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ABSTRACT
A large and growing number of web pages display contex-
tual advertising based on keywords automatically extracted
from the text of the page, and this is a substantial source
of revenue supporting the web today. Despite the impor-
tance of this area, little formal, published research exists.
We describe a system that learns how to extract keywords
from web pages for advertisement targeting. The system
uses a number of features, such as term frequency of each
potential keyword, inverse document frequency, presence in
meta-data, and how often the term occurs in search query
logs. The system is trained with a set of example pages that
have been hand-labeled with “relevant” keywords. Based on
this training, it can then extract new keywords from previ-
ously unseen pages. Accuracy is substantially better than
several baseline systems.

Categories and Subject Descriptors
H.3.1 [Content Analysis and Indexing]: Abstracting
methods; H.4.m [Information Systems]: Miscellaneous

General Terms
Algorithms, experimentation

Keywords
keyword extraction, information extraction, advertising

1. INTRODUCTION
Content-targeted advertising systems, such as Google’s

AdSense program, and Yahoo’s Contextual Match product,
are becoming an increasingly important part of the funding
for free web services. These programs automatically find rel-
evant keywords on a web page, and then display advertise-
ments based on those keywords. In this paper, we system-
atically analyze techniques for determining which keywords
are relevant. We demonstrate that a learning-based tech-
nique using TF×IDF features, web page meta data, and,
most surprisingly, information from query log files, substan-
tially outperforms competing methods, and even approaches
human levels of performance by at least one measure.

Typical content-targeted advertising systems analyze a
web page, such as a blog, a news page, or another source
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of information, to find prominent keywords on that page.
These keywords are then sent to an advertising system,
which matches the keywords against a database of ads. Ad-
vertising appropriate to the keyword is displayed to the user.
Typically, if a user clicks on the ad, the advertiser is charged
a fee, most of which is given to the web page owner, with a
portion kept by the advertising service.

Picking appropriate keywords helps users in at least two
ways. First, choosing appropriate keywords can lead to users
seeing ads for products or services they would be interested
in purchasing. Second, the better targeted the advertising,
the more revenue that is earned by the web page provider,
and thus the more interesting the applications that can be
supported. For instance, free blogging services and free
email accounts with large amounts of storage are both en-
abled by good advertising systems

From the perspective of the advertiser, it is even more
important to pick good keywords. For most areas of re-
search, such as speech recognition, a 10% improvement leads
to better products, but the increase in revenue is usually
much smaller. For keyword selection, however, a 10% im-
provement might actually lead to nearly a 10% higher click-
through-rate, directly increasing potential revenue and profit.

In this paper, we systematically investigated several dif-
ferent aspects of keyword extraction. First, we compared
looking at each occurrence of a word or phrase in a doc-
ument separately, versus combining all of our information
about the word or phrase. We also compared approaches
that look at the word or phrase monolithically to approaches
that decompose a phrase into separate words. Second, we
examined a wide variety of information sources, analyzing
which sources were most helpful. These included various
meta-tags, title information, and even the words in the URL
of the page. One surprisingly useful source of information
was query frequency information from MSN Search query
logs. That is, knowing the overall query frequency of a par-
ticular word or phrase on a page was helpful in determining
if that word or phrase was relevant to that page.

We compared these approaches to several different base-
line approaches, including a traditional TF×IDF model; a
model using TF and IDF features but with learned weights;
and the KEA system [7]. KEA is also a machine learning
system, but with a simpler learning mechanism and fewer
features. As we will show, our system is substantially better
than any of these baseline systems. We also compared our
system to the maximum achievable given the human label-
ing, and found that on one measure, our system was in the
same range as human levels of performance.



2. SYSTEM ARCHITECTURE
In this section, we introduce the general architecture of

our keyword extraction system, which consists of the follow-
ing four stages: preprocessor, candidate selector, classifier,
and postprocessor.

2.1 Preprocessor
The main purpose of the preprocessor is to transform an

HTML document into an easy-to-process plain-text based
document, while still maintaining important information.
In particular, we want to preserve the blocks in the orig-
inal HTML document, but remove the HTML tags. For
example, text in the same table should be placed together
without tags like <table>, <tr>, or <td>. We also preserve
information about which phrases are part of the anchor text
of the hypertext links. The meta section of an HTML doc-
ument header is also an important source of useful informa-
tion, even though most of the fields except the title are not
displayed by web browsers.

The preprocessor first parses an HTML document, and re-
turns blocks of text in the body, hypertext information, and
meta information in the header1. Because a keyword should
not cross sentence boundaries, we apply a sentence splitter
to separate text in the same block into various sentences.

To evaluate whether linguistic information can help key-
word extraction, we also apply a state-of-the-art part-of-
speech (POS) tagger [6], and record the pos tag of each
word. In addition, we have observed that most words or
phrases that are relevant are short noun phrases. Therefore,
having this information available as a feature would poten-
tially be useful. We thus applied a state-of-the-art chunker
to detect the base noun phrases in each document [15]2.

2.2 Candidate Selector
Our system considers each word or phrase (consecutive

words) up to length 5 that appears in the document as a
candidate keyword. This includes all keywords that appear
in the title section, or in meta-tags, as well as words and
phrases in the body. As mentioned previously, a phrase is
not selected as a candidate if it crosses sentence or block
boundaries. This strategy not only eliminates many trivial
errors but also speeds up the processing time by considering
fewer keyword candidates.

Each phrase can be considered separately, or can be com-
bined with all other occurrences of the same phrase in the
same document. In addition, phrases can be considered
monolithically, or can be decomposed into their constituent
words. Putting together these possibilities, we ended up
considering three different candidate selectors.

