
Efficient Algorithms for Path Problems in Weighted Graphs

Virginia Vassilevska

Thesis Proposal
November 14, 2007

Thesis Committee:

Guy Blelloch, Manuel Blum, Anupam Gupta, Uri Zwick (Tel Aviv University)

Weighted Graph Path Problems – Introduction

5
2

5

1

5−1

10
0

1

−10

0
S T

2

Weighted Graph Path Problems – Introduction

5
2

5

1

5−1

10
0

1

−10

0
S T

Our Problem: find a path S = v0 → v1 → v2 → . . . → vk = T

optimizing a given measure.

2-a

Path Measures

Shortest Paths: Find S = v0 → v1 → v2 → . . . → vk = T minimizing

k−1
∑

i=0

w(vi, vi+1).

5
2

5

1

5−1

10
0

1

−10

0
S T

3

Path Measures

Shortest Paths: Find S = v0 → v1 → v2 → . . . → vk = T minimizing

k−1
∑

i=0

w(vi, vi+1).

5
2

5

1

5−1

10
0

1

−10

0
S T

Application: find shortest road distance between two cities on a map.

3-a

Path Measures Cont.

Maximum Bottleneck Paths:

Find S = v0 → v1 → v2 → . . . → vk = T maximizing

k−1

min
i=0

w(vi, vi+1).

5
2

5

1

5−1

10
0

1

−10

0
S T

4

Path Measures Cont.

Maximum Bottleneck Paths:

Find S = v0 → v1 → v2 → . . . → vk = T maximizing

k−1

min
i=0

w(vi, vi+1).

5
2

5

1

5−1

10
0

1

−10

0
S T

Application: find road path of highest tunnel clearance between two cities.

4-a

Path Measures Cont.

Minimum Nondecreasing Paths:

Find S = v0 → v1 → v2 → . . . → vk−1 → vk = T such that

w(vi, vi+1) ≤ w(vi+1, vi+2) for all i, minimizing w(vk−1, T).

5
2

5

1

5−1

10
0

1

−10

0
S T

5

Path Measures Cont.

Minimum Nondecreasing Paths:

Find S = v0 → v1 → v2 → . . . → vk−1 → vk = T such that

w(vi, vi+1) ≤ w(vi+1, vi+2) for all i, minimizing w(vk−1, T).

5
2

5

1

5−1

10
0

1

−10

0
S T

Application: compute train itinerary which gets you from one city to

another as early as possible.

5-a

Path Measures Cont.

Maximum Node Weighted Triangle:

In a node-weighted graph, if (T, S) is an edge, find S → v → T

maximizing w(S) + w(v) + w(T).

1
4

1 2

3

T

T
′

S

6

Path Measures Cont.

Maximum Node Weighted Triangle:

In a node-weighted graph, if (T, S) is an edge, find S → v → T

maximizing w(S) + w(v) + w(T).

1
4

1 2

3

T

T
′

S

Application: Find important clusters in a database.

6-a

Problem Versions

a

a

a

7

Problem Versions

Single Source, Single Destination (S-T Best Path)

5
2

5

1

5−1

10
0

1

−10

0
S T

a

a

a

7-a

Problem Versions

Single Source (every destination) Best Path

5
2

5

1

5−1

10
0

1

−10

0
S

a

a

a

8

Problem Versions

All Pairs Best Path

5
2

5

1

5−1

10
0

1

−10

0

a

a

a

9

Talk Outline

1. Algorithms for All Pairs Best Paths

2. Algorithms for Single Source Best Paths

3. Directions for Further Research

a

a

10

All Pairs Path Problems – Results

n-number of vertices, m-number of edges

Problem Previous Best Our Results

AP Max Triangle n3 n2.58 (VWY 2006)

AP Max Bottleneck Paths n3 n2.79 (VWY 2007)

AP Min Nondecreasing Paths n3 n2.9 (V 2008)

k Bits of Distance Product n3/ log n (Chan 2005) 2kn2.69 (VW 2006).

