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Abstract 

It is often useful to classify email according to the intent of the sender (e.g., "propose a meet-
ing", "deliver information"). We present experimental results in learning to classify email in 
this fashion, where each class corresponds to a verb-noun pair taken from a predefined ontol-
ogy describing typical “email speech acts”.   We demonstrate that, although this categorization 
problem is quite different from “topical” text classification, certain categories of messages can 
nonetheless be detected with high precision (above 80%) and reasonable recall (above 50%) 
using existing text-classification learning methods. This result suggests that useful task-
tracking tools could be constructed based on automatic classification into this taxonomy.  

1 Introduction 

In this paper we discuss using machine learning methods to classify email according to the intent of 
the sender.  In particular, we classify emails according to an ontology of verbs (e.g., propose, commit, 
deliver) and nouns (e.g., information, meeting, task), which jointly describe the “email speech act” 
intended by the email sender.   

A method for accurate classification of email into such categories would have many potential bene-
fits. For instance, it could be used to help an email user track the status of ongoing joint activities.  
Delegation and coordination of joint tasks is a time-consuming and error-prone activity, and the cost 
of errors is high: it is not uncommon that commitments are forgotten, deadlines are missed, and oppor-
tunities are wasted because of a failure to properly track, delegate, and prioritize subtasks. The classi-
fication methods we consider  
 
methods which could be used to partially automate this sort of activity tracking. A hypothetical exam-
ple of an email assistant that works along these lines is shown in Figure 1. 
 



Bill,

Do you have any sample 
scheduling-related email we 
could use as data?  -Steve

Assistant announces:  “new 
email request, priority 
unknown.”

Sure, I’ll put some together 
shortly. -Bill

Assistant:  “should I add this 
new commitment to your to-
do list?”

Fred, can you collect the msgs
from the CSPACE corpora 
tagged w/ the  “meeting”
noun, ASAP? -Bill

Assistant:  notices outgoing
request, may take action if no 
answer is received promptly.

Yes, I can get to that in the 
next few days.  Is next 
Monday ok? -Fred

Assistant:  notices incoming 
commitment. “Should I send 
Fred a reminder on Monday?”

 
Figure 1 - Dialog with a hypothetical email assistant that automatically detects email speech acts.  Dashed boxes 
indicate outgoing messages.  (Messages have been edited for space and anonymity.) 

2 Related Work 

Our research builds on earlier work defining illocutionary points of speech acts (Searle, 1975), and 
relating such speech acts to email and workflow tracking (Winograd, 1987, Flores & Ludlow, 1980, 
Weigant et al, 2003). Winograd suggested that research explicating the speech-act based “language-
action perspective” on human communication could be used to build more useful tools for coordinat-
ing joint activities.  The Coordinator (Winograd, 1987) was one such system, in which users aug-
mented email messages with additional annotations indicating intent. 

While such systems have been useful in limited contexts, they have also been criticized as cumber-
some: by forcing users to conform to a particular formal system, they constrain communication and 
make it less natural (Schoop, 2001); in short, users often prefer unstructured email interactions 
(Camino et al. 1998). We note that these difficulties are avoided if messages can be automatically an-
notated by intent, rather than soliciting a statement of intent from the user. 

Murakoshi et al. (1999) proposed an email annotation scheme broadly similar to ours, called a “de-
liberation tree”, and an algorithm for constructing deliberation trees automatically, but their approach 
was not quantitatively evaluated. The approach is based on recognizing a set of hand-coded linguistic 
“clues”.  A limitation of their approach is that these hand-coded linguistic “clues” are language-
specific (and in fact limited to Japanese text.) 

Prior research on machine learning for text classification has primarily considered classification of 
documents by topic (Lewis, 1992; Yang, 1999), but also has addressed sentiment detection (Pang et 
al., 2002;  Weibe et al., 2001) and authorship attribution (e.g., Argamon et al, 2003).   There has been 
some previous use of machine learning to classify email messages (Cohen 1996; Sahami et al., 1998; 
Rennie, 2000; Segal & Kephart, 2000).  However, to our knowledge, none of these systems has inves-
tigated learning methods for assigning email speech acts. Instead, email is generally classified into 
folders (i.e., according to topic) or according to whether or not it is “spam”. Learning systems have 
been previously used to automatically detect acts in conversational speech (e.g. Finke et al., 1998). 

