
Explicit Inapproximability Bounds for the

Shortest Superstring Problem

Virginia Vassilevska?

Carnegie Mellon University, Pittsburgh PA 15213, USA
virgi@cs.cmu.edu

Abstract. Given a set of strings S = {s1, . . . , sn}, the Shortest Super-

string problem asks for the shortest string s which contains each si as
a substring. We consider two measures of success in this problem: the
length measure, which is the length of s, and the compression measure,
which is the difference between the sum of lengths of the si and the
length of s. Both the length and the compression versions of the problem
are known to be MAX-SNP-hard. The only explicit approximation ratio
lower bounds are by Ott: 1.000057 for the length measure and 1.000089
for the compression measure. Using a natural construction we improve
these lower bounds to 1.00082 for the length measure and 1.00093 for
the compression measure. Our lower bounds hold even for instances in
which the strings are over a binary alphabet and have equal lengths. In
fact, we show a somewhat surprising result, that the Shortest Superstring
problem (with respect to both measures) is as hard to approximate on
instances over a binary alphabet, as it is over any alphabet.

1 Introduction

Given a set of strings over some alphabet, the Shortest Superstring problem asks
for the shortest string over the same alphabet which contains each of the given
strings as a substring. The problem was first shown to be NP-hard by Maier and
Storer [7]. As an optimization problem, it has two optimization measures: the
length of the resulting superstring, and the compression, which is the difference
between the sum of lengths of the given strings and the length of the superstring.
The Shortest Superstring problem was shown by Blum et al. [4] to be MAX-
SNP-hard with respect to both measures (over an unbounded alphabet), which
implies that unless P = NP , there exists some ε > 0 for which it is hard to
approximate the optimal superstring to within a factor better than (1 + ε). Ott
gave explicit approximation ratio lower bounds (assuming P 6= NP) for Shortest
Superstring instances over a binary alphabet [12]. These ratios (1.000057 for the
length measure and 1.000089 for the compression measure) are far from the best
known upper bounds for the problem: 2.5 for the length measure by Sweedyk [13]
and 1.625 for the compression measure by Bläser [3].

Using a natural reduction, we show a relationship between the approxima-
bility of the Vertex Cover and Shortest Superstring problems. Given a constant

? Supported by the NSF ALADDIN Center (NSF Grant No. CCR-0122581)

approximation ratio lower bound for a class of graphs for which the optimal
vertex cover is linear in the number of edges, we can obtain an inapproxima-
bility constant for the Shortest Superstring problem on equal length strings.
Berman and Karpinski [2] and Karpinski [8] gave a series of inapproximability
results for Vertex Cover on bounded degree graphs. Here we use the result for
graphs of degree at most 5 to get that, unless P = NP , the Shortest Superstring
problem is not 1.00082-approximable with respect to the length measure, and
not 1.00093-approximable with respect to the compression measure. Notice that
these constants, although small, improve on Ott’s result by an order of magni-
tude. Moreover, these results have potential for much improvement if different
inapproximability results for Vertex Cover are used.

Most hardness results for the Shortest Superstring problem, except Ott’s re-
sult, are for instances over an unbounded alphabet. In fact, Ott [12] stresses that
their result is the first APX-hardness result for instances over a binary alphabet.
Small size alphabet instances are of interest because of their immediate relation
to DNA sequencing, where an alphabet of size 4 (A,T,G,C) is used. The hard-
ness of Shortest Superstring over a binary alphabet does not imply, however, that
Shortest Superstring is not easier to approximate on smaller alphabet instances
than in general. In this paper we show that the problem on a binary alphabet
is just as hard to approximate as the general case, i.e. if one can approximate
Shortest Superstring over a binary alphabet by a factor α in polynomial time,
then the problem over any (finite) alphabet can be approximated by a factor α
in polynomial time.

2 Preliminaries

In this section we define some terminology we will need.

Definition 1. Given an alphabet Σ, a string over Σ is an element of Σ∗. Given
two strings s = s1 . . . sm and t = t1 . . . tk over Σ, s is said to be a substring of
t, if |s| ≤ |t| and there exists a j: 0 ≤ j ≤ k −m so that for every i: 1 ≤ i ≤ m,
si = tj+i. t is said to be a superstring of s iff s is a substring of t. s is said to
overlap to the right with t if there exists a j: 0 ≤ j ≤ m− 1 so that for every i:
1 ≤ i ≤ m− j, si = tj+i. Then t is said to overlap to the left with s.

Now consider the following procedure, Induced(π, S), which given a set of n
strings, S = {s1, . . . , sn}, and a permutation π ∈ Sn, greedily builds a super-
string of S:

Induced(π, S) :
s← sπ(1)

for i from 2 to n
s← string obtained by maximally overlapping s to the right with sπ(i)

Definition 2. Let π ∈ Sn and let S be a set of n strings over some alphabet.
We say π induces a superstring sπ on S if sπ = Induced(π, S). Define ov(π, S)

to be the amount of overlap induced by π on S, i.e. ov(π, S) = (
∑n

i=1 |si|) −
|Induced(π, S)|.