11

All Pairs Path Problems – Outline

1. Path Problems and Matrix Products

2. Properties and Algorithms

3. Techniques

4. Example

5. Summary of results

a

12

Path Problems and ⊗ Products

For all these problems, the length of v1 → v2 → . . . → vk is

ℓ(v1, . . . , vk) = ℓ(v1, . . . , vk−1) ⊗ w(vk−1, vk), ℓ(v1, v2) = w(v1, v2),

where ⊗ is different for each problem.

Problem ⊗

Shortest Paths +

Bottleneck Paths min

Nondecreasing Paths ≤′

a

a ≤′ b returns b if a ≤ b and ∞ otherwise.

13

Path Problems and Matrices





















∞ 1 2 ∞

∞ ∞ ∞ 3

∞ ∞ ∞ 2

∞ ∞ ∞ ∞





















shortest paths bottleneck paths in general





















−∞ 1 2 −∞

−∞ −∞ −∞ 3

−∞ −∞ −∞ 2

−∞ −∞ −∞ −∞









































ε0 1 2 ε0

ε0 ε0 ε0 3

ε0 ε0 ε0 2

ε0 ε0 ε0 ε0





















a1

a2

a3

a1

a2

a3

a1

a2

a3

a4

a4

a4

1

2
3

2

1

2
3

2

a3

a4
a1

a2

1 3

2 2

14

Path Problems and Matrix Products

Definition [{⊕,⊗}-Product]:

Given two n × n real matrices A and B, and two operations ⊗ and ⊕ on

R, such that ⊕ is commutative and associative, the {⊕,⊗}-product of A

and B is the n × n matrix C given by

C[i, j] :=
n

⊕

k=1

(A[i, k] ⊗ B[k, j]),∀i, j = 1, . . . , n.

For our path problems, ⊕ is always max or min.

15

Various Matrix Products: definitions

16

Various Matrix Products: definitions

Algebraic Product:

C[i, j] = (A · B)[i, j] =
∑

k
{A[i, k] · B[k, j]}.

16-a

Various Matrix Products: definitions

Algebraic Product:

C[i, j] = (A · B)[i, j] =
∑

k
{A[i, k] · B[k, j]}.

Distance Product:

C[i, j] = (A ⋆ B)[i, j] = mink{A[i, k] + B[k, j]}.

16-b

Various Matrix Products: definitions

Algebraic Product:

C[i, j] = (A · B)[i, j] =
∑

k
{A[i, k] · B[k, j]}.

Distance Product:

C[i, j] = (A ⋆ B)[i, j] = mink{A[i, k] + B[k, j]}.

MaxMin Product:

C[i, j] = (A • B)[i, j] = maxk min{A[i, k], B[k, j]}.

16-c

Various Matrix Products: definitions

Algebraic Product:

C[i, j] = (A · B)[i, j] =
∑

k
{A[i, k] · B[k, j]}.

Distance Product:

C[i, j] = (A ⋆ B)[i, j] = mink{A[i, k] + B[k, j]}.

MaxMin Product:

C[i, j] = (A • B)[i, j] = maxk min{A[i, k], B[k, j]}.

Dominance Product:

C[i, j] = (A ⊙ B)[i, j] = |{k : A[i, k] ≤ B[k, j]}|.

16-d

Various Matrix Products: definitions

Algebraic Product:

C[i, j] = (A · B)[i, j] =
∑

k
{A[i, k] · B[k, j]}.

Distance Product:

C[i, j] = (A ⋆ B)[i, j] = mink{A[i, k] + B[k, j]}.

MaxMin Product:

C[i, j] = (A • B)[i, j] = maxk min{A[i, k], B[k, j]}.

Dominance Product:

C[i, j] = (A ⊙ B)[i, j] = |{k : A[i, k] ≤ B[k, j]}|.

(min,≤)-Product:

C[i, j] = (A 4 B)[i, j] = mink{B[k, j] : A[i, k] ≤ B[k, j]}.

16-e

Various Matrix Products: definitions

Algebraic Product: (CoppersmithWinograd90)

C[i, j] = (A · B)[i, j] =
∑

k
{A[i, k] · B[k, j]}. nω = n2.376

Distance Product:

C[i, j] = (A ⋆ B)[i, j] = mink{A[i, k] + B[k, j]}.