2.2.1 Monolithic, Separate (MoS)
In the Monolithic Separate candidate selector, fragments

that appear in different document locations are considered
as different candidates even if their content is identical.
That is, if the phrase “digital camera” occurred once in the
beginning of the document, and once in the end, we would
consider them as two separate candidates, with potentially
different features. While some features, such as the phrase

1We used “Beautiful Soup”, which is a python library for
HTML parsing. Beautiful Soup can be downloaded from
http://www.crummy.com/software/BeautifulSoup/
2These natural language processing tools can be downloaded
from http://l2r.cs.uiuc.edu/∼cogcomp

length and TF values, would all be the same for all of these
candidates, others, such as whether the phrase was capital-
ized, would be different. We call this variation Separate.

In this candidate selector, all features of a candidate phrase
are based on the phrase as a whole. For example, term fre-
quency counts the number of times the exact phrase occurs
in the document, rather than using the the term frequency
of individual words. We refer to this as Monolithic. To sim-
plify our description, we use MoS to refer to this design.

2.2.2 Monolithic, Combined (MoC)
Since we only care about the ranked list of keywords,

not where the keywords are extracted, we can reduce the
number of candidates by combining identical (case ignored)
fragments. For instance, “Weather report” in the title and
“weather report” in the body are treated as only one candi-
date. We use MoC to refer to this design.

Note that even in the Combined case, word order matters,
e.g. the phrase “weather report” is treated as different than
the phrase “report weather.”

2.2.3 Decomposed, Separate (DeS)
Keyword extraction seems closely related to well-studied

areas like information extraction, named-entity recognition
and phrase labeling: they all attempt to find important
phrases in documents. State-of-the-art information extrac-
tion systems (e.g., [5, 20]), named-entity recognition systems
(e.g., [21]), and phrase labeling systems (e.g., [3]) typically
decompose phrases into individual words, rather than ex-
amining them monolithically. It thus seemed worthwhile to
examine similar techniques for keyword extraction. Decom-
posing a phrase into its individual words might have certain
advantages. For instance, if the phrase “pet store” occurred
only once in a document, but the phrases “pet” and “store”
each occurred many times separately, such a decomposed
approach would make it easy to use this knowledge.

Instead of selecting phrases directly as candidates, the
decomposed approach tries to assign a label to each word
in a document, as is done in related fields. That is, each
of the words in a document is selected as a candidate, with
multiple possible labels. The labels can be B (beginning of
a keyphrase, when the following word is also part of the
keyphrase), I (inside a keyphrase, but not the first or last
word), L (last word of a keyphrase), U (unique word of a
keyword of length 1), and finally O (outside any keyword or
keyphrase).

This word-based framework requires a multi-class classi-
fier to assign these 5 labels to a candidate word. In ad-
dition, it also needs a somewhat more sophisticated infer-
ence procedure to construct a ranked list of keywords in
the postprocessing stage. The details will be described in
Section 2.4. We use DeS to refer to this design.

2.3 Classifier
The core of our keyword extraction system is a classifier

trained using machine learning. When a monolithic frame-
work (MoS or MoC) is used, we train a binary classifier.
Given a phrase candidate, the classifier predicts whether the
word or phrase is a keyword or not. When a decomposed
framework (DeS) is used, we train a multi-class classifier.
Given a word, the goal is to predict the label as B, I, L,
U, or O. Since whether a phrase is a keyword is ambiguous
by nature, instead of a hard prediction, we actually need



the classifier to predict how likely it is that candidate has
a particular label. In other words, the classifier needs to
output some kind of confidence scores or probabilities. The
scores or probabilities can then be used later to generate a
ranked list of keywords, given a document. We introduce
the learning algorithm and the features we used as follows.

2.3.1 Learning Algorithm
We used logistic regression as the learning algorithm in all

experiments reported here. Logistic regression models are
also called maximum entropy models, and are equivalent to
single layer neural networks that are trained to minimize en-
tropy. In related experiments on an email corpus, we tried
other learning algorithms, such as linear support-vector ma-
chines, decision trees, and naive Bayes, but in every case
we found that logistic regression was equally good or better
than the other learning algorithms for this type of task.

Formally, we want to predict an output variable Y , given
a set of input features, X. In the monolithic framework, Y
would be 1 if a candidate phrase is a relevant keyword, and 0
otherwise. X would be a vector of feature values associated
with a particular candidate. For example, the vector might
include the distance from the start of the document, the
term frequency (TF ) and the document frequency (DF ) val-
ues for the phrase. The model returns the estimated prob-
ability, P (Y = 1|X = x). The logistic regression model
learns a vector of weights, w, one for each input feature in
X. Continuing our example, it might learn a weight for the
TF value, a weight for the DF value, and a weight for the
distance value. The actual probability returned is

P (Y = 1|X = x) =
exp(x · w)

1 + exp(x · w)

An interesting property of this model is its ability to sim-
ulate some simpler models. For instance, if we take the
logarithms of the TF and DF values as features, then if the
corresponding weights are +1 and -1, we end up with

log(TF ) − log(DF ) = log(TF/DF )

In other words, by including TF and DF as features, we
can simulate the TF×IDF model, but the logistic regression
model also has the option to learn different weightings.

To actually train a logistic regression model, we take a
set of training data, and try to find the weight vector w
that makes it as likely as possible. In our case, the train-
ing instances consist of every possible candidate phrases se-
lected from the training documents, with Y = 1 if they
were labeled relevant, and 0 otherwise. We use the SCGIS
method [9] as the actual training method. However, because
there is a unique best logistic regression model for any train-
ing set, and the space is convex, the actual choice of training
algorithm makes relatively little difference.

In the monolithic models, we only try to model one deci-
sion – whether a word or phrase is relevant or not, so the
variable Y can only take values 0 or 1. But for the decom-
posed framework, we try to determine for each word whether
it is the beginning of a phrase, inside a phrase, etc. with 5
different possibilities (the BILUO labels). In this case, we
use a generalized form of the logistic regression model:

P (Y = i|x) =
exp(x · wi)P

5

j=1
exp(x · wj)

That is, there are 5 different sets of weights, one for each
possible output value.