Intuitively, the superstring induced on S by π is obtained by sequentially
overlapping the strings in the order given by π.

Definition 3. Given an alphabet Σ and a set of strings S = {s1, . . . , sn} ⊂ Σ∗

such that no string in S is a substring of another string in S, the Shortest
Superstring problem asks for the shortest string s which is a superstring of every
si ∈ S. In terms of optimization, the length measure minimizes |s|, and the
compression measure maximizes (

∑n

i=1 |si|)−|s|. When the compression measure
is used, the problem is often referred to as the maximum compression problem.

Note that the shortest superstring is the shortest length superstring over
all superstrings induced by a permutation from Sn on S. Since the Shortest
Superstring problem is defined on finite strings, here we consider the alphabet
for the superstring instance to consist solely of characters occurring in the strings.
With this definition, the alphabet size is always bounded by the sum of the string
lengths.

3 Binary Alphabet Shortest Superstring

Until now the size of the underlying alphabet has been assumed to make a dif-
ference in the approximability of the Shortest Superstring problem. This may
be related to the fact that a related problem, Shortest Common Supersequence,
seems to be easier on instances over a small alphabet. For example, Jiang and
Li [6] give an algorithm for Shortest Common Supersequence with an approx-
imation ratio directly related to the size of the alphabet. In the next theorem
we show that in the case of the Shortest Superstring problem, the alphabet size
does not affect the approximability of the problem.

Theorem 1. Suppose the Shortest Superstring problem can be approximated by
a factor α on instances over a binary alphabet (with respect to either measure).
Then the Shortest Superstring problem can be approximated by a factor α on
instances over any alphabet.

Proof. Given an alphabet A = {a1, . . . , ak} of size k, associate with ai the binary
string si = 0i(01)(k+1−i)1i. Notice that if i 6= j, si does not overlap with sj , and
that the only way si overlaps with itself is by its whole length. Furthermore, all
si have the same length, 2(k + 1).

Consider an instance T = {t1, . . . , tn} overA and the instance T ′ = {t′1, . . . , t
′

n}
obtained by substituting si for ai. As noted earlier, we take A to contain only
the characters present in the strings of T , so |A| = k ≤

∑
i |ti|.

For all permutations π ∈ Sn let sπ and s′π be the superstrings induced by
π on T and T ′ respectively. Then |s′π| = 2(k + 1)|sπ|. In particular, |s′opt| =

2(k + 1)|sopt| for the optimal permutation opt (in terms of the length measure
for T). And if |s′π| ≤ α|s′opt|, we have

|sπ| =
|s′π|

2(k + 1)
≤

α|s′opt|

2(k + 1)
= α|sopt|.

For all permutations π ∈ Sn, let ovπ = ov(π, T) and ov′π = ov(π, T ′). Then
ov′π = 2(k + 1) · ovπ. As above we have ov′opt = 2(k + 1) · ovopt for the optimal
(now in terms of overlaps) permutation opt. For ov′π ≤ α · ov′opt,

ovπ =
ov′π

2(k + 1)
≤

α · ov′opt
2(k + 1)

= α · ovopt.

Hence if we have an α-approximation algorithm for the Shortest Superstring
problem on binary strings, then we can use it to get an α-approximation for
Shortest Superstring instances over any alphabet. The running time of the algo-
rithm is polynomial since k is at most linear in the length of the input and the
transformation can be carried out in polynomial time. ut

4 Approximation Ratio Lower Bounds

In this section we derive explicit approximation ratio lower bounds (assuming
P 6= NP) for the Shortest Superstring problem restricted to instances with equal
length strings. We do this by a reduction from Vertex Cover, and by using the
following theorem of Berman and Karpinski [2]:

Theorem 2 ([2]). For any 0 < ε < 1
2 it is NP-hard to decide whether an

instance of Vertex Cover with 140n nodes and maximum degree at most 5 has
its optimum above (73− ε)n or below (72 + ε)n.

Moreover we will need the following fact concerning the reduction:

Claim. The Vertex Cover instances in Theorem 2 have at most 286n edges.

Proof of Claim: The instances in the reduction used in the proof of the theorem
above have at most 12n nodes of degree 5, and the rest of the nodes have degree
at most 4. Hence the instances considered have at most 30n + 256n = 286n
edges. ut

We are now prepared to derive the inapproximability bounds.

Theorem 3. For any ε > 0, unless P = NP , Shortest Superstring on instances
with equal length strings is not approximable in polynomial time within a factor
of
• 1.00082− ε with respect to the length measure, and
• 1.00093− ε with respect to the compression measure.