MaxMin Product:

C[i, j] = (A • B)[i, j] = maxk min{A[i, k], B[k, j]}.

Dominance Product:

C[i, j] = (A ⊙ B)[i, j] = |{k : A[i, k] ≤ B[k, j]}|.

(min,≤)-Product:

C[i, j] = (A 4 B)[i, j] = mink{B[k, j] : A[i, k] ≤ B[k, j]}.

16-f

Various Matrix Products: definitions

Algebraic Product: (CoppersmithWinograd90)

C[i, j] = (A · B)[i, j] =
∑

k
{A[i, k] · B[k, j]}. nω = n2.376

Distance Product:

C[i, j] = (A ⋆ B)[i, j] = mink{A[i, k] + B[k, j]}.

MaxMin Product:

C[i, j] = (A • B)[i, j] = maxk min{A[i, k], B[k, j]}.

Dominance Product: (Matousek91)

C[i, j] = (A ⊙ B)[i, j] = |{k : A[i, k] ≤ B[k, j]}|. n
3+ω

2

(min,≤)-Product:

C[i, j] = (A 4 B)[i, j] = mink{B[k, j] : A[i, k] ≤ B[k, j]}.

16-g

Various Matrix Products: definitions

Algebraic Product: (CoppersmithWinograd90)

C[i, j] = (A · B)[i, j] =
∑

k
{A[i, k] · B[k, j]}. nω = n2.376

Distance Product:

C[i, j] = (A ⋆ B)[i, j] = mink{A[i, k] + B[k, j]}.

MaxMin Product: (VWY07)

C[i, j] = (A • B)[i, j] = maxk min{A[i, k], B[k, j]}. n2+ω
3

Dominance Product: (Matousek91)

C[i, j] = (A ⊙ B)[i, j] = |{k : A[i, k] ≤ B[k, j]}|. n
3+ω

2

(min,≤)-Product: (VWY07, V08)

C[i, j] = (A 4 B)[i, j] = mink{B[k, j] : A[i, k] ≤ B[k, j]}. n2+ω
3

16-h

Various Matrix Products: definitions

Algebraic Product: (CoppersmithWinograd90)

C[i, j] = (A · B)[i, j] =
∑

k
{A[i, k] · B[k, j]}. nω = n2.376

Distance Product: (Chan07)

C[i, j] = (A ⋆ B)[i, j] = mink{A[i, k] + B[k, j]}. n3/ log2 n

MaxMin Product: (VWY07)

C[i, j] = (A • B)[i, j] = maxk min{A[i, k], B[k, j]}. n2+ω
3

Dominance Product: (Matousek91)

C[i, j] = (A ⊙ B)[i, j] = |{k : A[i, k] ≤ B[k, j]}|. n
3+ω

2

(min,≤)-Product: (VWY07, V08)

C[i, j] = (A 4 B)[i, j] = mink{B[k, j] : A[i, k] ≤ B[k, j]}. n2+ω
3

16-i

Properties and Path Algorithms

Let OPT [x, y] be the best x → y path length. OPT [x, x] = ε1.

Edge-Padding Property:

There are operations ⊕ and ⊗, such that ⊕ is commutative and

associative, and for all pairs of vertices x, y in the graph,

OPT [x, y] =
⊕

z∈V

(OPT [x, z] ⊗ w(z, y)).

a

a

17

Properties and Path Algorithms

Let OPT [x, y] be the best x → y path length. OPT [x, x] = ε1.

Edge-Padding Property:

There are operations ⊕ and ⊗, such that ⊕ is commutative and

associative, and for all pairs of vertices x, y in the graph,

OPT [x, y] =
⊕

z∈V

(OPT [x, z] ⊗ w(z, y)).

This holds when ⊗ is right-distributive over ⊕. a

a

17-a

Properties and Path Algorithms Cont.

Midpoint Property:

If x → v1 → . . . → vk → y is an optimal path, then for all i,

x → . . . → vi and vi → . . . → y are also optimal.

