingly large financial and scaling burden for computing. With the increasing demand for and
scale of Data-Intensive Scalable Computing (DISC), the costs of running large data centers are becoming dominated by power
and cooling. In this thesis we propose to help reduce the energy consumed by large-scale computing by using a FAWN: A
Fast Array of Wimpy Nodes. FAWN is an approach to building datacenters using low-cost, low-power hardware devices that
are individually optimized for energy efficiency (performance/watt) rather than raw performance alone. FAWN nodes are
individually resource-constrained, motivating the development of distributed systems software with efficient processing, low
memory consumption, and careful use of flash storage.

In this proposal, we investigate the applicability of FAWN to data-intensive workloads. First, we present FAWN-KV: a deep
study into building a distributed key-value storage system on a FAWN prototype. We then present a broader classification and
workload analysis showing when FAWN can be more energy-efficient, and under what conditions that wimpy nodes perform
poorly. Based on our experiences building software for FAWN, we finish by presenting Storage Click: a software architecture
for providing efficient processing of remote, small storage objects.
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1 Thesis Overview
Energy has become an increasingly large financial and scaling burden for computing. With the increasing
demand for and scale of Data-Intensive Scalable Computing (DISC) [18], the costs of running large
data centers are becoming dominated by power and cooling: studies have projected that by 2012, 3-
year datacenter energy-related costs will be double that of server equipment expenditures [47]. On a
smaller scale, power and cooling are serious impediments to the achievable density in data centers [48]:
companies frequently run out of power before they exhaust rack space.

Today’s DISC systems are primarily designed to access large amounts of data stored on terabytes
to petabytes of storage. Examples of DISC systems include those being built by Google, Microsoft,
Yahoo!, Amazon.com, and many others. These systems often span the globe with multiple datacenters,
each consisting of tens of thousands of individual server-class machines built from “commodity compo-
nents.” The peak power provisioned for each datacenter can exceed hundreds of megawatts, a level of
consumption where choosing datacenter locations based on abundant access to cheap energy has now
become popular and common [55, 35].

Given the degree to which today’s largest datacenters are affected by energy, in this thesis we propose
to help reduce the energy consumed by large-scale computing by using a FAWN: A Fast Array of Wimpy
Nodes. FAWN is an approach to building datacenters through the use of low-cost, low-power hardware
devices that are individually more optimized for energy efficiency (performance/watt) rather than raw
performance alone. The abundant parallelism found in data-intensive workloads allows a FAWN system
to use many more individually wimpier components in parallel to complete a task while reducing the
overall energy used to do the work.

FAWN focuses primarily on data-intensive workloads. Whereas traditional HPC and transaction-
processing systems perform complex computations and synchronization on small amounts of data, DISC
systems often require computations (both simple and complex) across petabytes of data that tend to be
more I/O-bound than CPU-bound on traditional systems. The FAWN approach balances the I/O gap
between processing and storage while choosing a specific balance that optimizes for energy efficiency
(in terms of work done per Joule). We focus primarily on two particular FAWN instantiations using
off-the-shell hardware consisting of embedded/low-power processors paired with consumer-class Flash
storage.

The challenges of using FAWN are more than simply a matter of choosing a different hardware plat-
form. This proposal focuses on answering three research questions: First, how does a FAWN architecture
change the way distributed systems are built? Second, when is the FAWN architecture appropriate, and
when do traditional architectures win out? Third, how does the need for high-performance, low-latency
small object retrieval on wimpy platforms inform the design of individual operating systems for DISC
systems?

We propose to answer these questions through three specific in-depth explorations based on the
FAWN approach to building DISC systems:

1. FAWN-KV: a deep study into building a distributed key-value storage system on FAWN.

2. Workload exploration: a broader classification and workload analysis showing when FAWN can
be more energy-efficient.

3. Storage Click: a software architecture for providing efficient processing of remote, small storage
objects.
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The rest of this proposal is structured as follows: Section 2 describes background on the problem
and the principles in which the FAWN approach is rooted. Section 3 discusses FAWN-KV – the design,
implementation, and evaluation of a key-value storage system on a FAWN prototype. Section 4 provides
more insight into the applicability of FAWN to other workloads. Section 5 describes Storage Click: the
motivation, the proposed solution to be completed for the thesis, and related work in this area. Finally,
Section 6 outlines the proposed timeline for the research.

2 Background
Datacenter energy efficiency is important given the tremendous growth of cloud services. Cluster dis-
tributed systems consisting of hundreds of thousands of machines are now prevalent around the world,
and the energy-related financial burden imposed by datacenter power and cooling requirements is be-
ginning to dominate the total cost of ownership for datacenters. At today’s energy prices, the cost to
power a datacenter server is only a fraction (perhaps 10%) of the total cost of ownership (TCO) of the
server [15], but the proportion of a server’s TCO begins to be dominated by energy when considering all
energy-related costs, such as cooling and infrastructure costs.

There are a number of energy-related costs needed to power hundreds of thousands of machines in
a single warehouse. The density of the datacenters that house the machines is limited by the ability
to supply and cool 10–20 kW of power per rack and up to 10–20 MW per datacenter [35]. Future
datacenters are being designed with a maximum power draw of 200 MW [35], or the equivalent of
nearly 200,000 residential homes, requiring dedicated electrical substations to feed them.

A new datacenter can be expected to be operational for at least fifteen years to amortize the cost of
construction, whereas the average server’s lifetime is on the order of three to four years [15]. As a result,
the upfront costs of building a datacenter to support fifteen years of growth is high. The main challenge
is that the infrastructure required to support a datacenter must necessarily plan for peak capacity. The
designed peak power draw of the datacenter informs the design and subsequent cost of building the
datacenter.

As an example: datacenters builders have been focused on reducing a datacenter’s Power Usage
Effectiveness, or PUE. Simply put, the PUE is the ratio of total power draw to aggregate server power
draw. The average PUE in 2009 was estimated to be 3–for every watt of power delivered to a server, the
datacenter infrastructure required another two watts to deliver the power and remove the heat generated
by the server. State-of-the-art datacenters have reduced the PUE to about 1.1, so that only an additional
10% of power is used to deliver power to servers (there are also additional losses when distributing
the power to the individual components on the server that increase the PUE by another 10 or 20%).
But providing this low of a PUE has required innovation in battery backup systems, efficient power
supplies, voltage regulators, and state-of-the-art cooling infrastructures, which all require significant
capital investments. While many of these can be amortized over the lifetime of a datacenter rather
than the lifetime of a server, the main takeaway is that supporting the peak power draw of a datacenter
comprises a major cost in a datacenter today.

