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Abstract

It is often useful to classify email according ke tintent of the sender (e.g., "propose a meet-
ing", "deliver information"). We present experimaintesults in learning to classify email in
this fashion, where each class corresponds tolan@un pair taken from a predefined ontol-
ogy describing typical “email speech acts”. Wendastrate that, although this categorization
problem is quite different from “topical” text ckification, certain categories of messages can
nonetheless be detected with high precision (al®®%) and reasonable recall (above 50%)
using existing text-classification learning methods$is result suggests that useful task-
tracking tools could be constructed based on auiorolassification into this taxonomy.

1 Introduction

In this paper we discuss using machine learnindhaust to classify email according to the intent of
the sender. In particular, we classify emails agiog to an ontology of verbs (e.g., propose, commi
deliver) and nouns (e.g., information, meetingk}tasvhich jointly describe the “email speech act”
intended by the email sender.

A method for accurate classification of email istech categories would have many potential bene-
fits. For instance, it could be used to help aniboser track the status of ongoing joint actigtie
Delegation and coordination of joint tasks is aetiobnsuming and error-prone activity, and the cost
of errors is high: it is not uncommon that commibtseare forgotten, deadlines are missed, and oppor-
tunities are wasted because of a failure to prggesick, delegate, and prioritize subtasks. Thestla
fication methods we consider

methods which could be used to partially automiaitegort of activity tracking. A hypothetical exam-
ple of an email assistant that works along thesslis shown in Figure 1.



Bill, Assistant announces: “new
emailrequest priority

Do you have any sample A
unknown.

scheduling-related email we
could use as data? -Steve

Assistant: “should | add this
newcommitmentto your to-
do list?”

Sure, I'll put some together
shortly. -Bill

Fred, can you collect the msgs  Assistant: notices outgoing
from the CSPACE corpora request may take action if no

tagged w/ the “meeting” answer is received promptly.
noun, ASAP? -Bill

Yes, | can get to that in the Assistant: notices incoming
next few days. Is next commitment. “Should | send
Monday ok? -Fred Fred a reminder on Monday?"]

Figure 1 - Dialog with a hypothetical email assistant thatomatically detects email speech acts. Dasheelsbo
indicate outgoing messages. (Messages have béed & space and anonymity.)

2 Related Work

Our research builds on earlier work defining illdonary points of speech acts (Searle, 1975), and
relating such speech acts to email and workflowkiry (Winograd, 1987, Flores & Ludlow, 1980,
Weigant et al, 2003). Winograd suggested that reBeaxplicating the speech-act based “language-
action perspective” on human communication couldided to build more useful tools for coordinat-
ing joint activities. The Coordinator (Winograd98) was one such system, in which users aug-
mented email messages with additional annotatiodisating intent.

While such systems have been useful in limited extst they have also been criticized as cumber-
some: by forcing users to conform to a particutanfal system, they constrain communication and
make it less natural (Schoop, 2001); in short, sus#ten prefer unstructured email interactions
(Camino et al. 1998). We note that these diffiegltare avoided if messages carab®maticallyan-
notated by intent, rather than soliciting a statenod intent from the user.

Murakoshi et al. (1999) proposed an email annatattheme broadly similar to ours, called a “de-
liberation tree”, and an algorithm for constructihgliberation trees automatically, but their apptoa
was not quantitatively evaluated. The approachasetl on recognizing a set of hand-coded linguistic
“clues”. A limitation of their approach is thatetbe hand-coded linguistic “clues” are language-
specific (and in fact limited to Japanese text.)

Prior research on machine learning for text classibn has primarily considered classification of
documents by topic (Lewis, 1992; Yang, 1999), Hab das addressed sentiment detection (Pang et
al., 2002; Weibe et al., 2001) and authorshiptaition (e.g., Argamon et al, 2003). There hasnbe
some previous use of machine learning to classifgiemessages (Cohen 1996; Sahami et al., 1998;
Rennie, 2000; Segal & Kephart, 2000). Howevenuoknowledge, none of these systems has inves-
tigated learning methods for assigning email spesth. Instead, email is generally classified into
folders (i.e., according to topic) or accordingwhether or not it is “spam”. Learning systems have
been previously used to automatically detect actonversational speech (e.g. Finke et al., 1998).