Proof. Suppose we are given an instance of Vertex Cover G = (V,E) with |E| =
m. Let our alphabet contain a letter a for each vertex a ∈ V (G), and our strings
be abab and baba for each edge e = (a, b).

Suppose G has a vertex cover S of size k. Then, assign each edge to one of
its end points which is in S. If e = (a, b) was assigned to a, then overlap abab

(to the left) with baba to obtain ababa. Otherwise overlap them in the opposite
order to obtain babab.

For every b ∈ S, consider all edges (ai, b) assigned to b. For each one of these
edges we have a string of the form baibaib. By consecutively overlapping these
strings by 1 letter, we obtain a string sb. By concatenating the sb strings for all
b ∈ S we obtain a string s.

Claim. The string s has length 4m+ k.

Proof of Claim: The sum of the lengths of the original strings is 8m and each two
strings corresponding to the same edge are overlapped by 3 symbols. This gives
a total of 5m for the strings of the form babab. If all of these were overlapped
by one letter we would get a compression of (m− 1) since there are m of these
strings. However, since the vertex cover is of size k, there are k groups with
no overlap between them. So the length of the superstring is actually longer by
(k − 1) symbols. We have |s| = 5m− (m− 1) + (k − 1) = 4m+ k ut

Now suppose for some k ≥ 1 we have a superstring of length 4m+ k. First we
show that wlog we may assume for every (a, b) ∈ E that either abab is overlapped
to the right with baba or vice-versa.

Suppose some abab and baba are not overlapped with each other. We will
construct a new superstring of length ≤ 4m+ k such that they do overlap.

Consider the permutation π of the strings which induces the superstring.
Wlog, abab occurs before baba, in π. In the worst case, there is a string ba′ba′

right after abab overlapping with abab to the right, and there is a string a′′ba′′b
right before baba overlapping with baba to the left (where clearly a′ 6= a 6= a′′).
We can break these two overlaps moving all strings between abab and baba to
the end of the permutation (without breaking any other overlaps), and then
overlapping abab with baba, for an overall gain of 1 letter overlap. After doing
this for all edges we get a superstring of no greater length in which for each
(a, b) ∈ E either abab is overlapped to the left with baba or vice-versa.

After this transformation, the superstring s′ is a concatenation of strings of
the form

as
∏

i

(biasbias),

where
∏

stands for iterated concatenation.
For an edge (a, b) ∈ E, if abab overlaps to the left with baba, then put a in

the vertex cover S. S is clearly a vertex cover since we used a vertex for each
edge. If s′ consists of t strings of the above form, S =

⋃
s as and |S| is at most

t. The length of the superstring is

5m− (m− 1) + (t− 1) = 4m+ t

by an argument similar to the one given earlier. Since the length of the super-
string did not increase due to our manipulations,

4m+ t ≤ 4m+ k,

which yields t ≤ k.

Therefore G has a vertex cover of size k iff the string set has a superstring of
size 4m+ k.

Now we prove the inapproximability bounds. By Theorem 2, we have that
for any 0 < ε < 1

2 it is NP-hard to decide whether an instance of Vertex Cover
with 140n nodes and at most 286n edges has its optimum above (73 − ε)n or
below (72 + ε)n.

Hence for Shortest Superstring on 2m ≤ 572n strings of length 4 it is NP-
hard to distinguish whether there is a superstring of length below 4m+(72+ε)n
or above 4m+(73− ε)n. So if Shortest Superstring can be approximated within
an α factor, then

α ≥
4m+ (73− ε)n

4m+ (72 + ε)n
.

Taking limits on both sides we get

α ≥ lim
ε→0

4m+ (73− ε)n

4m+ (72 + ε)n
=

4m+ 73n

4m+ 72n
= 1 +

1

4m
n
+ 72

But 4m
n
≤ 286× 4 = 1144 and so

α ≥ 1 +
1

1216
≥ 1.00082

Therefore, for any ε > 0, Shortest Superstring on instances with equal length
strings cannot be approximated within a factor of 1.00082 − ε, with respect to
the length measure, unless P = NP .

When the length of the superstring is 4m+k, the compression is 8m− (4m+
k) = 4m−k. So for the maximum compression on the strings from our reduction
it is NP-hard to decide whether the optimum compression is above 4m−(72+ε)n
or below 4m− (73− ε)n. If the compression can be approximated by a factor β,
then

β ≥
4m− (72 + ε)n

4m− (73− ε)n

Taking limits on both sides,

β ≥ lim
ε→0

4m− (72 + ε)n

4m− (73− ε)n
=

4m− 72n

4m− 73n
=

= 1 +
1

4m
n
− 73

≥ 1 +
1

1071
≥ 1.00093

Hence for any ε > 0, Shortest Superstring on instances with equal length
strings cannot be approximated within a factor of 1.00093 − ε, with respect to
the compression measure, unless P = NP . ut

Using Theorems 1 and 3 we also get

Corollary 1. For any ε > 0, unless P = NP , Shortest Superstring on instances
with equal length binary strings is not approximable in polynomial time within
a factor of
• 1.00082− ε with respect to the length measure, and
• 1.00093− ε with respect to the compression measure.