The peak power of a datacenter is determined by the aggregate required power draw of all server
components at full load. Assuming that the amount of work to be done in a datacenter is fixed, one
way to reduce the peak power draw of a datacenter is by improving energy efficiency. We define energy
efficiency as the amount of work done per Joule of energy, or equivalently measured as performance-per-
watt. By improving the energy efficiency of a datacenter, we can reduce the amount of energy required
to perform a defined amount of work.
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The question we seek to answer in this thesis is: How can we improve the energy efficiency of
datacenter servers?

2.1 What is FAWN?
A significant fraction of the proposed thesis revolves around FAWN: A Fast Array of Wimpy Nodes, an
approach to building clusters using low-power, low-speed nodes at scale [8]. The central observation of
this work is that efficient data-intensive clusters must be both balanced in their CPU and I/O-capabilities
(i.e., not wasting the resources of the CPU, memory, storage, or network), and also efficient in the amount
of work done per Joule of energy, because balance alone does not necessarily imply energy efficiency.

A FAWN cluster is composed of many (perhaps 10x) more nodes than a traditional cluster because
each FAWN node is individually slower. Our initial prototype FAWN node from 2007 used an embedded
500MHz processor paired with CompactFlash storage, which is significantly slower per-node than a
multi-GHz multicore server system balanced with multiple disks.

To perform a fixed amount of work in the same amount of time as a traditional cluster, we require
using more components in parallel. This implicitly relies on the ability of a workload to parallelize
well, also known as an “embarrassingly parallel” workload. The FAWN approach may not improve
energy efficiency for workloads that cannot be parallelized or whose computation requires a serialized
component in the computation (because of Amdahl’s Law [6]). Fortunately, many (but not all [14, 31])
DISC workloads are embarrassingly parallel because of the data-oriented nature of the workloads. It is
for these types of workloads that we believe the FAWN approach will work well.

2.2 Metric: Work done per Joule
Evaluating large systems using only performance metrics such as throughput or latency is slowly falling
out of favor as energy and programming ease inform the design of modern large scale systems. There
are several metrics for energy efficiency, but the one we focus on is “work done per Joule” of energy, or
equivalently, “performance per Watt.”

For large-scale cluster computing applications that are consuming a significant fraction of energy
in datacenters worldwide, “work done per Joule” is a useful metric: it relies on being able to paral-
lelize workloads, which is often explicitly provided by data-intensive computing models such as MapRe-
duce [22] and Dryad [33] that harness data-parallelism.

More specifically, when the amount of work is fixed but parallelizable, one can use a larger number
of slower machines yet still finish the work in the same amount of time—for example, ten nodes running
at one-tenth the speed of a traditional node. If the aggregate power used by those ten nodes is less than
that used by the traditional node, then the ten-node solution is more energy-efficient.

One metric we do not study in detail is the cost of software development. As we will show in this
thesis, software may not run well “out-of-the-box” on wimpy hardware for a number of reasons, requir-
ing additional development time to either rewrite from scratch or tune/optimize appropriately. When
calculating the cost of transitioning a portion of a cluster to the wimpy platform, energy costs, capital
costs, and software development costs will all play a factor. For the purposes of narrowing the research,
however, we focus only on energy efficiency, though it is likely that software development costs will
necessarily work in favor of “brawnier” platforms [31].
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Figure 1: Max speed (MIPS) vs. Instruction efficiency (MIPS/W) in log-log scale. Numbers gathered from
publicly-available spec sheets and manufacturer product websites.

2.3 Principles
The FAWN approach to building balanced cluster systems has the potential to achieve high performance
and be fundamentally more energy-efficient than conventional architectures for serving massive-scale
I/O and data-intensive workloads.

FAWN is inspired by several fundamental trends in energy efficiency for CPUs, memory, and storage.

2.3.1 CPU Trends

Increasing CPU-I/O Gap: Over the last several decades, the gap between CPU performance and
I/O bandwidth has continually grown. For data-intensive computing workloads, storage, network, and
memory bandwidth bottlenecks often cause low CPU utilization.

FAWN Approach: To efficiently run I/O-bound data-intensive, computationally simple applications,
FAWN uses processors that are more energy efficient in instructions per Joule while maintaining rela-
tively high performance. The reduced processor speed then benefits from a second trend:

CPU power consumption grows super-linearly with speed. Operating processors at higher fre-
quency requires more energy, and techniques to mask the CPU-memory bottleneck come at the cost
of energy efficiency. Branch prediction, speculative execution, out-of-order execution and increasing the
amount of on-chip caching all require additional processor die area; modern processors dedicate as much
as half their die to L2/3 caches [32]. These techniques do not increase the speed of basic computations,
but do increase power consumption, making faster CPUs less energy efficient.

A primary energy-saving benefit of Dynamic Voltage and Frequency Scaling (DVFS) for CPUs was
its ability to reduce voltage as it reduced frequency [61], but modern CPUs already operate near minimum
voltage at the highest frequencies, and various other factors (such as static power consumption and
dynamic power range) have limited or erased the efficiency benefit of DVFS today [56].

FAWN Approach: A FAWN cluster’s slower CPUs dedicate more transistors to basic operations.
These CPUs execute significantly more instructions per Joule than their faster counterparts (Figure 1):
multi-GHz superscalar quad-core processors can execute approximately 100 million instructions per
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Joule, assuming all cores are active and avoid stalls or mispredictions. Lower-frequency in-order CPUs,
in contrast, can provide over 1 billion instructions per Joule—an order of magnitude more efficient while
still running at 1/3rd the frequency.

Implications: FAWN systems therefore choose simpler processor designs whose single-core speed is
close to those of low-end server processors; processors that are too slow can make software development
difficult [31], and as we show throughout this work, unavoidable fixed costs can eliminate the benefits of
extremely slow but energy-efficient processors.

2.3.2 Memory trends

The previous section examined the trends that cause CPU power to increase drastically with an increase
in designed sequential execution speed. In pursuit of a balanced system, one must ask the same question
of memory as well.

Understanding DRAM power draw. DRAM has, at a high level, three major categories of power
draw:

Idle/Refresh power draw: DRAM stores bits in capacitors; the charge in those capacitors leaks away
and must be periodically refreshed (the act of reading the DRAM cells implicitly refreshes the contents).
As a result, simply storing data in DRAM requires non-negligible power.

Precharge and read power: The power consumed inside the DRAM chip. When reading a few bits
of data from DRAM, a larger line of cells is actually precharged and read by the sense amplifiers. As a
result, random accesses to small amounts of data in DRAM are less power-efficient than large sequential
reads.