18

Properties and Path Algorithms Cont.

Midpoint Property:

If x → v1 → . . . → vk → y is an optimal path, then for all i,

x → . . . → vi and vi → . . . → y are also optimal.

There are operations ⊕ and ⊗, where ⊕ is associative and commutative,

so that for all pairs of vertices x, y in the graph,

OPT [x, y] =
⊕

z∈V

(OPT [x, z] ⊗ OPT [z, y]).

18-a

Properties and Path Algorithms Cont.

Midpoint Property:

If x → v1 → . . . → vk → y is an optimal path, then for all i,

x → . . . → vi and vi → . . . → y are also optimal.

There are operations ⊕ and ⊗, where ⊕ is associative and commutative,

so that for all pairs of vertices x, y in the graph,

OPT [x, y] =
⊕

z∈V

(OPT [x, z] ⊗ OPT [z, y]).

This holds when ⊗ is associative and distributes over ⊕.

18-b

Properties and Path Algorithms Cont.

When optimal paths have length at most N :

a

19

Properties and Path Algorithms Cont.

When optimal paths have length at most N :

If the edge-padding property holds, all pairs best paths can be done in

O(N × T [(⊕,⊗)-product]).

a

19-a

Properties and Path Algorithms Cont.

When optimal paths have length at most N :

If the edge-padding property holds, all pairs best paths can be done in

O(N × T [(⊕,⊗)-product]).

If the midpoint property holds, all pairs best paths can be done in

O(log N × T [(⊕,⊗)-product]).

a

19-b

Properties and Path Algorithms Cont.

When optimal paths have length at most N :

If the edge-padding property holds, all pairs best paths can be done in

O(N × T [(⊕,⊗)-product]).

If the midpoint property holds, all pairs best paths can be done in

O(log N × T [(⊕,⊗)-product]).

When (R,⊕,⊗, ε0, ε1) form a semiring, then all pairs best paths can be

done in O(T [(⊕,⊗)-product]) (AHU74). a

19-c

Matrix Products and Path Algorithms

a

a

20

Matrix Products and Path Algorithms

AP Shortest Paths and AP Bottleneck Paths are problems over semirings.

a

a

20-a

Matrix Products and Path Algorithms

AP Shortest Paths and AP Bottleneck Paths are problems over semirings.

AP Min Nondecreasing Paths does not even have the midpoint property.

≤ is not associative: [(2 ≤ 1) ≤ 3] = ∞ and [2 ≤ (1 ≤ 3)] = 3.

a

a

20-b

Matrix Products and Path Algorithms

AP Shortest Paths and AP Bottleneck Paths are problems over semirings.

AP Min Nondecreasing Paths does not even have the midpoint property.

≤ is not associative: [(2 ≤ 1) ≤ 3] = ∞ and [2 ≤ (1 ≤ 3)] = 3.

Still, we can show that if (min,≤) product is in subcubic time, so is AP

Minimum Nondecreasing Paths. (short paths - long paths method)

a

a

20-c

Matrix Products and Path Algorithms

AP Shortest Paths and AP Bottleneck Paths are problems over semirings.

AP Min Nondecreasing Paths does not even have the midpoint property.

≤ is not associative: [(2 ≤ 1) ≤ 3] = ∞ and [2 ≤ (1 ≤ 3)] = 3.

Still, we can show that if (min,≤) product is in subcubic time, so is AP

Minimum Nondecreasing Paths. (short paths - long paths method)

Hence, we can concentrate on matrix products. a

a

20-d

Techniques for Computing Matrix Products

21

Techniques for Computing Matrix Products

1. Bucketting: Preprocess each input matrix and assign its entries in a

1-to-1 fashion to some number of buckets, each getting a small

number of entries. For each input matrix X and each bucket b, create

a new matrix Xb.

21-a

Techniques for Computing Matrix Products

1. Bucketting: Preprocess each input matrix and assign its entries in a

1-to-1 fashion to some number of buckets, each getting a small

number of entries. For each input matrix X and each bucket b, create

a new matrix Xb.