5 Conclusion

We have derived explicit approximation ratio lower bounds for the Shortest Su-
perstring problem, when restricted to instances with equal length strings. These
bounds are far from the best known upper bounds for the Shortest Superstring
problem. The reduction given in this paper presents a promising avenue for im-
proving the lower bounds further, since any better bounds for a class of Vertex
Cover instances with an optimum linear in the number of edges immediately im-
proves our result. This of course would only give lower bounds for the restricted
version of Shortest Superstring, which may be weaker than the best lower bounds
for the general problem. It is an interesting question whether Shortest Super-
string on equal length strings is easier in terms of approximation than the general
Shortest Superstring problem.

We have also shown that the alphabet size does not affect the approximability
of Shortest Superstring. It is an open problem whether a similar result can be
obtained for the related Shortest Common Supersequence problem, which is
also known to be MAX-SNP-hard over a binary alphabet [11]. Our reduction
exploited a property of the Shortest Superstring problem which is not present in
the Shortest Common Supersequence problem. Hence, if the alphabet size does
not affect the approximability of Shortest Common Supersequence, then proving
this may require very different ideas from ours.

Our result on the alphabet importance for Shortest Superstring is signifi-
cant since the main application of the Shortest Superstring problem is in DNA
sequencing where the alphabet has only 4 symbols. Until now it was assumed
that because of this restriction the real-world applications of the problem may
be much better approximable. In this paper we have refuted this hope. But we
also shed light on a very natural relation between Shortest Superstring and Ver-
tex Cover, a problem which has been well-studied. Moreover, we conjecture that
the relation between the two problems is much tighter than our reduction indi-
cates, and that if Vertex Cover is not 2-approximable, then neither is Shortest
Superstring.

6 Acknowledgments

I would like to thank Ryan Williams, Maverick Woo and my advisor Guy Blel-
loch for numerous helpful discussions, Avrim Blum for suggesting the Shortest
Superstring problem, Uriel Feige for several insightful observations, and the three
anonymous reviewers for their comments.

References

1. C. Armen, C. Stein, Short Superstrings and the Structure of Overlapping Strings.
J. Comput. Biol. 2 (2) (1995) 307–332

2. P. Berman, M. Karpinski, On Some Tighter Inapproximability Results (Extended
Abstract). ICALP (1999) 200–209

3. M. Bläser, An 8/13–Approximation Algorithm for the Asymmetric Maximum TSP.
SODA (2002) 64–73

4. A. Blum, T. Jiang, M. Li, J. Tromp, and M. Yannakakis, Linear Approximation
of Shortest Superstrings. STOC (1991) 328–336

5. D. Breslauer,T. Jiang and Z. Jiang, Rotations of Periodic Strings and Short Su-
perstrings. J. Algorithms. 24 (2) (1997) 340–353

6. T. Jiang, M. Li, On the Approximation of Shortest Common Supersequences and
Longest Common Subsequences. SIAM J. Comput. 24 (5) (1995) 1122–1139

7. D. Maier and J.A. Storer. A Note on the Complexity of the Superstring Problem.
Princeton University Technical Report 233, Department of Electrical Engineering
and Computer Science (1977)

8. M. Karpinski, Approximating Bounded Degree Instances of NP-hard Problems.
Proc. 13th Symp. on Fundamentals of Computation Theory, LNCS 2138, Springer
10 (2001) 24–34

9. H. Kaplan, N. Shafrir, The Greedy Algorithm for Shortest Superstrings. Informa-
tion Processing Letters 93 (2005) 13–17

10. M. Middendorf, More on the Complexity of Common Superstring and Superse-
quence Problems. Theoretical Computer Science 125 (2) (1994) 205–228

11. M. Middendorf, On Finding Various Minimal, Maximal, and Consistent Sequences
over a Binary Alphabet. Theoretical Computer Science 145 (1995) 317–327.

12. S. Ott, Lower Bounds for Approximating Shortest Superstrings over an Alphabet
of Size 2. WG (1999) 55–64

13. Z. Sweedyk, A 2 1

2
–Approximation Algorithm for Shortest Superstring. SIAM J.

Comput. 29 (3) (1999) 954–986
14. J. Tarhio and E. Ukkonen, A Greedy Approximation Algorithm for Constructing

Shortest Common Superstrings. Theoretical Computer Science 57 (1988) 131–145
15. J.S. Turner, Approximation Algorithms for the Shortest Common Superstring

Problem. Information and Computation 83 (1989) 1–20