Memory bus power: A significant fraction of the total memory system power draw—perhaps up to
40%—is required for transmitting read data over the memory bus back to the CPU or DRAM controller.

Designers can somewhat improve the efficiency of DRAM (in bits read per joule) by clocking it more
slowly, for the same reasons mentioned for CPUs. In addition, both DRAM access latency and power
grow with the distance between the CPU (or memory controller) and the DRAM: without additional
amplifiers, latency increases quadratically with trace length, and power increases at least linearly.

This effect creates an intriguing tension for system designers: Increasing the amount of memory per
CPU simultaneously increases the power cost to access a bit of data. The reasons for this are several: To
add more memory to a system, desktops and servers use a bus-based topology that can handle a larger
number of DRAM chips; these buses have longer traces and lose signal with each additional tap. In
contrast, the low-power DRAM used in embedded systems (cellphones, etc.), LPDDR, uses a point-to-
point topology with shorter traces, limiting the number of memory chips that can be connected to a single
CPU, and reducing substantially the power needed to access that memory.

Implications: Energy-efficient wimpy systems are therefore likely to contain less memory per core
than comparable brawny systems. As we show throughout this work, programming for FAWN nodes
therefore requires careful attention to memory use, and reduces the likelihood that traditional software
systems will work well on FAWN out of the box.
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Figure 2: Power increases with rotational speed and platter size. Solid shapes are 3.5" disks and outlines
are 2.5" disks. Speed and power numbers acquired from product specification sheets.

2.3.3 Storage Power Trends

The energy draw of magnetic platter-based storage is related to several device characteristics, such as
storage bit density, capacity, throughput, and latency. Spinning the platter at faster speeds will improve
throughput and seek times, but requires more power because of the additional rotational energy and
air resistance. Capacity increases follow bit density improvements and also increase with larger platter
sizes, but air resistance increases quadratically with larger platter sizes, so larger platters also require
more power to operate.

Figure 2 demonstrates this tradeoff by plotting the efficiency versus speed for several modern hard
drives, including enterprise, mobile, desktop, and “Green” products.1

The fastest drives spin at between 10-15K RPM, but they have a relatively low energy efficiency as
measured by MB per Joule of max sustained sequential data transfer. The 2.5" disk drives are nearly
always more energy efficient than the 3.5" disk drives. The most efficient drives are 2.5" disk drives
running at 5400 RPM. Energy efficiency therefore comes at the cost of per-device storage capacity for
magnetic hard drives.

Our preliminary investigations into flash storage power trends indicate that the number of IOPS
provided by the device scales roughly linearly with the power consumed by the device, likely because
these devices increase performance through chip parallelism instead of by increasing the speed of a single
component.

Implications: Energy-efficient clusters constrained by storage capacity requirements will continue to
use 2.5” disk drives because they provide the lowest energy per bit, but Flash storage will continue
to make in-roads in the datacenter, particularly for the remote small object retrieval systems that large
clusters rely on today. Our work on FAWN focuses mostly on pairing wimpy platforms with flash storage
and other non-volatile memories, but we do advocate using efficient magnetic disks when appropriate [8].

1The figure uses MB/s data from vendor spec sheets, which are often best-case outer-track numbers. The absolute numbers
are therefore somewhat higher than what one would expect in typical use, but the relative performance comparison is likely
accurate.
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Figure 3: (a) Processor efficiency when adding fixed 0.1W system overhead. (b) A FAWN system chooses
the point in the curve where each individual node is balanced and efficient.

2.4 Fixed power costs
Non-CPU components such as memory, motherboards, and power supplies have begun to dominate en-
ergy consumption [14], requiring that all components be scaled back with demand. As a result, running
a modern system at 20% of its capacity may still consume over 50% of its peak power [58]. Despite
improved power scaling technology, systems remain most energy-efficient when operating at peak uti-
lization. Given the difficulty of scaling all system components, we must therefore consider “constant
factors” for power when calculating a system’s instruction efficiency. Figure 3 plots processor efficiency
when adding a fixed 0.1W cost for system components such as Ethernet. Because powering 10Mbps Eth-
ernet dwarfs the power consumption of the tiny sensor-type processors that consume only micro-Watts
of power, their efficiency drops significantly. The best operating point exists in the middle of the curve,
where the fixed costs are amortized while still providing energy efficiency.

2.5 System balance
Balanced systems are a principle required for energy-efficient clusters [50], but balance alone does not
maximize energy efficiency. Figure 3b takes the speed vs. efficiency graph for processors in Figure 3a
and illustrates where several different “balanced” systems operate in the curve. The FAWN approach
chooses a particular balance where each individual node is optimized for energy efficiency.

This highlights the importance of combining both balance and efficiency together. While balance
is necessary to avoid wasting resources (and energy), even a balanced system can be inefficient if the
amount of energy to operate at a higher speed is disproportionately high. The FAWN approach focuses
on finding this balanced and efficient point in the curve. While the specific point on the curve that
optimizes for energy efficiency will change over time, the general shape of the curve should hold for the
foreseeable future.

Figure 3a above shows the speed vs. efficiency curve for processors as a proxy for entire system
efficiency. Individual components that exhibit the superlinearity in speed vs. power will further shape
the entire system curve much like in Figure 3a, whereas components that are perfectly linear in speed vs.
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power (a constant efficiency) can be factored out. Fixed power costs, on the other hand, will further push
the optimal point towards brawnier systems.

2.6 Proportionality vs. Efficiency
Another major challenge for datacenters is that, despite being provisioned for peak power, the average
utilization of the datacenter can be quite low—anywhere from 5%[37] to 20% [14]. Ideally, the datacen-
ter would use only a proportional fraction of power when not fully utilized (e.g., operating at 20% utiliza-
tion should require only 20% of the peak power draw), a feature termed “energy proportionality” [14].
Unfortunately, individual servers are not energy proportional because of their high fixed power draw
even when idle: servers can consume 30-50% of their peak power at 0% utilization. Worse yet, when
considering the datacenter as a whole, one must factor in the energy proportionality of other components
such as power supply, distribution, and cooling, which are also far from energy proportional [15].

Achieving energy proportionality in a datacenter thus may require “ensemble-level techniques” [58],
such as turning portions of a datacenter off completely [7]. This can be challenging because workload
variance in a datacenter can be quite high, and opportunities to go into deep sleep states are few and
far between [14], while “wake-up” or VM migration penalties can make these techniques less energy-
efficient. Also, VM migration may not apply for some applications, e.g., if datasets are held entirely in
DRAM to guarantee fast response times.