2. Bucket Processing: For each bucket b, multiply Ab and Bb using

(perhaps recursively) a different matrix product (⊕′,⊗′).

21-b

Techniques for Computing Matrix Products

1. Bucketting: Preprocess each input matrix and assign its entries in a

1-to-1 fashion to some number of buckets, each getting a small

number of entries. For each input matrix X and each bucket b, create

a new matrix Xb.

2. Bucket Processing: For each bucket b, multiply Ab and Bb using

(perhaps recursively) a different matrix product (⊕′,⊗′).

3. Exhaustive Search: The bucket processing step provides information

which allows us to choose a small number of buckets on which the

problem is solved by exhaustive search.

21-c

Example: (min,≤)-Product

We want aij = mink{B[k, j] | A[i, k] ≤ B[k, j]}.

We will use the dominance product: (A ⊙ B)[i, j] = |{k : A[i, k] ≤ B[k, j]}|.

22

Example: (min,≤)-Product

We want aij = mink{B[k, j] | A[i, k] ≤ B[k, j]}.

We will use the dominance product: (A ⊙ B)[i, j] = |{k : A[i, k] ≤ B[k, j]}|.

1. Take the columns of B and sort the entries of each column.

B =















10 2 0 7

−1.1 3 −1 2.1

5.1 7 −2 4

3.2 1 −3 2.1















column 1 : A[2, 1], A[4, 1], A[3, 1], A[1, 1]

column 2 : A[4, 2], A[1, 2], A[2, 2], A[3, 2]

column 3 : A[5, 3], A[3, 3], A[2, 3], A[1, 3]

column 4 : A[4, 4], A[2, 4], A[3, 4], A[1, 4]

22-a

Example: (min,≤)-Product

We want aij = mink{B[k, j] | A[i, k] ≤ B[k, j]}.

We will use the dominance product: (A ⊙ B)[i, j] = |{k : A[i, k] ≤ B[k, j]}|.

1. Take the columns of B and sort the entries of each column.

2. (Technique 1) Bucket the entries of each column of B, in their sorted

order into s roughly equal buckets.

B =















10 2 0 7

−1.1 3 −1 2.1

5.1 7 −2 4

3.2 1 −3 2.1















column 1 : A[2, 1], A[4, 1], A[3, 1], A[1, 1]

column 2 : A[4, 2], A[1, 2], A[2, 2], A[3, 2]

column 3 : A[5, 3], A[3, 3], A[2, 3], A[1, 3]

column 4 : A[4, 4], A[2, 4], A[3, 4], A[1, 4]

22-b

Example: (min,≤)-Product cont.

3. (Technique 1 - Bucketting) For each bucket b create a matrix B(b)

containing only the elements in bucket b and −∞ in all other entries.

B(1) =















−∞ 2 −∞ −∞

−1.1 −∞ −∞ 2.1

−∞ −∞ −2 −∞

3.2 1 −3 2.1















B(2) =















10 −∞ 0 7

−∞ 3 −1 −∞

5.1 7 −∞ 4

−∞ −∞ −∞ −∞















a

23

Example: (min,≤)-Product cont.

We want aij = mink{B[k, j] | A[i, k] ≤ B[k, j]}.

We will use the dominance product: (A ⊙ B)[i, j] = |{k : A[i, k] ≤ B[k, j]}|.

4. (Technique 2 - Bucket Processing) Compute A ⊙ B(b) for each b.

B ⊙ B(2) =














10 2 0 7

−1.1 3 −1 2.1

5.1 7 −2 4

3.2 1 −3 2.1















⊙















10 −∞ 0 7

−∞ 3 −1 −∞

5.1 7 −∞ 4

−∞ −∞ −∞ −∞















=















2 2 0 1

2 2 1 2

2 1 0 2

2 2 0 2















This tells us for every bucket b and each i, j, the number of coords k such

that B[k, j] is in bucket b and A[i, k] ≤ B[k, j].

This step takes O(sn
3+ω

2) since dominance product takes O(n
3+ω

2).
24

Example: (min,≤)-Product cont.

25

Example: (min,≤)-Product cont.