Note that in practice, for both forms of logistic regression,
we always append a special “always on” feature (i.e. a value
of 1) to the x vector, that serves as a bias term. In order
to prevent overfitting, we also apply a Gaussian prior with
variance 0.3 for smoothing [4].

2.3.2 Features
We experimented with various features that are poten-

tially useful. Some of these features are binary, taking only
the values 0 or 1, such as whether the phrase appears in
the title. Others are real-valued, such as the TF or DF val-
ues or their logarithms. Below we describe these features
and their variations when used in the monolithic (MoS) and
decomposed (DeS) frameworks.

Features used in the monolithic, combined (MoC) frame-
work are basically the same as in the MoS framework. If in
the document, a candidate phrase in the MoC framework has
several occurrences, which correspond to several candidate
phrases in the MoS framework, the features are combined
using the following rules.

1. For binary features, the combined feature is the union
of the corresponding features. That is, if this feature
is active in any of the occurrences, then it is also active
in the combined candidate.

2. For real-valued features, the combined feature takes
the smallest value of the corresponding features.

To give an example for the binary case, if one occurrence of
the term “digital camera” is in the anchor text of a hyper-
link, then the anchor text feature is active in the combined
candidate. Similarly, for the location feature, which is a
real-valued case, the location of the first occurrence of this
phrase will be used as the corresponding combined value,
since its value is the smallest. In the following description,
features are binary unless otherwise noted.

2.3.2.1 Lin: linguistic features.
The linguistic information used in feature extraction in-

cludes: two types of pos tags – noun (NN & NNS) and proper
noun (NNP & NNPS), and one type of chunk – noun phrase
(NP). The variations used in MoS are: whether the phrase
contain these pos tags; whether all the words in that phrase
share the same pos tags (either proper noun or noun); and
whether the whole candidate phrase is a noun phrase. For
DeS, they are: whether the word has the pos tag; whether
the word is the beginning of a noun phrase; whether the
word is in a noun phrase, but not the first word; and whether
the word is outside any noun phrase.

2.3.2.2 C: capitalization.
Whether a word is capitalized is an indication of being

part of a proper noun, or an important word. This set of
features for MoS is defined as: whether all the words in the
candidate phrase are capitalized; whether the first word of
the candidate phrase is capitalized; and whether the candi-
date phrase has a capitalized word. For DeS, it is simply
whether the word is capitalized.

2.3.2.3 H: hypertext.
Whether a candidate phrase or word is part of the an-

chor text for a hypertext link is extracted as the following



features. For MoS, they are: whether the whole candidate
phrase matches exactly the anchortext of a link; whether all
the words of the candidate phrase are in the same anchor
text; and whether any word of the candidate phrase belongs
to the anchor text of a link. For DeS, they are: whether the
word is the beginning of the anchor text; whether the word
is in the anchor text of a link, but not the first word; and
whether the word is outside any anchor text.

2.3.2.4 Ms: meta section features.
The header of an HTML document may provide addi-

tional information embedded in meta tags. Although the
text in this region is usually not seen by readers, whether a
candidate appears in this meta section seems important. For
MoS, the features are whether the whole candidate phrase
is in the meta section. For DeS, they are: whether the word
is the first word in a meta tag; and whether the word occurs
somewhere in a meta tag, but not as the first word.

2.3.2.5 T: title.
The only human readable text in the HTML header is

the TITLE, which is usually put in the window caption by
the browser. For MoS, the feature is whether the whole
candidate phrase is in the title. For DeS, the features are:
whether the word is the beginning of the title; and whether
the word is in the title, but not the first word.

2.3.2.6 M: meta features.
In addition to TITLE, several meta tags are potentially re-

lated to keywords, and are used to derive features. In the
MoS framework, the features are: whether the whole can-
didate phrase is in the meta-description; whether the whole
candidate phrase is in the meta-keywords; and whether the
whole candidate phrase is in the meta-title. For DeS, the
features are: whether the word is the beginning of the meta-
description; whether the word is in the meta-description, but
not the first word; whether the word is the beginning of the
meta-keywords; whether the word is in the meta-keywords,
but not the first word; whether the word is the beginning
of the meta-title; and whether the word is in the meta-title,
but not the first word.

2.3.2.7 U: URL.
A web document has one additional highly useful property

– the name of the document, which is its URL. For MoS, the
features are: whether the whole candidate phrase is in part
of the URL string; and whether any word of the candidate
phrase is in the URL string. In the DeS framework, the
feature is whether the word is in the URL string.

2.3.2.8 IR: information retrieval oriented features.
We consider the TF (term frequency) and DF (document

frequency) values of the candidate as real-valued features.
The document frequency is derived by counting how many
documents in our web page collection that contain the given
term. In addition to the original TF and DF frequency
numbers, log(TF + 1) and log(DF + 1) are also used as fea-
tures. The features used in the monolithic and the decom-
posed frameworks are basically the same, where for DeS, the
“term” is the candidate word.

2.3.2.9 Loc: relative location of the candidate.
The beginning of a document often contains an introduc-

tion or summary with important words and phrases. There-
fore, the location of the occurrence of the word or phrase
in the document is also extracted as a feature. Since the
length of a document or a sentence varies considerably, we
take only the ratio of the location instead of the absolute
number. For example, if a word appears in the 10th posi-
tion, while the whole document contains 200 words, the ratio
is then 0.05. These features used for the monolithic and de-
composed frameworks are the same. When the candidate is
a phrase, its first word is used as its location.

There are three different relative locations used as fea-
tures: wordRatio – the relative location of the candidate in
the sentence; sentRatio – the location of the sentence where
the candidate is in divided by the total number of sentences
in the document; wordDocRatio – the relative location of
the candidate in the document. In addition to these 3 real-
valued features, we also use their logarithms as features.
Specifically, we used log(1 + wordRatio), log(1 + sentRatio),
and log(1 + wordDocRatio).