Although providing energy proportionality is a complementary approach to saving energy in data-
centers, this work focuses only on energy efficiency.

3 FAWN-KV
The FAWN-KV distributed key-value storage system is a system we designed and implemented to help
answer the question: How does a FAWN architecture change the way distributed systems are built? In
this section, we briefly articulate the reasons for targeting this workload, the unique challenges that we
had to address to answer the question, and the relevant portions of this joint work that I plan to include
in my thesis.

Large-scale data-intensive applications, such as high-performance key-value storage systems, are
growing in both size and importance; they now are critical parts of major Internet services such as
Amazon (Dynamo [23]), LinkedIn (Voldemort [45]), and Facebook (memcached [39]).

The workloads these systems support share several characteristics: they are I/O, not computation,
intensive, requiring random access over large datasets; they are massively parallel, with thousands of
concurrent, mostly-independent operations; their high load requires large clusters to support them; and
the size of objects stored is typically small, e.g., 1 KB values for thumbnail images, 100s of bytes for
wall posts, twitter messages, etc.

The clusters that serve these workloads must provide both high performance and low cost operation.
Unfortunately, small-object random-access workloads are particularly ill-served by conventional disk-
based or memory-based clusters. The poor seek performance of disks makes disk-based systems ineffi-
cient in terms of both system performance and performance per watt. High performance DRAM-based
clusters, storing terabytes or petabytes of data, are both expensive and consume a surprising amount of
power—two 2 GB DIMMs consume as much energy as a 1 TB disk.

The workloads for which key-value systems are built for are both random I/O-bound and embarrass-
ingly parallel—the lowest hanging fruit and most applicable target for FAWN. We therefore choose this
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small-object, random-access workload as the first distributed system built using a FAWN architecture.
For this workload, we pair low-power, efficient embedded CPUs with flash storage to provide efficient,
fast, and cost-effective access to large, random-access data. Flash is significantly faster than disk, much
cheaper than the equivalent amount of DRAM, and consumes less power than either.

FAWN-KV is designed specifically with the FAWN hardware in mind, and is able to exploit the
advantages and avoid the limitations of wimpy nodes with flash memory for storage. Specifically, the
FAWN hardware poses several challenges:

1. FAWN nodes have a lower memory capacity per core,

2. Flash is relatively poor for small random writes,

3. More nodes in a FAWN system leads to more frequent failures than a traditional system with fewer
nodes.

FAWN-KV is a system designed to deal with these challenges that both uses most of the available
I/O capability of each individual wimpy node, and together harnesses the aggregate performance of each
node while being robust to individual node failures.

The thesis work will include the relevant details about the design and implementation of our memory-
efficient in-memory hash index, our log-structured key-value module, FAWN-DS, to support fast sequen-
tial writes and fast random reads on flash, and our mechanisms for restoring replication of data efficiently
on failures and arrivals into the system. Each of these components will be supported with experimental
data verifying the efficacy of the design and implementation. Some of these details will be culled from
our FAWN-KV paper, to which we refer the reader [8].

4 Workload Analysis
Our evaluation of FAWN-KV demonstrated that significant energy efficiency benefits were attainable
using the FAWN architecture for an I/O-bound workload. But these benefits could only be fully reaped
following a redesign of the distributed system that runs atop a cluster of FAWN nodes.

Of course, in a datacenter, not all workloads will be completely I/O-bound to the same degree, and
some may not be I/O-bound at all. The goal of the next part of this thesis is to understand when the
FAWN architecture applies to a wider variety of workloads, and what features critically determine this
applicability.

Motivation for this research comes not only from our own interests in exploring the workload space
for FAWN, but interest within the broader research community as well. Some researchers have discussed
the potential for using wimpy nodes for other types of DISC and HPC workloads [57, 29, 19, 9, 28, 49]
to varying degrees of success in improving energy efficiency, while others note that wimpy nodes may
not be the most efficient platform for many out-of-the-box applications, instead arguing for a hybrid
approach [20, 38]. Some workloads are clearly not good targets for FAWN (they do not exhibit the
workload parallelism required for this approach to apply well [38]). Others are seemingly I/O-bound
based on intuition, but data shows that the efficiency of those workloads on FAWN is lower than tradi-
tional systems [20].

Based upon the principles in Section 2, wimpy nodes are expected to be fundamentally more effi-
cient because of their lower complexity and lower speed, up until the point where fixed costs dominate.
Understanding the disparity between expectation and result is the major motivation for this part of the
thesis.
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4.1 Approach
Many have attempted to apply the FAWN approach to existing software systems, measuring the energy
efficiency benefits to be small or non-existent in some cases [20, 38], or bring with them other caveats,
such as increased response time variability [49]. Existing software systems can be complex to analyze, so
our approach in this work is to create and/or perform microbenchmarks on two types of systems, FAWN
nodes and traditional nodes, comparing energy efficiency and trying to understand the fundamental rea-
sons for the results. Microbenchmarks allow us to isolate the individual features of a particular complex
workload that may influence the energy efficiency comparison of real applications.

4.2 Taxonomy
We begin with a broad classification of the types of workloads found in data-intensive computing whose
solution requires large-scale datacenter deployments:

1. I/O-bound workloads

2. Memory/CPU-bound workloads

3. Latency-sensitive, but non-parallelizable workloads

4. Large, memory-hungry workloads

The first of these workloads, I/O-bound workloads, have running times that are determined primarily
by the speed of the I/O devices (typically disks for data-intensive workloads). I/O-bound workloads can
be either seek- or scan-bound, and represent the low-hanging fruit for the FAWN approach, as described
in our earlier work [8]. The second category includes CPU and memory-bound workloads, where the
running time is limited by the speed of the CPU or memory system.

The last two categories represent workloads where the FAWN approach may be less useful. Latency-
sensitive workloads require fast responses times to provide, for example, an acceptable user-experience;
anything too slow (e.g., more than 50ms) impairs the quality of service unacceptably. Finally, large,
memory-hungry workloads frequently access data that can reside within the memory of traditional
servers (on the order of a few to 10s of gigabytes per machine today).

The thesis will analyze and present results from this categorization and series of microbenchmarks. In
addition, we analyze the impact of running below peak utilization on wimpy hardware, showing that fixed
power costs play an even larger role in these circumstances. An example of an insight from this work is
depicted in Figure 4, which shows the efficiency of a memory-intensive floating point matrix-transpose
multiply microbenchmark on both a brawny and wimpy platform. The measured energy efficiency is
affected by the size of the matrix being multiplied because of cache size, and the most efficient platform
for a particular matrix size flips back and forth because of the differences of the cache sizes between
the two architectures. Such discontinuities can greatly affect the measured energy efficiency comparison
between brawny and wimpy platforms.