5. For each i, j we know the smallest bucket b in which there is an entry

B[k, j] such that A[i, k] ≤ B[k, j].

25-a

Example: (min,≤)-Product cont.

5. For each i, j we know the smallest bucket b in which there is an entry

B[k, j] such that A[i, k] ≤ B[k, j].

6. (Tecnique 3 - Exhaustive Search) For each i, j, search that bucket for

smallest B[k, j] - there are at most O(n/s) entries we have to go

through for each pair i, j.

This step takes O(n3/s) and explicitly finds witnesses.

25-b

Example: (min,≤)-Product cont.

5. For each i, j we know the smallest bucket b in which there is an entry

B[k, j] such that A[i, k] ≤ B[k, j].

6. (Tecnique 3 - Exhaustive Search) For each i, j, search that bucket for

smallest B[k, j] - there are at most O(n/s) entries we have to go

through for each pair i, j.

This step takes O(n3/s) and explicitly finds witnesses.

7. The overall runtime is minimized for s = n
3−ω

4 and the runtime is then

O(n
9+ω

4) = O(n2.85).

25-c

Summary of Results

26

Summary of Results

All Pairs Maximum Node Weighted Triangles - either by using dominance

product, or by using rectangular (algebraic) matrix multiplication. Best

Running Time: O(n2.575). (VW STOC06, VWY ICALP06)

26-a

Summary of Results

All Pairs Maximum Node Weighted Triangles - either by using dominance

product, or by using rectangular (algebraic) matrix multiplication. Best

Running Time: O(n2.575). (VW STOC06, VWY ICALP06)

All Pairs Shortest Paths - compute k most significant bits of the distance

product in O(2kn2.688) time using dominance product. (VW STOC06)

26-b

Summary of Results

All Pairs Maximum Node Weighted Triangles - either by using dominance

product, or by using rectangular (algebraic) matrix multiplication. Best

Running Time: O(n2.575). (VW STOC06, VWY ICALP06)

All Pairs Shortest Paths - compute k most significant bits of the distance

product in O(2kn2.688) time using dominance product. (VW STOC06)

All Pairs Minimum Nondecreasing Paths - compute (min,≤)-Product

using dominance product, and then apply short path - long path technique

of Zwick/Chan. Best Running Time: O(n2.896). (V SODA08)

26-c

Summary of Results

All Pairs Maximum Node Weighted Triangles - either by using dominance

product, or by using rectangular (algebraic) matrix multiplication. Best

Running Time: O(n2.575). (VW STOC06, VWY ICALP06)

All Pairs Shortest Paths - compute k most significant bits of the distance

product in O(2kn2.688) time using dominance product. (VW STOC06)

All Pairs Minimum Nondecreasing Paths - compute (min,≤)-Product

using dominance product, and then apply short path - long path technique

of Zwick/Chan. Best Running Time: O(n2.896). (V SODA08)

All Pairs Bottleneck Paths - compute (max, min)-Product using

(min,≤)-Product. Best Running Time: O(n2.792). (VWY STOC07)

26-d

Single Source Path Problems

27

Single Source Path Problems

Single Source Shortest Paths - O(m + n) time algorithm (Thorup) known

for undirected graphs in the RAM machine model. No linear time algorithm

known for directed graphs.

27-a

Single Source Path Problems

Single Source Shortest Paths - O(m + n) time algorithm (Thorup) known

for undirected graphs in the RAM machine model. No linear time algorithm

known for directed graphs.

Single Source Nondecreasing Paths - Previously, the best algorithm was

Dijkstra’s algorithm, with Fibonacci Heaps, O(m + n log n). We give the

first O(m + n) algorithm in the RAM model. In the pointer machine

model we give a O(m log log n) algorithm. (V08)

27-b

Single Source Path Problems

Single Source Shortest Paths - O(m + n) time algorithm (Thorup) known

for undirected graphs in the RAM machine model. No linear time algorithm

known for directed graphs.