2.3.2.10 Len: sentence and document length.
The length (in words) of the sentence (sentLen) where

the candidate occurs, and the length of the whole document
(docLen) (words in the header are not included) are used as
features. Similarly, log(1+ sentLen) and log(1+docLen) are
also included.

2.3.2.11 phLen: length of the candidate phrase.
For the monolithic framework, the length of the candidate

phrase (phLen) in words and log(1+ phLen) are included as
features. These features are not used in the decomposed
framework.

2.3.2.12 Q: query log.
The query log of a search engine reflects the distribution

of the keywords people are most interested in. We use the
information to create the following features. For these ex-
periments, unless otherwise mentioned, we used a log file
with the most frequent 7.5 million queries.

For the monolithic framework, we consider one binary fea-
ture – whether the phrase appears in the query log, and two
real-valued features – the frequency with which it appears
and the log value, log(1 + frequency). For the decomposed
framework, we consider more variations of this information:
whether the word appears in the query log file as the first
word of a query; whether the word appears in the query log
file as an interior word of a query; and whether the word ap-
pears in the query log file as the last word of a query. The
frequency values of the above features and their log values
(log(1 + f), where f is the corresponding frequency value)
are also used as real-valued features. Finally, whether the
word never appears in any query log entries is also a feature.

2.4 Postprocessor
After the classifier predicts the probabilities of the candi-

dates associated with the possible labels, our keyword ex-
traction system generates a list of keywords ranked by the
probabilities. When the Monolithic Combined framework is
used, we simply return the most probable words or phrases.
When the Monolithic Separate (MoS) framework is used,
the highest probability of identical fragments is picked as



the probability of the phrase.
In the Decomposed Separate (DeS) framework, we need

to convert probabilities of individual words being phrase
components (Begininning, Inside, etc.) into probabilities of
relevance of whole phrases. Typically, in phrase labeling
problems like information extraction, this conversion is done
with the Viterbi [17] algorithm, to find the most probable
assignment of the word label sequence of each sentence [5].
We rejected this method for two reasons. First, because in
our training set, only a few words per document tend to be
labeled as relevant, our system almost never assigns high
probability to a particular phrase, and thus the Viterbi as-
signment would typically reject all phrases. Second, in typ-
ical information extraction applications, we not only want
to find various entities, we also want to find their relation-
ships and roles. In our application, we simply want a list
of potential entities. It is thus fine to extract potentially
overlapping strings as potential keywords, something that
would not work well if role-assignment was required.

Therefore, we use the following mechanism to estimate
the probability of a phrase in the DeS framework. Given
a phrase of length n, we calculate the overall probability
for the phrase by multiplying by the probability of the in-
dividual words being the correct label of the label sequence.
For example, if n = 3, then the correct label sequence is
B, I, L. The probability of this phrase being a keyword,
p1, is derived by p(w1 = B) · p(w2 = I) · p(w3 = L).
If the phrase is not a keyword, then the correct label se-
quence is O, O, O. The corresponding probability, p0, is
then p(w1 = O) · p(w2 = O) · p(w3 = O). The actual proba-
bility used for this phrase is then p1/(p0 + p1). Among the
the normalization methods we tried, this strategy works the
best in practice.

3. EXPERIMENTS
This section reports the experimental results comparing

our system with several baseline systems, the comparisons
between the variations of our system, the contribution of
individual features, and the impact of reducing the search
query log size. We first describe how the documents were
obtained and annotated, as well as the performance mea-
sures.

3.1 Data and Evaluation Criteria
The first step was to obtain and label data, namely a set

of web pages. We collected these documents at random from
the web, subject to the following criteria:

First, each page was in a crawl of the web from MSN
Search. Second, each page displayed content-targeted ad-
vertising (detected by the presence of special Javascript).
This criterion was designed to make sure we focused on the
kind of web pages where content-targeted advertising would
be desirable, as opposed to truly random pages. Third, the
pages also had to occur in the Internet Archive3. We hope
to share our labeled corpus, so other researchers can exper-
iment with it. Choosing pages in the Internet Archive may
make that sharing easier. Fourth, we selected no more than
one page per domain (in part, because of copyright issues,
and in part to ensure diversity of the corpus). Fifth, we tried
to eliminate foreign language and adult pages. Altogether,
we collected 1109 pages.

3http://www.archive.org

Next, we selected 30 of these pages at random to be used
for inter-annotator agreement measurements. We then ran-
domly split the remaining pages into 8 sets of 120 pages and
one set of 119 pages. We gave each set to one of our anno-
tators. For each annotator, the first time they labeled a set
of web pages, we also gave them the additional 30 pages for
inter-annotator agreement, scattered randomly throughout
(so, they received 150 pages total the first time, 120 or 119
on subsequent sets). Several pages were rejected for various
reasons, such as one annotator who did not complete the
process, several foreign language pages that slipped through
our screening process, etc. As a result, 828 web documents
had legitimate annotations and were used to train and test
the system.

Annotators were instructed to look at each web page, and
determine appropriate keywords. In particular, they were
given about 3 pages of instructions with actual examples.
The core of the instructions was essentially as follows:

Advertising on the web is often done through
keywords. Advertisers pick a keyword, and their
ad appears based on that. For instance, an ad-
vertiser like Amazon.com would pick a keyword
like “book” or “books.” If someone searches for
the word “book” or “books”, an Amazon ad is
shown. Similarly, if the keyword “book” is highly
prominent on a web page, Amazon would like an
ad to appear.

We need to show our computer program exam-
ples of web pages, and then tell it which keywords
are “highly prominent.” That way, it can learn
that words like “the” and “click here” are never
highly prominent. It might learn that words that
appear on the right (or maybe the left) are more
likely to be highly prominent, etc. Your task is to
create the examples for the system to learn from.
We will give you web pages, and you should list
the highly prominent words that an advertiser
might be interested in.