3 An Ontology of Email Acts

Our ontology of nouns and verbs covering some efgbssible speech acts associated with emails is
summarized in Figure 2. We assume that a singhilenessage may contain multiple acts, and that
each act is described by a verb-noun pair drawm fitds ontology (e.g., "deliver data”). The under
lined nodes in the figure indicate the nouns amtbvdor which we have trained classifiers (as dis-
cussed in subsequent sections).



To define the noun and verb ontology of Figure 2, fisxst examined email from several corpora
(including our own inboxes) to find regularitiesydathen performed a more detailed analysis of one
corpus. The ontology was further refined in thecpss of labeling the corpora described below.

In refining this ontology, we adopted several piptes. First, we believe that it is more important
for the ontology to reflect observed linguistic betor than to reflect any abstract view of the spafc
possible speech acts. As a consequence, the tayoofoverbs contains concepts that are atomic lin-
guistically, but combine several illocutionary p@in(For example, the linguistic unit "let's do d¢hh
is both directive, as it requests the receiver, @mamissive, as it implicitly commits the sender. |
our taxonomy this is a single 'propose' act.) Abtds which are abstractly possible but not obskrve
in our data are not represented (for instance adatobns).

Verb
Negotiate \ Other
/ \ Greet Remind
Deliver
Initiate Conclude
Amend

Propose Request
Commit Refuse

Noun

Information Activity

Data Opinion Ongoing Single
/\ Activity Event
Meeting  Other ]
Logistics  Data Committee

Data Other Meeting

Short Term
Task <Verb><Noun>

Figure 2 — Taxonomy

Second, we believe that the taxonomy must reflestrnon non-linguistic uses of email, such as the
use of email as a mechanism to deliver files. Wieehgrouped this with the linguistically similar
speech act of delivering information.

The verbs in Figure 1 are defined as follows.
A requestasks (or orders) the recipient to perform somevigtiA question is also considered a re-
quest (for delivery of information).



A proposemessage proposes a joint activity, i.e., asksrélegient to perform some activity and
commits the sender as well, provided the recipgnees to the request. A typical example is arllema
suggesting a joint meeting.

An amendmessage amends an earlier proposal. Like a propbsainessage involves both a com-
mitment and a request. However, while a propasaksociated with a new task, an amendment is a
suggested modification of an already-proposed task.

A commitmessage commits the sender to some future coumation, or confirms the senders' in-
tent to comply with some previously described cewfaction.

A deliver message delivers something, e.g., some informagiétowerPoint presentation, the URL
of a website, the answer to a question, a messageéRYI”, or an opinion.

Therefuse, greetandremindverbs occurred very infrequently in our data, haedce we did not at-
tempt to learn classifiers for them (in this initséudy). The primary reason for restricting owsslin
this way was our expectation that human annotatordd be slower and less reliable if given a more
complex taxonomy.

The nouns in Figure 2 constitute possible objemtdéHe email speech act verbs. The nouns fall into
two broad categories.

Information nouns are associated with email speech acts Hedchy the verb®eliver, Remind
and Amend,in which the email explicitly contains informatiowe also associate information nouns
with the verbRequestwhere the email contains instead a descriptiom®fmeeded information (e.g.,
"Please send your birthdate." versus "My birthdsite.". The request act is actually for a 'deliwrer
formation' activity). Information includes data iesled to be fact as well as opinions, and also at-
tached data files.

Activity nouns are generally associated with email speetshdescribed by the verBsopose, Re-
quest, Commitand Refuse. Activities include meetings, as well as longemteactivities such as
committee memberships.

Notice every email speech act is itself an activilyhe <verb><noun> node in Figure 1 indicates
that any email speech act can also serve as theassociated with some other email speech act. For
example, just as (deliver information) is a legdie speech act, so is (commit (deliver informajion)
Automatically constructing such nested speech iacts interesting and difficult topic; however, in
the current paper we consider only the problemetémining top-level the verb for such composi-
tional speech acts. For instance, for a messag®inomg a (commit (deliver information)) our goal
would be to automatically detect tkemmitverb but not the inneeliver information)compound
noun.

4 Categorization Results

4.1 Corpora

Although email is ubiquitous, large and realisticagl corpora are rarely available for research pur-
poses. The limited availability is largely dueptdvacy issues: for instance, in most US academic i
stitutions, a users’ email can only be distributedesearchers if alendersof the email also provided
explicit written consent.