This work represents mostly prior work that is summarized in our e-Energy 2010 paper [59] as well as
our winning 10GB 2010 Joulesort submission [60]. A summary of findings from the paper is as follows:

• The FAWN approach works well for embarrassingly-parallel workloads but not for those with strict
latency targets that FAWN systems are unable to meet.
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• Differences in cache and memory size play a large role when comparing the energy efficiency of
wimpy and brawny platforms.

• Code optimized for a particular platform can skew the energy efficiency comparisons, but may be
unavoidable in practice.

• Fixed power costs largely dominate energy efficiency metrics, particularly when systems are not
used at 100% utilization.

5 Storage Click
In the course of upgrading our FAWN infrastructure to state-of-the-art wimpy platforms, we have discov-
ered that there are a few reasons why today’s operating systems2 inefficiently handle small I/O requests,
and this inefficiency plays a large role in the applicability of the FAWN approach. First, small block
I/O handling in the kernel has been tuned to the characteristics and performance of rotating disks, and
modern Flash devices break many of these assumptions. Second, specialized distributed small object
stores like FAWN-KV stress the interface between software layers and hardware, resulting in frequent
context switches, data copies, and high network and storage interrupt loads that significantly reduce
performance, particularly on wimpy platforms.

The primary question that we try to answer is: “how should operating systems be modified to effi-
ciently support distributed small object stores?” To answer this, we propose Storage Click, a software
architecture for high-performance, efficient processing of remote, small storage objects. Storage Click
consists of three major components:

1. Improved interrupt mitigation and polling algorithms for flash storage.
2. Optimization of the block I/O codepath for flash storage using the multiread/multiwrite

interface.
2We focus on Linux because it is both popular and open source. We believe that other popular operating systems such as

Windows experience similar issues given the magnitude of improvement in IOPS rate of flash devices in the last three years.
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Figure 5: IOPS rate of various benchmarks and configurations. The right two bars show the peak capabil-
ities of the X25-E and network packet reception, whereas the left two bars show the FAWN-KV application
performance and X25-E IOPS rate obtained on a wimpy platform. The wimpy platform is unable to saturate
the raw capabilities of both the network and the storage in these experiments.

3. Streamlined in-kernel processing for simple fast-path operations and deferral to userspace for com-
plex slow-path operations.

We begin our discussion by briefly detailing the experiments that inspired Storage Click, and then
describe each component in more detail, in order of decreasing maturity of exploration in the area.

5.1 Motivation
Benchmarking FAWN-KV on modern low-power nodes: FAWN-KV implements a distributed key-
value store optimized for flash storage. A client issues key-value requests either directly to backend
FAWN nodes or through a front-end intermediary. We implemented a Java-based client library that
uses Thrift [1] to communicate directly to the backend using the FAWN-KV protocol (put/get), and also
implemented a FAWN-KV YCSB module in order to use the Yahoo! Cloud Serving Benchmark [21].
We used a Core i7-based client load generator and one FAWN node consisting of a 1.6GHz single-core
Atom (N450), 2GB of DDR2 DRAM, and one Intel 32GB X25-E Flash solid state drive.

The left-most bar in Figure 5 shows the number of key-value requests served for this benchmark.
Depicted in the same graph is the raw 512-byte IOPS rate of the X25-E device measured using a mi-
crobenchmark tool (fio [2]) on the same wimpy Intel Atom N450 platform, and the IOPS rate of the
device as measured on a brawny Core i7 platform.3 The farthest right bar shows the number of 1KB
packets processed by the same wimpy platform using the iperf benchmarking tool, demonstrating that
the wimpy platform is capable of receiving (but not processing) nearly 200,000 packets per second.

The two major takeaways of this graph are as follows: First, the raw IOPS rate of the X25-E obtained
using the wimpy platform is a factor of three worse than the theoretical capabilities of the device (as
shown by the IOPS rate obtained on a multi-core brawny platform). Second, the wimpy platform is

3Note that the application performance does not match the performance of raw I/O for several reasons: First, the mi-
crobenchmark issues requests directly to the device in 512B sectors rather than through the filesystem layer in 4KB pages;
second, the application must process and interpret the data; third, the application interacts with the networking layer in
addition to local storage, whereas the microbenchmark uses local storage only.
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capable of receiving high packet loads, but the the resulting application-level IOPS rate is more than
an order of magnitude worse because of the combination of network packet processing and storage
I/O. These experiments demonstrate the difficulty of achieving efficient remote small object storage,
particularly on wimpy platforms. Storage Click is the umbrella project that we propose to address this
problem. We discuss the major components of Storage Click independently in the next several sections.

5.2 Interrupt Mitigation for Flash Storage
While flash hardware has improved tremendously in the past three years, software support from applica-
tions and operating systems has lagged behind. The CPU-I/O gap has narrowed so quickly that many OS
assumptions about the cost of an I/O have been shattered completely: a random seek on a magnetic disk
has plateaued at about five milliseconds on average, whereas a random read from flash takes only 100
microseconds (fifty times lower) and is dropping by a factor of two every year [16]. Operating systems
software stacks are only now being revisited/rehauled to accommodate solid state devices [52, 11, 13].

Modern flash devices are capable of providing tens of thousands of IOPS from a single device: the
X25-M drive can perform 70,000 512-byte random reads per second (when reading directly from the
device instead of the filesystem, which restricts access to 4KB pages), and the Fusion-IO ioDrive can
perform nearly 160,000 512-byte IOPS—three orders of magnitude higher than a single magnetic disk.
Without techniques to reduce interrupt load, balanced wimpy and brawny systems will spend a significant
portion of time handling interrupts instead of performing application work.

5.2.1 Background

There are two ways to reduce the load of interrupts for high IOPS devices: interrupt coalescing and
interrupt mitigation. Interrupt coalescing is a technique performed by an I/O device that combines the
interrupt generated by a single event with subsequent events in time, effectively interrupting a host system
only once for multiple events. Interrupt mitigation is a technique performed by the host operating
system that switches from interrupt-driven operation to polling-based operation, which is particularly
useful during high load situations. These techniques are complementary and help reduce interrupt load
on the host system.

Interrupt coalescing support exists for high-speed network cards, but does not yet exist for flash
devices. Therefore, we must currently rely on interrupt mitigation support in the operating system to
reduce interrupt load for flash devices.