3 An Ontology of Email Acts 

Our ontology of nouns and verbs covering some of the possible speech acts associated with emails is 
summarized in Figure 2.  We assume that a single email message may contain multiple acts, and that 
each act is described by a verb-noun pair drawn from this ontology (e.g., "deliver data").   The under-
lined nodes in the figure indicate the nouns and verbs for which we have trained classifiers (as dis-
cussed in subsequent sections). 



To define the noun and verb ontology of Figure 2, we first examined email from several corpora 
(including our own inboxes) to find regularities, and then performed a more detailed analysis of one 
corpus. The ontology was further refined in the process of labeling the corpora described below. 

In refining this ontology, we adopted several principles. First, we believe that it is more important 
for the ontology to reflect observed linguistic behavior than to reflect any abstract view of the space of 
possible speech acts. As a consequence, the taxonomy of verbs contains concepts that are atomic lin-
guistically, but combine several illocutionary points. (For example, the linguistic unit "let's do lunch" 
is both directive, as it requests the receiver, and commissive, as it implicitly commits the sender. In 
our taxonomy this is a single 'propose' act.) Also, acts which are abstractly possible but not observed 
in our data are not represented (for instance, declarations). 
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Figure 2 – Taxonomy  

 
Second, we believe that the taxonomy must reflect common non-linguistic uses of email, such as the 

use of email as a mechanism to deliver files. We have grouped this with the linguistically similar 
speech act of delivering information. 

The verbs in Figure 1 are defined as follows.  
A request asks (or orders) the recipient to perform some activity. A question is also considered a re-

quest (for delivery of information).  



A propose message proposes a joint activity, i.e., asks the recipient to perform some activity and 
commits the sender as well, provided the recipient agrees to the request.  A typical example is an email 
suggesting a joint meeting.  

An amend message amends an earlier proposal. Like a proposal, the message involves both a com-
mitment and a request.  However, while a proposal is associated with a new task, an amendment is a 
suggested modification of an already-proposed task. 

A commit message commits the sender to some future course of action, or confirms the senders' in-
tent to comply with some previously described course of action.   

A deliver message delivers something, e.g., some information, a PowerPoint presentation,  the URL 
of a website, the answer to a question, a message sent "FYI”, or an opinion. 

The refuse, greet, and remind verbs occurred very infrequently in our data, and hence we did not at-
tempt to learn classifiers for them (in this initial study). The primary reason for restricting ourselves in 
this way was our expectation that human annotators would be slower and less reliable if given a more 
complex taxonomy.  

The nouns in Figure 2 constitute possible objects for the email speech act verbs. The nouns fall into 
two broad categories. 

Information nouns are associated with email speech acts described by the verbs Deliver, Remind 
and Amend, in which the email explicitly contains information. We also associate information nouns 
with the verb Request, where the email contains instead a description of the needed information (e.g., 
"Please send your birthdate." versus "My birthdate is …".  The request act is actually for a 'deliver in-
formation' activity). Information includes data believed to be fact as well as opinions, and also at-
tached data files. 

Activity nouns are generally associated with email speech acts described by the verbs Propose, Re-
quest, Commit, and Refuse.  Activities include meetings, as well as longer term activities such as 
committee memberships.   

Notice every email speech act is itself an activity.  The <verb><noun> node in Figure 1 indicates 
that any email speech act can also serve as the noun associated with some other email speech act.  For 
example, just as (deliver information) is a legitimate speech act, so is (commit (deliver information)). 
Automatically constructing such nested speech acts is an interesting and difficult topic; however, in 
the current paper we consider only the problem of determining top-level the verb for such composi-
tional speech acts. For instance, for a message containing a (commit (deliver information)) our goal 
would be to automatically detect the commit verb but not the inner (deliver information) compound 
noun. 

4 Categorization Results 

4.1 Corpora 

Although email is ubiquitous, large and realistic email corpora are rarely available for research pur-
poses.  The limited availability is largely due to privacy issues: for instance, in most US academic in-
stitutions, a users’ email can only be distributed to researchers if all senders of the email also provided 
explicit written consent. 

The email corpora used in our experiments consist of four different email datasets collected from 
working groups who signed agreements to make their email accessible to researchers. The first three 
datasets, N01F3, N02F2, and N03F2 are annotated subsets of a larger corpus, the CSpace email cor-
pus, which contains approximately 15,000 email messages collected from a management course at 
Carnegie Mellon University. In this course, 277 MBA students, organized in approximately 50 teams 
of four to six members, ran simulated companies in different market scenarios over a 14-week period 
(Kraut et al.). N02F2, N01F3 and N03F2 are collections of all email messages written by participants 
from three different teams, and contain 351, 341 and 443 different email messages respectively.  