The email corpora used in our experiments congisowr different email datasets collected from
working groups who signed agreements to make tmaail accessible to researchers. The first three
datasets, NO1F3, NO2F2, and NO3F2 are annotatexbtsubf a larger corpus, the CSpace email cor-
pus, which contains approximately 15,000 email mgss collected from a management course at
Carnegie Mellon University. In this course, 277 MB&idents, organized in approximately 50 teams
of four to six members, ran simulated companiegdiffierent market scenarios over a 14-week period
(Kraut et al.). NO2F2, NO1F3 and NO3F2 are coltawiof all email messages written by participants
from three different teams, and contain 351, 344 448 different email messages respectively.



The fourth dataset, the PW CALO corpus, was geeérdtiring a four-day exercise conducted at
SRI specifically to generate an email corpus. Dyithris time a group of six people assumed different
work roles (e.g. project leader, finance managesearcher, administrative assistant, etc) and per-
formed a number of group activities. There are @2il messages in this corpus.

These email corpora are all task-related, and &dsdcwith a small working group, so it is not sur-
prising that they contain many instances of theikeatds described above—for instance, the CSpace
corpora contain an average of about 1.3 email veelbsnessage. Informal analysis of other personal
inboxes suggests that this sort of email is comfbomany university users. We believe that negotia-
tion of shared tasks is a central use of emailamyrwork environments.

All messages were preprocessed by removing quogtédrial, attachments, and non-subject header
information. This preprocessing was performed radipubut was limited to operations which can be
reliably automated. The most difficult step is remiloof quoted material, which we address elsewhere
(Carvalho & Cohen, 2004).

4.2 Inter-Annotator Agreement

Each message may be annotated with several lad®lis,may contain several speech acts. To
evaluate inter-annotator agreement, we double-¢abED3F2 for the verbiBeliver, Commit, Request,
Amend,and Propose and the nounMeeting,and computed the kappa statistic (Carletta, 1966) f
each of these, defined as

_A-R

T 1-R
whereA is the empirical probability of agreement on a&gaty, andR is the probability of agreement
for two annotators that label documents at randeith (the empirically observed frequency of each
label). Hence kappa ranges from -1 to +1. The t&sniTable 1show that agreement is good, but not
perfect.

Email Act Kappa
Meeting 0.82
Deliver 0.75
Commit 0.72
Request 0.81
Amend 0.83
Propose 0.72

Table 1 - Inter-Annotator Agreement on NO3F2.

We also took doubly-annotated messages which higdaosingle verb label and constructed the 5-
class confusion matrix for the two annotators shawable 2. Note kappa values are somewhat
higher for the shorter one-act messages.

Req | Prop| Amd| Cmt Dlv| kappa
Req | 55 0 0 0 0 0.97
Prop | 1 11 0 0 1 0.77
Amd | O 1 15 0 0 0.87
Cmt 1 1 24 4 0.78
Div 1 0 2 3 135| 0.91

Table 2 - Inter-annotator agreement on documents \h only one category.



4.3 Learnability of Categories

Representation of documentsTo assess the types of message features that atemportant for
prediction, we adopted Support Vector Machines ddimas, 2001) as our baseline learning method,
and a TFIDF-weighted bag-of-words as a baselineesgmtation for messages. We then conducted a
series of experiments with the NO3F2 corpus onlgxolore the effect of different representations.

NF032 Cmt DIv  Directive
Baseline SVM 25.0 498 75.2
no tfidf 47.3 58.4 74.6
+bigrams 46.1 66.1 76.0
+times 436 60.1 73.2
+POSTags 48.6 618 75.4
+personPhrases 412 611 73.4

NFO02F2 and NFO1F3 Cmt Dlv Directive
Baseline SVM 10.1 56.3 66.1
All ‘useful’ features 42.0 64.0 73.3

Table 3 — F1 for different feature sets.

We noted that the most discriminating words for traighese categories were common words, not
the low-to-intermediate frequency words that arestdiscriminative in topical classification. This
suggested that the TFIDF weighting was inapprogyidtit that a bigram representation might be more
informative. Experiments showed that adding bigraman unweighted bag of words representation
slightly improved performance, especially Deliver. These results are shown in Table 4 on the rows
marked “no tfidf’” and “bigrams”. (The TFIDF-weigldeSVM is shown in the row marked “baseline”,
and the majority classifier in the row marked “défg all numbers are F1 measures on 10-fold cross-
validation.) Examination of messages suggested gibgsible improvements. Since much negotiation
involves timing, we ran a hand-coded extractortiore and date expressions on the data, and ex-
tracted as features the number of time expressioasmessage, and the words that occurred near a
time (for instance, one such feature is “the wdrefére’ appears near a time”). These results appear
the row marked “times”. Similarly, we ran a paftspeech (POS) tagger and added features for words
appearing near a pronoun or proper noun (“pers@#ekf in the table), and also added POS counts.