Existing interrupt mitigation for block devices: A general interface developed for interrupt mitiga-
tion in the Linux kernel is the “New API” interface (NAPI). NAPI allows the OS to switch between
interrupt-driven processing and spin-loop polling based on the load generated by the device. At high
load, NAPI causes the system to switch to polling mode, which is more efficient because there is plenty
of work available. At low load, the normal interrupt-driven mode is sufficient because the frequency of
interrupts is low.

NAPI was originally developed for network cards, but since Linux Kernel version 2.6.28, NAPI sup-
port for block devices has been added (termed blk-iopoll). This mimics the general framework of NAPI
and has shown improvements to IOPS performance and CPU utilization for traditional systems [12]. The
blk-iopoll system relies on the block device supporting Native Command Queuing (NCQ) to allow the
operating system to queue up to 31 outstanding commands to the device at once (a feature also required
to benefit from the internal parallelism of modern flash devices). If the number of IOs retrieved on an
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initial interrupt is high, the blk-iopoll system remains in polling mode to check if more commands will
be completed soon.

However, we have had mixed success in straightforwardly applying these changes to wimpy systems.
On fast, multi-core machines, a single fast core can queue several commands to the device before the
device completes one of the requests and interrupts the system, so that multiple commands can be com-
pleted for only one interrupt. However, on a slower, single-core machine such as the Intel Atom N450,
the OS can only queue a few commands to the device before the first one completes. Switching from
interrupt mode to polling therefore performs additional work to handle only one command, resulting in
lower performance.

Figure 6 illustrates how the NAPI mitigation approach scales with load. At low load, the cost of
performing an interrupt is low because the system is already underutilized. At high load, switching to
polling improves overhead because staying polling is more efficient when there is always more work
to do. However, at medium load, the cost of switching to polling to do very little additional work is a
performance penalty. We note that similar challenges affect network processing using NAPI when a fast
machine operates at below 100% utilization [12].

5.2.2 Research Ideas

Our initial attempts to improve upon the interrupt mitigation algorithm used by NAPI have been fruitful,
fundamentally relying on trading off slightly higher latency for higher throughput. Whereas the NAPI
interrupt mitigation approach uses a spin loop to perform polling, an alternative approach can be taken
by using event- and timer-based logic [10] to decide when to actually service requests from a network
device [51], giving more control to the OS to decide when to perform device-related work.

Specifically, we have modified the blk-iopoll system to defer the completion of a command on an
interrupt for a configurable duration. During this deferral, several more commands can be both issued
and completed by the device and other OS work can be attended to. This deferral requires a later timer
interrupt to finally complete all available commands. In essence, we allow one block device interrupt to
trigger a series of timer interrupts, equally spaced, to increase the number of commands completed per
interrupt. The spinloop method used by NAPI scales more gracefully as load increases as we depict in
Figure 6a, whereas our deferral-based polling avoids the suboptimal operation load region (Figure 6b)
from which NAPI suffers. Specifically, deferral introduces a higher cost at cost at low load, is just as
efficient as spin-loop polling at high-load (depending on how the OS schedules the work), and avoids the
cost of switching between interrupt and polling mode frequently during medium load.

5.2.3 Preliminary Results

We have used the flexible I/O tester [2] to measure the rate of retrieving 512-byte random IOPS directly
through the block layer. With our Intel single-core Atom N450 paired with an X25-M flash device
on the default 2.6.32 Linux kernel, we measured the system as capable of performing around 23,000
IOPS. We then patched the kernel to enable blk-iopoll support for the AHCI driver, and discovered that
performance dropped to 20,000 IOPS. We measured the distribution of completions and found that most
interrupts completed only 1 command before re-enabling interrupts. Therefore, the performance drops
due to the cost of disabling interrupts, polling to complete one command, then re-enabling interrupts.
This confirms that the interrupt from the device occurs before enough commands can be completed, so
that the internal parallelism of the X25-M cannot be saturated, and the OS does extra work on top of an
already heavyweight interrupt event.
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Figure 6: Illustration of load vs. overhead. (a) Spin-loop polling can incur a high overhead during periods
of medium load. (b) Deferral-based polling avoids the high cost of switching from interrupt to polling when
polling isn’t effective.

Other inefficiencies: After profiling the run of this benchmark, we discovered a few issues that limit
the performance of random block I/O on the wimpy platform, some stemming from the assumption that
block I/Os are expensive, as they would be for magnetic disks:

1. The benchmark program calls gettimeofday several times per request to precisely measure the
latency of each request for statistics. Our system uses the HPET chip (High-Performance Event
Timer) to perform precise timing, which carries a high-overhead.

2. On each block operation, the kernel calls a function to add entropy to the kernel’s entropy pool for
/dev/random.

To address these issues, we modified the benchmark utility to read the timestamp counter directly
from the processor, avoiding a system call and an expensive HPET interaction. We also disabled the
entropy pool generation on each block request. Finally, we compiled a kernel to specifically support the
Intel Atom using the Intel ICC compiler. These changes were simple workarounds to issues in the block
I/O codepath and motivates the proposed multiread/multiwrite interface described in Section 5.3.

Results: With all of these changes, we were able to improve the baseline performance from 20,000K
IOPS (with blk-iopoll enabled), to 35,500K IOPS, nearly doubling baseline performance. These changes
were not simply optimized for one platform: we measured the same changes on an Intel Nehalem system
paired with three Intel X25-M drives, and performance improved from 110K IOPS by default to 180K
IOPS with our changes.

These modifications relied on some magic constants for optimal performance. One challenge is
to determine when to switch from interrupt-driven mode to deferred-polling mode to optimize for the
best IOPS rate within a latency bound, and for how long to defer before performing the polling work.
Currently, our changes come at the cost of high latency, because the deferring strategy introduces a worst
case of several hundreds of microseconds of delay. For today’s flash devices that have a OS-perceived
access time of 200 microseconds or more, this is acceptable, but we are investigating ways to reduce this
delay as flash access times continue to drop.
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5.3 Optimizing Block I/O for Flash: Multi-read and Multi-write
The difficulty of providing high performance I/O on wimpy platforms is due to a confluence of several
challenges:

• High interrupt load: As discussed previously, a modern Flash device can deliver hundreds of
thousands of I/Os per second.

• Long, inefficient block I/O codepath: The code executed for each individual block request is not
optimized for the low latency of flash (e.g., the entropy calculation on each block I/O mentioned
above).

• Internal flash parallelism: Modern flash devices require many parallel requests to saturate their
IOPS capabilities [44] because they internally place data on multiple independently-accessible
flash planes.