The fourth dataset, the PW CALO corpus, was generated during a four-day exercise conducted at 
SRI specifically to generate an email corpus. During this time a group of six people assumed different 
work roles (e.g. project leader, finance manager, researcher, administrative assistant, etc) and per-
formed a number of group activities.  There are 222 email messages in this corpus. 

These email corpora are all task-related, and associated with a small working group, so it is not sur-
prising that they contain many instances of the email acts described above—for instance, the CSpace 
corpora contain an average of about 1.3 email verbs per message. Informal analysis of other personal 
inboxes suggests that this sort of email is common for many university users. We believe that negotia-
tion of shared tasks is a central use of email in many work environments.  

All messages were preprocessed by removing quoted material, attachments, and non-subject header 
information.  This preprocessing was performed manually, but was limited to operations which can be 
reliably automated. The most difficult step is removal of quoted material, which we address elsewhere 
(Carvalho & Cohen, 2004). 

4.2 Inter-Annotator Agreement  

Each message may be annotated with several labels, as it may contain several speech acts.   To 
evaluate inter-annotator agreement, we double-labeled N03F2 for the verbs Deliver, Commit, Request, 
Amend, and Propose, and the noun, Meeting, and computed the kappa statistic (Carletta, 1996) for 
each of these, defined as 

R

RA

−
−=

1
κ  

where A is the empirical probability of agreement on a category, and R is the probability of agreement 
for two annotators that label documents at random (with the empirically observed frequency of each 
label). Hence kappa ranges from -1 to +1. The results in Table 1 show that agreement is good, but not 
perfect. 
 

Email Act Kappa 
Meeting 0.82 

Deliver 0.75 

Commit 0.72 

Request 0.81 

Amend 0.83 

Propose 0.72 

Table 1 - Inter-Annotator Agreement on N03F2. 

 
We also took doubly-annotated messages which had only a single verb label and constructed the 5-

class confusion matrix for the two annotators shown in Table 2. Note kappa values are somewhat 
higher for the shorter one-act messages. 
 

            Req Prop Amd Cmt Dlv kappa 

Req 55 0 0 0 0 0.97 

Prop 1 11 0 0 1 0.77 

Amd 0 1 15 0 0 0.87 

Cmt 1 3 1 24 4 0.78 

Dlv 1 0 2 3 135 0.91 

Table 2 - Inter-annotator agreement on documents with only one category. 



4.3 Learnability of Categories 

Representation of documents. To assess the types of message features that are most important for 
prediction, we adopted Support Vector Machines (Joachims, 2001) as our baseline learning method, 
and a TFIDF-weighted bag-of-words as a baseline representation for messages.  We then conducted a 
series of experiments with the N03F2 corpus only to explore the effect of different representations.   
 
 
 
 
 

NF032 Cmt Dlv Directive 

Baseline SVM 25.0 49.8 75.2 
no tfidf  47.3 58.4 74.6 
+bigrams 46.1 66.1 76.0 
+times 43.6 60.1 73.2 
+POSTags 48.6 61.8 75.4 
+personPhrases 41.2 61.1 73.4 

 

NF02F2 and NF01F3 Cmt Dlv Directive 

Baseline SVM 10.1 56.3 66.1 
All ‘useful’ features 42.0 64.0 73.3 

Table 3 – F1 for different feature sets. 

 
We noted that the most discriminating words for most of these categories were common words, not 

the low-to-intermediate frequency words that are most discriminative in topical classification. This 
suggested that the TFIDF weighting was inappropriate, but that a bigram representation might be more 
informative. Experiments showed that adding bigrams to an unweighted bag of words representation 
slightly improved performance, especially on Deliver. These results are shown in Table 4 on the rows 
marked “no tfidf” and “bigrams”. (The TFIDF-weighted SVM is shown in the row marked “baseline”, 
and the majority classifier in the row marked “default”; all numbers are F1 measures on 10-fold cross-
validation.) Examination of messages suggested other possible improvements. Since much negotiation 
involves timing, we ran a hand-coded extractor for time and date expressions on the data, and ex-
tracted as features the number of time expressions in a message, and the words that occurred near a 
time (for instance, one such feature is “the word ‘before’ appears near a time”). These results appear in 
the row marked “times”.  Similarly, we ran a part of speech (POS) tagger and added features for words 
appearing near a pronoun or proper noun (“personPhrases” in the table), and also added POS counts. 