There was one more important instruction, which was to
try to use only words or phrases that actually occurred on
the page being labeled. The remaining portion of the in-
structions gave examples and described technical details of
the labeling process. We used a snapshot of the pages, to
make sure that the training, testing, and labeling processes
all used identical pages. The snapshotting process also had
the additional advantage that most images, and all content-
targeted advertising, were not displayed to the annotators,
preventing them from either selecting terms that occurred
only in images, or from being polluted by a third-party key-
word selection process.

3.2 Performance measures
We computed three different performance measures of our

various systems. The first performance measure is simply
the top-1 score. To compute this measure, we counted the
number of times the top output of our system for a given
page was in the list of terms described by the annotator
for that page. We divided this number by the maximum
achievable top-1 score, and multiplied by 100. To get the
maximum achievable top-1 score, for each test document,
we first removed any annotations that did not occur some-
where in the web page (to eliminate spelling mistakes, and



occasional annotator confusion). The best achievable score
was then the number of documents that still had at least one
annotation. We counted answers as correct if they matched,
ignoring case, and with all whitespace collapsed to a single
space.

The second performance measure is the top-10 score, which
is similar to the top-1 measure but considers 10 candidates
instead of 1. To compute this measure, for each web page,
we counted how many of the top 10 outputs of our system
were in the list of terms described by the annotator for that
page. The sum of these numbers was then divided by the
maximum achievable top-10 score, and multiplied by 100.

It is important in an advertising system to not only ex-
tract accurate lists of keywords, but to also have accurate
probability estimates. For instance, consider two keywords
on a particular page, say “digital camera”, which might
monetize at $1 per click, and “CD-R media”, which mon-
etizes at say, 10 cents per click. If there is a 50% chance
that “CD-R media” is relevant, and only a 10% chance that
“digital camera” is relevant, overall expected revenue from
showing “digital camera” ads will still be higher than from
showing “CD-R media” ads. Therefore, accurately estimat-
ing probabilities leads to potentially higher advertising rev-
enue.

The most commonly used measure of the accuracy of prob-
ability estimates is entropy. For a given term t and a given
web page p, our system computes the probability that the
word is relevant to the page, P (t|p) (i.e., the probability
that the annotator listed the word on the relevant list). The
entropy of a given prediction is

− log
2
P (t|p) if t is relevant to p

− log
2
(1 − P (t|p)) if t is not relevant to p

Lower entropies correspond to better probability estimates,
with 0 being ideal. When we report the entropy, we will
report the average entropy across all words and phrases up
to length 5 in all web pages in the test set, with duplicates
within a page counted as one occurrence. The DeS frame-
work was not easily amenable to this kind of measurement,
so we will only report the entropy measure for the MoS and
MoC methods.

3.3 Inter-annotator Agreement
We wanted to compute some form of inter-annotator agree-

ment, where the typical choice for this measure is the kappa
measure. However, that measure is designed for annotations
with a small, fixed number of choices, where a prior prob-
ability of selecting each choice can be determined. It was
not clear how to apply it for a problem with thousands of
possible annotations, with the possible annotations different
on every page.

Instead, we used our inter-annotator agreement data to
compute an upper-bound for the possible performance on
our top-1 measure. In particular, we designed an accuracy
measure called committee-top-1. Essentially this number
measures roughly how well a committee of four people could
do on this task, by taking the most common answer selected
by the four annotators.

To compute this, we performed the following steps. First,
we selected a page at random from the set of 30 labeled web
pages for inter-annotator agreement. Then, we randomly
selected one of the five annotators as arbitrator, whose re-
sults we called “correct.” We then merged the results of

the remaining four annotators, and found the single most
frequent one. Finally, if that result was on the “correct”
keywords list, we considered it correct; otherwise we con-
sidered it wrong. The average committee-top-1 score from
1000 samples was 25.8. This gives a general feeling for the
difficulty of the problem. Due to the small number of doc-
uments used (30) and the small number of annotators (5),
there is considerable uncertainty in this estimate. In fact,
in some cases, our experimental results are slightly better
than this number, which we attribute to the small size of
the sample used for inter-annotator agreement.

3.4 Results
All experiments were performed using 10-way cross vali-

dation. In most cases, we picked an appropriate baseline,
and computed statistical significance of differences between
results and this baseline. We indicate the baseline with a b

symbol. We indicate significance at the 95% level with a †

symbol, and at the 99% level with a ‡ symbol. Significance
tests were computed with a two-tailed paired t-test.

3.4.1 Overall Performance
We begin by comparing the overall performance of differ-

ent systems and configurations. The top-1 and top-10 scores
of these different systems are listed in Table 1. Among
the system configurations we tested, the monolithic com-
bined (MoC) framework is in general the best. In particular,
when using all but the linguistic features, this configuration
achieves the highest top-1 and top-10 scores in all the ex-
periments, just slightly (and not statistically significantly)
better than the same framework with all features.

The monolithic separate (MoS) system with all features
performs worse for both top-1 and top-10, although only the
top-10 result was statistically significant. Despite its preva-
lence in the information extraction community, for this task,
the decomposed separate (DeS) framework is significantly
worse than the monolithic approach. We hypothesize that
the advantages of using features based on phrases as a whole
(used in MoS and MoC) outweigh the advantages of features
that combine information across words.

In addition to the different configurations of our systems,
we also compare with a state-of-the-art keyword extraction
system – KEA [7], by providing it with our preprocessed,
plain-text documents. KEA is also a machine learning-based
system. Although it relies on simpler features, it uses more
sophisticated information retrieval techniques like remov-
ing stop words and stemming for preprocessing. Our best
system is substantially better than KEA, with relative im-
provements of 27.5% and 22.9% on top-1 and top-10 scores,
respectively. We tried a very simple baseline system, MoC
TFIDF, which simply uses traditional TF×IDF scores. This
system only reaches 13.01 in top-1 and 19.03 in top-10. We
also tried allowing using TF and IDF features, but allowing
the weights to be trained wiht logistic regression (MoC IR).
Training slightly improved top-1 to 13.63, and substantially
improved the top-10 score to 25.67.