To derive a final representation for each categee/pooled all features that improved performance
over “no tfidf" for that category. We then companeerformance of these document representations
to the original TFIDF bag of words baseline on gheexaminedNO2F2andNO1F3corpora. As Ta-
ble 3 shows, substantial improvement with respeétlt and kappa was obtained by adding these addi-
tional features over the baseline representatibis fiesult contrasts with previous experiments with
bigrams for topical text classification (Scott & Man, 1999) and sentiment detection (Pang et al.,
2002). The difference is probably that in thikiasore informative words are potentially ambiguous
for instance,'will you” and“l will” are correlated with requests and commitments emsely, but
the individual words in these bigrams are lessiptieg.

Learning methods. In another experiment, we fixed the document regredion to be unweighted
word frequency counts and varied the learning d#lgor. In these experiments, we pooled all the data
from the four corpora, a total of 9602 featurethie 1357 messages, and since the nouns and verbs ar
not mutually exclusive, we formulated the task agtof several binary classification problems, one
for each verb.



The following learners were used from the BasetherMinorThird toolkit (Cohen, 2004YPis an
implementation of the voted perceptron algorithme(ld & Schapire, 1999DT is a simple decision
tree learning system, which learns trees of depthast five, and chooses splits to maximize thefun

tion 2(,/ij_1 +,/W+°\N_°) suggested by Schapire and Singer (1999) as am@me objective for

“weak learners”.AB is an implementation of the confidence-rated bogsmethod described by
Singer and Schapire (1999), used to boostXfiealgorithm 10 times.SVMis a support vector ma-
chine with a linear kernel (as used above).

Act VP AB SVM DT
Request Error | 0.25 0.22 0.23 0.20
(450/907) F1 0.58 0.65 0.64 0.69
Proposal Error | 0.11 0.12 0.12 0.10
(140/1217) | F1 0.19 0.26 0.44 0.13
Delivery Error | 0.26 0.28 0.27 0.30
(873/484) F1 0.80 0.78 0.78 0.76
Commit- Error 0.15 0.14 0.17 0.15
ment F1 0.21 0.44 0.47 0.11
(208/1149)

Directive Error 0.25 0.23 0.23 0.19
(605/752) F1 0.72 0.73 0.73 0.78
Commis- Error 0.23 0.23 0.24 0.22
sive F1 0.84 0.84 0.83 0.85
(993/364)

Meet Error | 0.187 | 0.17 0.14 0.18
(345/1012) | F1 0.573 | 0.62 0.72 0.60

Table 4 — Learning on the entire corpus.

Table 4 reports the results on the most commonsyersing 5-fold cross-validation to assess accu-
racy. One surprise was thaf (which we had intended merely as a base learmeAB) works sur-
prisingly well for several verbs, whilaB seldom improves much ov&T. We conjecture that the
bias towards large-margin classifiers that is fod by SVM, AB,and VP (and which has been so
successful in topic-oriented text classificatiorgynbe less appropriate for this task, perhaps Isecau
positive and negative classes ate clearly separated (as suggested by substantitaminotator dis-
agreement).

Class: Commisive
(Total: 1357 msgs)

0.8 § \M\ —e— Voted Perceptron

—=— AdaBoost
SVM
—x— Decision Tree

Precision

0.6

04 T T T T
0 02 04 06 08 1

Recall

Figure 3 - Precision/Recall for Commissive act

Further results are shown in Figure 3-5, which mewprecision-recall curves for many of these
classes. The lowest recall level in these graph®sponds to the precision of random guessing.&hes



graphs indicate that high-precision predictions lbarmade for the top-level of the verb hierarclyy, a
well as verbskequesandDeliver, if one is willing to slightly reduce recall.