To derive a final representation for each category, we pooled all features that improved performance 
over “no tfidf” for that category.  We then compared performance of these document representations 
to the original TFIDF bag of words baseline on the (unexamined) N02F2 and N01F3 corpora.  As Ta-
ble 3 shows, substantial improvement with respect to F1 and kappa was obtained by adding these addi-
tional features over the baseline representation. This result contrasts with previous experiments with 
bigrams for topical text classification (Scott & Matwin, 1999)  and sentiment detection (Pang et al., 
2002).  The difference is probably that in this task, more informative words are potentially ambiguous: 
for instance, “will you” and “I will”  are correlated with requests and commitments, respectively, but 
the individual words in these bigrams are less predictive. 

Learning methods.  In another experiment, we fixed the document representation to be unweighted 
word frequency counts and varied the learning algorithm. In these experiments, we pooled all the data 
from the four corpora, a total of 9602 features in the 1357 messages, and since the nouns and verbs are 
not mutually exclusive, we formulated the task as a set of several binary classification problems, one 
for each verb. 



The following learners were used from the Based on the MinorThird toolkit (Cohen, 2004). VP is an 
implementation of the voted perceptron algorithm (Freund & Schapire, 1999). DT is a simple decision 
tree learning system, which learns trees of depth at most five, and chooses splits to maximize the func-

tion ( )00112 −+−+ + WWWW  suggested by Schapire and Singer (1999) as an appropriate objective for 

“weak learners”. AB is an implementation of the confidence-rated boosting method described by 
Singer and Schapire (1999), used to boost the DT algorithm 10 times.  SVM is a support vector ma-
chine with a linear kernel (as used above). 
 
 

 
Act  VP AB SVM  DT 
Request 
(450/907) 

Error 
F1 

0.25 
0.58 

0.22 
0.65 

0.23 
0.64 

0.20 
0.69 

Proposal 
(140/1217) 

Error 
F1 

0.11 
0.19 

0.12 
0.26 

0.12 
0.44 

0.10 
0.13 

Delivery 
(873/484) 

Error 
F1 

0.26 
0.80 

0.28 
0.78 

0.27 
0.78 

0.30 
0.76 

Commit-
ment 
(208/1149) 

Error 
F1 

0.15 
0.21 

0.14 
0.44 

0.17 
0.47 

0.15 
0.11 

Directive 
(605/752) 

Error 
F1 

0.25 
0.72 

0.23 
0.73 

0.23 
0.73 

0.19 
0.78 

Commis-
sive 
(993/364) 

Error 
F1 

0.23 
0.84 

0.23 
0.84 

0.24 
0.83 

0.22 
0.85 

Meet 
(345/1012) 

Error 
F1 

0.187 
0.573 

0.17 
0.62 

0.14 
0.72 

0.18
0.60 

Table 4 – Learning on the entire corpus. 

 
Table 4 reports the results on the most common verbs, using 5-fold cross-validation to assess accu-
racy. One surprise was that DT (which we had intended merely as a base learner for AB) works sur-
prisingly well for several verbs, while AB seldom improves much over DT.  We conjecture that the 
bias towards large-margin classifiers that is followed by SVM, AB, and VP (and which has been so 
successful in topic-oriented text classification) may be less appropriate for this task, perhaps because 
positive and negative classes are not clearly separated (as suggested by substantial inter-annotator dis-
agreement). 
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Figure 3 - Precision/Recall for Commissive act 

 
Further results are shown in Figure 3-5, which provide precision-recall curves for many of these 

classes. The lowest recall level in these graphs corresponds to the precision of random guessing. These 



graphs indicate that high-precision predictions can be made for the top-level of the verb hierarchy, as 
well as verbs Request and Deliver, if one is willing to slightly reduce recall.  
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Figure 4 - Precision/Recall for Directive act 
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Figure 5 - Precision/Recall of 3 different classes using AdaBoost 
 

 
Transferability. One important question involves the generality of these classifiers: to what range of 
corpora can they be accurately applied?  Is it possible to train a single set of email-act classifiers that 
work for many users, or is it necessary to train individual classifiers for each user? To explore this is-
sue we trained a DT classifier for Directive emails on the NF01F3 corpus, and tested it on the NF02F2 
corpus; trained the same classifier on NF02F2 and tested it on NF01F3; and also performed a 5-fold 
cross-validation experiment within each corpus.   (NF02F2 and NF01F3 are for disjoint sets of users, 
but are approximately the same size.)  We then performed the same experiment with VP for Deliver 
verbs and SVM for Commit verbs (in each case picking the top-performing learner with respect to F1).  
The results are shown in Table 5. 
  