Notice that the top-1 score of our best system actually ex-
ceeds the committee-top-1 inter-annotator agreement score.
There was considerable uncertainty in that number due to
the small number of annotators and small number of docu-
ments for inter-annotator agreement, but we interpret these
results to mean that our best system is in the same general
range as human performance, at least on top-1 score.



system top-1 top-10

MoC (Monolithic, Combined), -Lin 30.06b 46.97b

MoC (Monolithic, Combined), All 29.94 46.45
MoS (Monolithic, Separate), All 27.95 44.13‡

DeS (Decomposed, Separate), All 24.25‡ 39.11‡

KEA [7] 23.57‡ 38.21‡

MoC (Monolithic, Combined), IR 13.63‡ 25.67‡

MoC (Monolithic, Combined), TFIDF 13.01‡ 19.03‡

Table 1: Performance of different systems

3.4.2 Feature Contribution
One important and interesting question is the contribu-

tion of different types of features. Namely, how important
is a particular type of information to the keyword extraction
task. We studied this problem by conducting a series of ab-
lation studies: removing features of a specific type to see
how much they contribute. We repeated these experiments
in the three different candidate selector frameworks of our
keyword extraction system to see if the same information
affects the system differently when the framework changes.

Tables 2, 3, and 4 show the detailed results. Each row
is either the baseline system which uses all features, or the
compared system that uses all except one specific kind of
feature. In addition to the top-1 and top-10 scores, we also
compare the entropies of the various systems using the same
framework. Recall that lower entropies are better. Entropy
is a somewhat smoother, more sensitive measure than top-n
scores, making it easier to see differences between different
systems. Note that because the numbers of candidates are
different, entropies from systems using different frameworks
are not comparable.

features top-1 top-10 entropy

A all 27.95b 44.13b 0.0120040b

-C capitalization 27.39 43.50 0.0120945‡

-H hypertext 27.39 43.82 0.0120751‡

-IR IR 18.77‡ 33.60‡ 0.0149899‡

-Len length 27.10 42.45† 0.0121040
-Lin linguistic 28.05 44.89 0.0122166‡

-Loc location 27.24 42.64‡ 0.0121860‡

-M meta 27.81 44.05 0.0120080
-Ms meta section 27.52 43.09† 0.0120390
-Q query log 20.68‡ 39.10‡ 0.0129330‡

-T title 27.81 44.25 0.0120040
-U URL 26.09† 44.14 0.0121409†

Table 2: The system performance by removing one

set of features in the MoS framework

By examining these results, we found that IR features and
Query Log features are the most helpful consistently in all
three frameworks. The system performance dropped signif-
icantly after removing either of them. However, the impact
of other features was not so clear. The location feature also
seems to be important, but it affects the top-10 score much
more than the top-1 score. Surprisingly, unlike the cases
in other typical phrase labeling problems, linguistic features
don’t seem to help in this keyword extraction domain. In
fact, removing this set of features in the decomposed sep-
arate framework improves the top-1 score a little. We also
observe more statistically significant differences in the en-

features top-1 top-10 entropy

A all 29.94b 46.45b 0.0113732b

-C capitalization 30.11 46.27 0.0114219†

-H hypertext 30.79 45.85† 0.0114370
-IR IR 25.42‡ 42.26‡ 0.0119463‡

-Len length 30.49 44.74† 0.0119803‡

-Lin linguistic 30.06 46.97 0.0114853‡

-Loc location 29.52 44.63† 0.0116400‡

-M meta 30.10 46.78 0.0113633‡

-Ms meta section 29.33 46.33 0.0114031
-Q query log 24.82† 42.30‡ 0.0121417‡

-T title 28.83 46.94 0.0114020
-U URL 30.53 46.39 0.0114310

Table 3: The system performance by removing one

set of features in the MoC framework

features top-1 top-10
A all 24.25 39.11
-C capitalization 24.26 39.20
-H hypertext 24.96 39.67
-IR IR 19.10‡ 30.56‡

-Lin linguistic 25.96† 39.36
-Loc location 24.84 37.93
-M meta 24.69 38.91
-Ms meta section 24.68 38.71
-Q query log 21.27‡ 33.95‡

-T title 24.40 38.89
-U URL 25.21 38.97

Table 4: The system performance by removing one

set of features in the DeS framework

tropy metric.
Evaluating the contribution of a feature by removing it

from the system does not always show its value. For in-
stance, if two types of features have similar effects, then the
system performance may not change by eliminating only one
of them. We thus conducted a different set of experiments
by adding features to a baseline system.

We chose a system in the monolithic combined framework
(MoC), using only IR features, as the baseline system. We
then built different systems by adding one additional set of
features, and comparing with the baseline system. Table 5
shows performance on the top-1, top-10, and entropy met-
rics, ordered by difference in top-1.

Interestingly, all the features seem to be helpful when they
are combined with the baseline IR features, including the
linguistic features. We thus conclude that the linguistic fea-
tures were not really useless, but instead were redundant
with other features like capitalization (which helps detect
proper nouns) and the Query Log features (which helps de-
tect linguistically appropriate phrases.) The Query Log fea-
tures are still the most effective among all the features we
experimented with. However, the performance gap between
our best system and a simple system using only IR and
Query Log features is still quite large.