While interrupt mitigation techniques can help avoid interrupting a system tens to hundreds of thou-
sands of times per second, achieving high IOPS on wimpy platforms may still struggle to issue enough
commands to flash (in parallel) before the device interrupts the host system.

5.3.1 Research Idea: Multi-read and Multi-write

A solution to this problem is to amortize the cost of executing the code path by issuing multiple block I/Os
to the device at once. This provides several benefits: First, it can help reduce interrupt load by ensuring
that the flash device receives (and thus completes) commands in bursts so that an interrupt will allow the
OS to process multiple, related commands at once. Second, batching the request sent through the OS
reduces the number of times the block I/O codepath must be executed. Third, issuing multiple requests
at the same time inherently can take advantage of the internal parallelism of modern flash devices.

Thus, we propose the use of the multi-read and multi-write interface. The existing read() and
write() calls primarily deal with one request at a time; we propose to extend the OS interface to
include an analogous set of multiread() and multiwrite() calls to read and write from multiple
locations off of a device in one request.

Note that the multiread() and multiwrite() interface is very different from the existing
scatter-gather I/O readv and writev interface: scatter-gather read I/O is used to reduce the number
of system calls and data copies involved in reading a sequential portion of data from a file descriptor
into several different userspace buffers, whereas our goal is, logically, to read from multiple different
locations of a file descriptor into at least one buffer. Similarly, multiwrite() should write from
several different buffers to several different offsets to a file descriptor, whereas the existing writev()
call writes sequentially to the existing offset of the file descriptor.

Implementation plan: One important question we hope to understand is: how far do we need to push
the multiread abstraction in the OS to reap its benefits? For example, a simple multiread implementation
could simply turn a multiread system call into an iterative set of calls to the read() call within the OS.
This would not reduce the number of traversals within the block I/O code path, but it would avoid system
call overhead.

Another approach is to modify the existing interface to the block I/O system to support multiple
buffers and offsets in many of the existing structures (e.g., struct request). This would reduce the num-
ber of times the block I/O codepath is executed, issuing and constructing the final requests only when
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Figure 7: Lifecycle of an incoming key-value get request. Each request incurs several data copies, interrupts
(depicted by lightning bolts), and context switches.

interacting directly with the device, which understands only existing single-op commands. This could
be done at the block layer by coalescing multiple independent read() calls in time, or exposed as a mul-
tiread() system call, which would avoid the need to add logic to determine when to perform batching of
I/O in the kernel.

The extreme, stretch goal would be to explore the possibility (and benefit) of pushing a multi-read
interface directly to the device, but such an exploration requires device support that does not exist in
current off-the-shelf flash devices.

5.4 In-kernel Fast Path ADU Processing
Userspace processing of small remote storage requests (referred to here as Application Data Units or
ADUs) in today’s operating systems must incur several context switches and data copies that can reduce
performance, particularly on wimpy platforms. Figure 7 depicts the lifecycle of a key-value request over
the network being processed by a userspace application.

The overhead of processing a single key-value request is high, particularly when the amount of Ap-
plication Data Unit (ADU) processing is small. There are four data copies, two interrupts, and four
context switches for a single request.

Context switches can be amortized by batching together several ADUs and processing them at the
same time, increasing the average latency of responses depending on the degree of batching performed,
but data copies are unavoidable in typical userspace processing.

There are two contrasting approaches to eliminating context switches and data copies: performing all
work in userspace and performing all work in the kernel. When ADU processing involves no kernel tran-
sitions, userspace networking driver support can eliminate context switches, while RDMA network sup-
port can help eliminate data copies by reading data from the network directly into the application address
space. A major benefit of this approach is that remaining in userspace retains application programming
ease, while the major drawbacks are that accessing storage through system calls incurs context switches
and datacopies, and userspace operation requires implementing networking driver support and protocols
such as TCP in userspace instead of using the mature codebase in the kernel. The opposite approach is
to perform all processing in the kernel, as in-kernel web servers and load balancers do [34, 5, 4]. This
can avoid all context switches and data copies but restricts the programmer’s flexibility to write complex
code.
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5.4.1 Research Issues

Storage Click attempts to find a middle-ground between the two extremes: it must avoid the data copies
and context switches that reduce performance for userspace ADU processing, and must enable appli-
cations that require complex ADU processing that may be untenable to implement in the kernel. We
therefore need to separate the work to perform complex/slow-path processing in userspace, while per-
forming common fast-path operations (such as caching, storage, and routing) in the kernel.

There are several questions we need to answer to properly implement this split functionality:

• How do we balance the complexity of in-kernel functionality with the performance benefits doing
so might provide?

• What interface do we present to application developers to allow them to build ADU-specific func-
tionality in the kernel?

• How do we communicate slow-path operations to the userspace program?

• How do we ensure ordering and safety of shared data between the userspace and kernel implemen-
tations?

We are building upon preliminary work on Storage Click that provides the substrate for efficient
networking and ADU processing in the kernel. Specifically, we have an in-kernel network event library
that allows us to process ADUs in the kernel with minimal data copying. We plan to extend this with
protocol-specific parsing libraries (e.g., libraries to read Thrift/Protocol Buffer data formats). The system
would then link with a user-written policy that receives “batches of ADUs”, where it decides on a per-
ADU basis whether to process it using fast-path or slow-path.

An example policy would be to take put/get key-value requests in FAWN-KV and send them to the
fast-path handler, which interacts with an in-kernel memory cache and a direct interface to storage and
networking; all other requests (such as those used for maintenance operations) would be directed through
the slow-path code where it forwards the request to the userland application.

5.5 Plan of Action
Implementing a full, flexible Storage Click system is a significant undertaking. The goal of this part of
the thesis work will be to:

1. Measure existing systems’ ability to perform small I/O,
2. Identify bottlenecks and design deficiencies in current implementations and propose solutions to

these deficiencies,
3. Implement the storage/flash-interface side of the Storage Click infrastructure (multiread/multiwrite),
4. Implement a rudimentary fast-path vs. slow-path mechanism.
We also note that the three major research components proposed above (interrupt mitigation for flash,

multiread/multiwrite, and in-kernel fastpath ADU processing) will have a dependent interaction with
each other: for example, the multiread interface may change the way that interrupts are returned from
the device: the interrupt mitigation techniques used may depend on the semantics of this behavior. This
work will include measuring the impact of various parameters of each component and its interaction.
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5.6 Related Work
Storage Click follows a long line of work in improving the efficiency (and hence performance) of net-
worked systems.