 Test Data 
DT/Directive 1f3 2f2 
Train Data Error F1 Error F1 

1f3 25.1 71.6 16.4 72.8 
2f2 20.1 68.8 18.8 71.2 

VP/Deliver  
1f3 30.1 55.1 21.1 56.1 
2f2 35.0 25.4 21.1 35.7 

SVM/Commit  
1f3 23.4 39.7 15.2 31.6 



2f2 31.9 27.3 16.4 15.1 

Table 5 - Transferability of classifiers 
 

If learned classifiers were highly specific to a particular set of users, one would expect that the di-
agonal entries of these tables (the ones based on cross-validation within a corpus) would exhibit much 
better performance than the off-diagonal entries.  In fact, no such pattern is shown. For Directive 
verbs, performance is similar across all table entries, and for Deliver and Commit, it seems to be 
somewhat better to train on NF01F3 regardless of the test set. 

4.4 Future Directions 

None of the algorithms or representations discussed above take into account the context of an email 
message, which intuitively is important in detecting implicit speech acts.  A plausible notion of con-
text is simply the preceding message in an email thread. 

Exploiting this context is non-trivial for several reasons.  Detecting threads is difficult; although 
email headers contain a “reply-to” field, users often use the “reply” mechanism to start what is intui-
tively a new thread.  Also, since email is asynchronous, two or more users may reply simultaneously 
to a message, leading to a thread structure which is a tree, rather than a sequence.  Finally, most se-
quential learning models assume a single category is assigned to each instance—e.g., (Ratnaparkhi, 
1999)—whereas our scheme allows multiple categories. 

Classification of emails according to our verb-noun ontology constitutes a special case of a general 
family of learning problems we might call factored classification problems, as the classes (email 
speech acts) are factored into two features (verbs and nouns) which jointly determine this class. A va-
riety of real-world text classification problems can be naturally expressed as factored problems, and 
from a theoretical viewpoint, the additional structure may allow construction of new, more effective 
algorithms.   

For example, the factored classes provide a more elaborate structure for generative probabilistic 
models, such as those assumed by Naïve Bayes. For instance, in learning email acts, one might assume 
words were drawn from a mixture distribution with one mixture component produces words condi-
tioned on the verb class factor, and a second mixture component generates words conditioned on the 
noun (see Blei et al (2003) for a related mixture model).  Alternatively, models of the dependencies 
between the different factors (nouns and verbs) might also be used to improve classification accuracy, 
for instance by building into a classifier the knowledge that some nouns and verbs are incompatible.  

The fact that an email can contain multiple email speech acts almost certainly makes learning more 
difficult: in fact, disagreement between human annotators is generally higher for longer messages.  
This problem could be addressed by more detailed annotation: rather than annotating each message 
with all the acts it contains, human annotators could label smaller message segments (say, sentences or 
paragraphs). An alternative to more detailed (and expensive) annotation would be to use learning algo-
rithms that implicitly segment a message. As an example, another mixture model formulation might be 
used, in which each mixture component corresponds to a single verb category.    

5 Concluding Remarks 

We have presented an ontology of “email speech acts” that is designed to capture some important 
properties of a central use of email: negotiating and coordinating joint activities. Unlike previous at-
tempts to combine speech act theory with email (Winograd, 1987; Flores and Ludlow, 1980), we pro-
pose a system which passively observes email and automatically classifies it by intention. This 
reduces the burden on the users of the system, and avoids sacrificing the flexibility and socially desir-
able aspects of informal, natural language communication. 

This problem also raises a number of interesting research issues. We showed that entity extraction 
and part of speech tagging improves classifier performance, but leave open the question of whether 
other types of linguistic analysis would be useful. Predicting speech acts requires context, which 



makes classification an inherently sequential task, and the labels assigned to messages have non-trivial 
structure; we also leave open the question of whether these properties can be effectively exploited. 

  Our experiments show that many categories of messages can be detected, with high precision and 
moderate recall, using existing text-classification learning methods. This suggests that useful task-
tracking tools could be constructed based on automatic classifiers—a potentially important practical 
application. 
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