3.4.3 Different Query Log Sizes
The query log feature were some of the most helpful fea-

tures, second only to the IR features. These features used
the top 7.5 million English queries from MSN Search. In



features top-1 top-10 entropy

IR 13.63b 25.67b 0.0163299b

+Q query log 22.36‡ 35.88‡ 0.0134891‡

+T title 19.90‡ 34.17‡ 0.0152316‡

+Len length 19.22‡ 33.43‡ 0.0134298‡

+Ms meta section 19.02‡ 31.90‡ 0.0154484‡

+H hypertext 18.46‡ 30.36‡ 0.0150824‡

+Lin linguistic 18.20‡ 32.26‡ 0.0146324‡

+C capitalization 17.41‡ 33.16‡ 0.0146999‡

+Loc location 17.01‡ 32.76‡ 0.0154064‡

+U URL 16.72† 28.63‡ 0.0157466‡

+M meta 16.71† 28.19‡ 0.0160472†

Table 5: The system performance by adding one set

of features in the MoC framework

practice, deploying systems using this many features may
be problematic. For instance, if we want to use 20 lan-
guages, and if each query entry uses about 20 bytes, the
query log files would use 3 GB. This amount of memory us-
age would not affect servers dedicated to keyword extraction,
but might be problematic for servers that perform other
functions (e.g. serving ads, or as part of a more general
blogging or news system). In scenarios where keyword ex-
traction is done on the client side, the query log file size is
particularly important.

Query logs may also help speed up our system. One strat-
egy we wanted to try is to consider only the phrases that
appeared in the query log file as potential matches for key-
word extraction. In this case, smaller query logs lead to
even larger speedups. We thus ran a set of experiments un-
der the MoC framework, using different query log file sizes
(as measured by a frequency threshold cutoff). The log file
sizes were very roughly inversely proportional to the cutoff.
The leftmost point, with a cutoff of 18, corresponds to our
7.5 million query log file.

The graph in Figure 1 shows both the top-1 and top-10
scores at different sizes. “Res. top-1” and “Res. top-10”
are the results where we restricted the candidate phrases by
eliminating those that do not appear in the query log file.
As a comparison, the graph also shows the non-restricting
version (i.e., top-1 and top-10). Note that of course the
top-1 scores cannot be compared to the top-10 scores.

When the frequency cutoff threshold is small (i.e., large
query log file size), this restricting strategy in fact improves
the top-1 score slightly, but hurts the top-10 score. This
phenomenon is not surprising since restricting candidates
may eliminate some keywords. This tends to not affect the
top-1 score since when using the query log file as an input,
the most probable keywords in a document almost always
appear in the keyword file, if the keyword file is large. Less
probable, but still good keywords, are less likely to appear in
the keyword file. As the query log file size becomes smaller,
the negative effect becomes more significant. However, if
only the top-1 score is relevant in the application, then a
reasonable cutoff point may be 1000, where the query log
file has less than 100,000 entries.

On the other hand, the top-1 and top-10 scores in the
non-restricting version decrease gradually as the size of the
query log file decreases. Fairly small files can be used with
the non-restricting version if space is at a premium. After
all, the extreme case is when no query log file is used, and

as we have seen in Table 3, in that case the top-1 and top-10
scores are still 24.82 and 42.30, respectively.
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Figure 1: The performance of using different sizes

of the query log file

4. RELATED WORK
There has been a moderate amount of previous work that

is directly relevant to keyword extraction. In most cases,
the keyword extraction was not applied to web pages, but
instead was applied to a different text domain. Most previ-
ous systems were fairly simple, using either a small number
of features, a simple learning method (Naive Bayes), or both.
In this section, we describe this previous research in more
detail.

4.1 GenEx
One of the best known programs for keyword extraction is

Turney’s GenEx system [22]. GenEx is a rule-based keyphrase
extraction system with 12 parameters tuned using a Genetic
Algorithm. GenEx has been trained and evaluated on a col-
lection of 652 documents of three different types: journal
articles, email messages, and web pages. Precisions of top 5
phrases and top 15 phrases are reported as evaluation met-
rics, where the numbers are 0.239 and 0.128 respectively for
all documents. Turney showed GenEx’s superiority by com-
paring it with an earlier keyphrase extraction system trained
by C4.5 [16] with several complicated features [22].

4.2 KEA and Variations
Concurrently with the development of GenEx, Frank et al.

developed the KEA keyphrase extraction algorithm using a
simple machine learning approach [7]. KEA first processes
documents by removing stopwords and by stemming. The
candidate phrases are represented using only three features
– TF×IDF, distance (number of words before the first oc-
currence of the phrase, divided by the number of words in
the whole document), and keyphrase-frequency, which is the
number of times the candidate phrase occurs in other docu-
ments. The classifier is trained using the naive Bayes learn-
ing algorithm [14]. Frank et al. compared KEA with GenEx,
and showed that KEA is slightly better in general, but the
difference is not statistically significant [7].



KEA’s performance was improved later by adding Web
related features [23]. In short, the number of documents re-
turned by a search engine using the keyphrase as query terms
is used as additional information. This feature is particu-
larly useful when training and testing data are from different
domains. In both intra and inter domain evaluations, the
relative performance gain in precision is about 10%.

Kelleher and Luz also reported an enhanced version of
KEA for web documents [13]. They exploited the link in-
formation of a web document by adding a “semantic ratio”
feature, which is the frequency of the candidate phrase P in
the original document D, divided by the frequency of P in
documented linked by D.

Using the Meta Keyword HTML tag as the source of an-
notations, they experimented with their approach on four
sets of documents, where documents are connected by hy-
perlinks in each collection. Among three of them, they re-
ported significant improvement (45% to 52%) compared to
the original version of KEA. Adding the semantic ratio to
our system would be an interesting area of future research.
It should, however, be noted that using the semantic ra-
tio requires downloading and parsing several times as many
web pages, which would introduce substantial load. Also, in
practice, following arbitrary links from a page could result
in simulating clicks on, e.g., unsubscribe links, leading to
unexpected or undesirable results.

The use of linguistic information for keyword extraction
was first studied by Hulth [12]. In this work, noun phrases
and predefined part-of-speech tag patterns were used to help
select phrase candidates. In addition, whether the candidate
phrase has certain POS tags is used as features. Along with
the three features in the KEA system, Hulth applied bag-
ging [1] as the learning algorithm to train the system. The
experimental results showed different degrees of improve-
ments compared with systems that did not use linguistic
information. However, direct comparison to KEA was not
reported.