Efficient Networked Servers: With the growth of the Internet in the late 1990s, there were several
research projects focused on web serving dynamic content and high-speed packet processing. Lazy
Receive Processing [25] and IO-lite [43] are examples of research aimed at improving efficiency by
eliminating data copies for I/O and ensuring fair and stable performance during periods of overload. We
similarly take approaches to reduce the number of redundant data copies, but do not focus explicitly on
handling graceful degradation on overload. Facebook’s implementation of memcached has been reported
to support nearly 1 million memcache operations per second, but the average load on any server is only
about 100,000 requests/sec, far enough from overload that degradation is relatively less important [54].

Flash [42] and SEDA [62] are both webservers designed for high-performance and high-concurrency
using event-driven architectures. Modern high performance systems like memcached use the libevent
framework [46] for event-driven scalable polling of thousands of network sockets from userland. Storage
Click is aimed at providing similar functionality of event-driven operation in the kernel (klibevent) to
reduce the overhead of context switches.

AFPA [34] is a modular in-kernel processing architecture for high-performance networked servers.
This work focuses mostly on webserving, and they demonstrate the significant (three-fold) benefits of
avoiding data copies and context switches, performing application processing in the same software in-
terrupt context as the TCP/IP stack, and slimming down the code path for requests. Their system did not
provide a fast-path/slow-path mechanism, nor did they focus heavily on performance of small random
I/O or interfacing with modern flash devices.

RAMCloud [41] proposes the use of networked memory servers as the basis for data-intensive com-
puting clusters. One goal is to provide end-to-end RPC latencies of just 10 microseconds. Even a fast
10Gbps network switch has a switch-to-switch latency of 1 microsecond, so meeting this target requires
processing an RPC at the server in a few microseconds. To achieve this goal, RAMCloud must similarly
optimize the operating system stack to minimize any extra work. One difference between our approaches
is that in RAMCloud, all processing can logically remain in userspace: the in-memory database can be
run in a userspace program with the incoming network data copied directly into userspace memory using
RDMA or a userspace network driver. Today’s Ethernet currently does not support RDMA (though sup-
port has been announced [3]), and implementing a different userspace network driver for each card may
be difficult. In contrast, Storage Click currently requires interfacing with devices that only the kernel
can access. The separation of simple fast-path operations from complex slow-path operations provides a
middle-ground between implementing all logic in the kernel and supporting all I/O in userspace.

FlexSC [53] proposes the use of exception-less system calls, noting that the impact of system calls on
high-performance servers implemented in userspace is high due to cache pollution and pipeline flushes.
Their implementation uses shared memory pages between userspace and kernel to coordinate asyn-
chronous system call execution without requiring a mode switch. This technique may help improve
the performance of the slow-path by reducing the cost of system calls, but it does not eliminate the data
copies and interrupt overheads for I/O-intensive work.

Packet Processing: The speed of networking continues to increase every year, with 10Gbps Ethernet
in datacenters today, 40Gbps Ethernet/Infiniband either on its way or in HPC clusters, and 100Gbps
Ethernet/Infiniband proposals. Unfortunately, the speed of individual cores has hit a plateau, and today’s
systems improve single machine throughput by moving to many-core processing architectures. Worse
yet, the interrupt load imposed by the network has traditionally scaled with the throughput of the network.
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Techniques like Receive-Side-Scaling have been designed to distribute the work of packet processing
among many cores, ensuring that similar flows or packets are assigned the same core to avoid cache
thrashing. To avoid dedicating proportionally more cores to processing network packets, our research is
focused on exploring the tradeoff of latency versus throughput in the context of datacenter workloads.

Storage Click inherits its name from the Click Modular Router [36], which provides a flexible packet
processing framework in the kernel for high performance. While Click deals primarily with packets, we
must deal with “application data units” that may involve application-specific logic: retrieving data from
local storage such as RAM (for caching) or flash/disks (for persistent storage), sending such processed
ADUs over the network. Storage Click’s implementation will likely not focus as much on modularity as
Click, however.

Recent work on using GPUs for packet forwarding has identified that the existing Linux kernel stack
spends over 50% of its processing cycles with memory allocations and dealing with high per-packet
overheads [30]. Unfortunately the code has not been made available, so we will likely have to re-
implement some of their optimizations and modifications to the stack. But this effort is in support
of the research contribution that is more focused on the in-kernel interfaces required to allow flexible
programmability and high performance on wimpy nodes. PacketShader builds upon ideas presented in
the RouteBricks [24] project, an architecture and implementation of scalable software routers. Key to
high performance in RouteBricks is the pinning of cores to queues to prevent each core’s cache from
getting thrashed. We imagine that similar techniques will be useful in Storage Click, e.g., pinning a core
(or cores) to polling network I/O, interfacing with a disk, etc.

Interrupt coalescing/mitigation in network devices became popular in the late 1990s as a way to deal
with the receiver livelock problem [25] and to improve the efficiency of high-speed packet reception
in FreeBSD [51]. Linux soon adopted the same technique and called it NAPI (“New API”), allowing
for easy configuration of when to switch between polling and interrupt modes. Recently, the same
infrastructure has been created in the Linux I/O stack for block devices, known as blk-iopoll [11]. Based
on some initial experiments on FAWN systems, blk-iopoll can actually reduce performance when not
properly tuned; Storage Click tries to improve upon existing interrupt mitigation techniques, particularly
for Flash SSDs that do not support interrupt coalescing on the device itself.

Extensible Operating Systems: Implementing logic in the kernel necessarily makes it more difficult
to integrate userspace applications for the average developer. Many of our design decisions are informed
by the work on extensible operating systems, such as SPIN [17], the Exokernel project [26, 27], and Scout
OS [40]. The Exokernel proposed eliminating all abstractions from applications to let them manage the
underlying hardware as they wished, with the exception of ensuring security/isolation of the underlying
hardware. SPIN took an alternative approach of “downloading” code into the kernel and allowing the user
applications overwrite kernel functions where applicable, providing safety using language constructs and
capabilities. Storage Click conceptually follows more of the Exokernel approach, implementing many
of the lower-level actions (network handling, storage I/O, memcached) itself and allowing users to use
these exported interfaces. In contrast, Storage Click looks at a relatively restricted set of application
functionality in the kernel, allowing most of the existing kernel implementations to remain as-is.

6 Timeline
The chart in Figure 8 describes the timeline for the thesis research. The timeline factors into account
job interview season between February and May. The three month period dedicated to writing the dis-
sertation also will allow for some lag time to complete portions of the research needed to complete the
thesis.
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