Class: Directive
(Total: 1357 msgs)
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Figure 4 - Precision/Recall for Directive act

AdaBoost Learner
(Total: 1357 messages)

—e— Meet
—=—Dlv

Precision

—— Req

Recall

Figure 5 - Precision/Recall of 3 different classes ing AdaBoost

Transferability. One important question involves the generalityhafse classifiers: to what range of
corpora can they be accurately applied? Is itiptes$o train a single set of email-act classifidhrat
work for many users, or is it necessary to traghviidual classifiers for each user? To explore this
sue we trained a DT classifier for Directive emaifsthe NFO1F3 corpus, and tested it on the NFO2F2
corpus; trained the same classifier on NFO2F2 astéd it on NFO1F3; and also performed a 5-fold
cross-validation experiment within each corpudNFE2F2 and NFO1F3 are for disjoint sets of users,
but are approximately the same size.) We theropedd the same experiment with VP for Deliver
verbs and SVM for Commit verbs (in each case pigkire top-performing learner with respect to F1).
The results are shown in Table 5.

Test Data
DT/Directive 1f3 22
Train Data Error F1 Error F1
1f3 251 716 164 728
2f2 20.1 688 188 71.2
VP/Deliver
1f3 30.1 551 211 561
2f2 350 254 211 357
SVM/Commit
1f3 234 39.7 152 316




22 | 319 273 164 151
Table 5 - Transferability of classifiers

If learned classifiers were highly specific to atjgalar set of users, one would expect that the di
agonal entries of these tables (the ones basetbegs-galidation within a corpus) would exhibit much
better performance than the off-diagonal entrids.fact, no such pattern is shown. Hdirective
verbs, performance is similar across all tableiestrand forDeliver and Commit it seems to be
somewhat better to train on NFO1F3 regardlessenfaht set.

4.4 Future Directions

None of the algorithms or representations discuabede take into account thentextof an email
message, which intuitively is important in detegtimplicit speech acts. A plausible notion of con-
text is simply the preceding message in an emgaghth

Exploiting this context is non-trivial for seversasons. Detecting threads is difficult; although
email headers contain a “reply-to” field, usersnfuse the “reply” mechanism to start what is intui
tively a new thread. Also, since email is asynobigs, two or more users may reply simultaneously
to a message, leading to a thread structure whkiehtiee, rather than a sequence. Finally, mest se
guential learning models assume a single categogssigned to each instance—e.g., (Ratnaparkhi,
1999)—whereas our scheme allows multiple categories

Classification of emails according to our verb-nauntology constitutes a special case of a general
family of learning problems we might cdtctored classification problemss the classes (emalil
speech acts) are factored into two features (va@nisnouns) which jointly determine this class. A va
riety of real-world text classification problemsnche naturally expressed as factored problems, and
from a theoretical viewpoint, the additional sturet may allow construction of new, more effective
algorithms.

For example, the factored classes provide a maieoedte structure for generative probabilistic
models, such as those assumed by Naive Bayesgtance, in learning email acts, one might assume
words were drawn from a mixture distribution witheomixture component produces words condi-
tioned on the verb class factor, and a second nextamponent generates words conditioned on the
noun (see Blei et al (2003) for a related mixtureded). Alternatively, models of the dependencies
between the different factors (nouns and verbshtra¢gso be used to improve classification accuracy,
for instance by building into a classifier the knedge that some nouns and verbs are incompatible.

The fact that an email can contain multiple empélexh acts almost certainly makes learning more
difficult: in fact, disagreement betwedrumanannotators is generally higher for longer messages
This problem could be addressed by more detailedtation: rather than annotating each message
with all the acts it contains, human annotatordattabel smaller message segments (say, sentences o
paragraphs). An alternative to more detailed (aqmlsive) annotation would be to use learning algo-
rithms that implicitly segment a message. As amgta, another mixture model formulation might be
used, in which each mixture component correspomdssingle verb category.

5 Concluding Remarks

We have presented an ontology of “email speecH #uas is designed to capture some important
properties of a central use of email: negotiating aoordinating joint activities. Unlike previous a
tempts to combine speech act theory with email @4iad, 1987; Flores and Ludlow, 1980), we pro-
pose a system which passively observes email aridmatically classifies it by intention. This
reduces the burden on the users of the systemaaids sacrificing the flexibility and socially des
able aspects of informal, natural language comnatiic.

This problem also raises a number of interestisgasch issues. We showed that entity extraction
and part of speech tagging improves classifierqoerénce, but leave open the question of whether
other types of linguistic analysis would be usefatedicting speech acts requires context, which



makes classification an inherently sequential taskl, the labels assigned to messages have noai-trivi
structure; we also leave open the question of vdrdtiese properties can be effectively exploited.

Our experiments show that many categories of agesscan be detected, with high precision and
moderate recall, using existing text-classificatlearning methods. This suggests that useful task-
tracking tools could be constructed based on auiomtassifiers—a potentially important practical
application.
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