4.3 Information Extraction
Analogous to keyword extraction, information extraction

is also a problem that aims to extract or label phrases given a
document [8, 2, 19, 5]. Unlike keyword extraction, informa-
tion extraction tasks are usually associated with predefined
semantic templates. The goal of the extraction tasks is to
find certain phrases in the documents to fill the templates.
For example, given a seminar announcement, the task may
be finding the name of the speaker, or the starting time of
the seminar. Similarly, the named entity recognition [21]
task is to label phrases as semantic entities like person, lo-
cation, or organization.

Information extraction is in many ways similar to key-
word extraction, but the techniques used for information
extraction are typically different. While most keyword ex-
traction systems use the monolithic combined (MoC) frame-
work, typically, information extraction systems use the DeS
framework, or sometimes MoS. Since identical phrases may
have different labels (e.g., “Washington” can be either a per-
son or a location even in the same document), candidates in
a document are never combined. The choice of features is
also very different. These systems typically use lexical fea-
tures (the identity of specific words in or around the phrase),
linguistic features, and even conjunctions of these features.
In general, the feature space in these problems is huge –

often hundreds of thousands features. Lexical features for
keyword extraction would be an interesting area of future
research, although our intuition is that these features are
less likely to be useful in this case.

4.4 Impedance Coupling
Ribeiro-Neto et al. [18] describe an Impedance Coupling

technique for content-targeted advertising. Their work is
perhaps the most extensive previously published work specif-
ically on content-targeted advertising.

However, Ribeiro-Neto et al.’s work is quite a bit different
from ours. Most importantly, their work focused not on
finding keywords on web pages, but on directly matching
advertisements to those web pages. They used a variety of
information, including the text of the advertisements, the
destination web page of the ad, and the full set of keywords
tied to a particular ad (as opposed to considering keywords
one at a time.) They then looked at the cosine similarity of
these measures to potential destination pages.

There are several reasons we do not compare directly to
the work of Ribeiro-Neto et al. Most importantly, we, like
most researchers, do not have a database of advertisements
(as opposed to just keywords) that we could use for experi-
ments of this sort. In addition, they are solving a somewhat
different problem than we are. Our goal is to find the most
appropriate keywords for a specific page. This dovetails well
with how contextual advertising is sold today: advertisers
bid on specific keywords, and their bids on different key-
words may be very different. For instance, a purveyor of
digital cameras might use the same ad for “camera”, “dig-
ital camera”, “digital camera reviews”, or “digital camera
prices.” The advertiser’s bids will be very different in the
different cases, because the probability that a click on such
an ad leads to a sale will be very different. Ribeiro-Neto et
al.’s goal is not to extract keywords, but to match web pages
to advertisements. They do not try to determine which par-
ticular keyword on a page is a match, and in some cases,
they match web pages to advertisements even when the web
page does not contain any keywords chosen by an adver-
tiser, which could make pricing difficult. Their techniques
are also somewhat time-consuming, because they compute
the cosine similarity between each web page and a bundle
of words associated with each ad. They used only a small
database (100,000 ads) applied to a small number of web
pages (100), making such time-consuming comparisons pos-
sible. Real world application would be far more challenging:
optimizations are possible, but would need to be an area of
additional research. In contrast, our methods are directly
applicable today.

4.5 News Query Extraction
Henzinger et al. [11] explored the domain of keyword ex-

traction from a news source, to automatically drive queries.
In particular, they extracted query terms from the closed
captioning of television news stories, to drive a search sys-
tem that would retrieve related online news articles. Their
basic system used TF×IDF to score individual phrases, and
achieved slight improvements from using TF×IDF2. They
tried stemming, with mixed results. Because of the nature of
broadcast news programs, where boundaries between topics
are not explicit, they found improvements by using a his-
tory feature that automatically detected topic boundaries.
They achieved their largest improvements by postprocess-



ing articles to remove those that seemed too different from
the news broadcast. This seems closely related to the pre-
viously mentioned work of Ribeiro-Neto et al., who found
analogous comparisons between documents and advertise-
ments helpful.

4.6 Email Query Extraction
Goodman and Carvalho [10] previously applied similar

techniques to the ones described here for query extraction for
email. Their goal was somewhat different than our goal here,
namely to find good search queries, to drive traffic to search
engines, although the same technology they used could be
applied to find keywords for advertising. Much of their re-
search focused on email-specific features, such as word oc-
currence in subject lines, and distinguishing new parts of an
email message from earlier, “in-reply-to” sections.

In contrast, our work focuses on many web-page-specific
features, such as keywords in the URL, and in meta-data.
Our research goes beyond theirs in a number of other ways.
Most importantly, we tried both information-extraction in-
spired methods (DeS) and linguistic features. Here, we also
examine the tradeoff between query file size and accuracy,
showing that large query files are not necessary for near-
optimal performance, if the restriction on words occurring
in the query file is removed. Goodman et al. compare only
to simple TF×IDF style baselines, while in our research,
we compare to KEA. We also compute a form of inter-
annotator agreement, something that was not previously
done. The improvement over KEA and the near human
performance measurements are very important for demon-
strating the high quality of our results.

5. CONCLUSIONS
The better we can monetize the web, the more features

that can be provided. To give two examples, the explosion
of free blogging tools and of free web-based email systems
with large quotas, have both been supported in large part
by advertising, much of it using content-targeting. Better
targeted ads are less annoying for users, and more likely
to inform them of products that deliver real value to them.
Better advertising thus creates a win-win-win situation: bet-
ter web-based features, less annoying ads, and more infor-
mation for users.

Our results demonstrate a large improvement over Kea.
We attribute this improvement to the large number of help-
ful features we employed. While Kea employs only three fea-
tures, we employed 12 different sets of features; since each
set contained multiple features, we actually had about 40
features overall. As we showed in Table 5, every one of these
sets was helpful, although as we also showed, some of them
were redundant with each other. GenEx, with 12 features,
works about as well as Kea: the choice of features and the
learning algorithm are also important. Our most important
new feature was the query frequency file from MSN Search.
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