Single Source Nondecreasing Paths - Previously, the best algorithm was

Dijkstra’s algorithm, with Fibonacci Heaps, O(m + n log n). We give the

first O(m + n) algorithm in the RAM model. In the pointer machine

model we give a O(m log log n) algorithm. (V08)

Single Source Bottleneck Paths - A O(m + n) algorithm is known for the

undirected single source, single target version (Punnen91). In the general

case: Dijkstra’s with Fibonacci Heaps O(m + n log n).

27-c

Directions for Further Research

1. More single source algorithms - better single source

algorithm for bottleneck paths?

2. Parallel Algorithms

3. Combinatorial Algorithms

a

a

28

Parallel Algorithms

Our all pairs algorithms use fast matrix multiplication and techniques

involving sorting, bucketting and exhaustive search.

aa

29

Parallel Algorithms

Our all pairs algorithms use fast matrix multiplication and techniques

involving sorting, bucketting and exhaustive search.

Fast Matrix Multiplication can be done in parallel on O(nω) processors

and O(poly log n) time.

aa

29-a

Parallel Algorithms

Our all pairs algorithms use fast matrix multiplication and techniques

involving sorting, bucketting and exhaustive search.

Fast Matrix Multiplication can be done in parallel on O(nω) processors

and O(poly log n) time.

Hence our all pairs algorithms running sequentially in O(nc) time can be

done in parallel on O(nc) processors and O(poly log n) time. aa

29-b

Parallel Algorithms Cont.

On graphs with small separators of size s(n):

30

Parallel Algorithms Cont.

On graphs with small separators of size s(n):

Pan and Reif 1989: all pairs path problems on semirings in O(log2 n)

parallel time and using O(mn/ log n + ns2(n)) processors.

30-a

Parallel Algorithms Cont.

On graphs with small separators of size s(n):

Pan and Reif 1989: all pairs path problems on semirings in O(log2 n)

parallel time and using O(mn/ log n + ns2(n)) processors.

Cohen 1993: K-source shortest paths in O(log2 n) parallel time using

O(K(n + s2(n))) work, after O(log2 n)–time,

O((n + s(n)3) log n)–work preprocessing.

30-b

Parallel Algorithms Cont.

On graphs with small separators of size s(n):

Pan and Reif 1989: all pairs path problems on semirings in O(log2 n)

parallel time and using O(mn/ log n + ns2(n)) processors.

Cohen 1993: K-source shortest paths in O(log2 n) parallel time using

O(K(n + s2(n))) work, after O(log2 n)–time,

O((n + s(n)3) log n)–work preprocessing.

Conjecture: for K-source bottleneck / nondecreasing paths reduce

preprocessing work to O((n + s(n)α) log n)–work where:

α = 2.792 for bottleneck and α = 2.896 for nondecreasing paths.

30-c

Purely Combinatorial Algorithms

Purely combinatorial – nonalgebraic, nonsubtractive.

aa

31

Purely Combinatorial Algorithms

Purely combinatorial – nonalgebraic, nonsubtractive.

Examples: Four Russians Algorithm for Matrix Multiplication

in O(n3/ log2 n), Chan algorithm for all pairs shortest paths

in O(n3 log log3 n/ log2 n).

aa

31-a

Purely Combinatorial Algorithms

Purely combinatorial – nonalgebraic, nonsubtractive.

Examples: Four Russians Algorithm for Matrix Multiplication

in O(n3/ log2 n), Chan algorithm for all pairs shortest paths

in O(n3 log log3 n/ log2 n).

We want similar runtimes for AP bottleneck paths, and AP

nondecreasing paths. aa

31-b

Purely Combinatorial Algorithms Cont.

32

Purely Combinatorial Algorithms Cont.

The somewhat sparse case – O(mn log(n2/m)/ log2 n)

algorithm for matrix multiplication, transitive closure and max

weight triangle (BVW 08).

Previous best was O(mn/ log n) (Chan06). Ours is better

when m = n2−o(1).

32-a

Purely Combinatorial Algorithms Cont.

The somewhat sparse case – O(mn log(n2/m)/ log2 n)

algorithm for matrix multiplication, transitive closure and max

weight triangle (BVW 08).

Previous best was O(mn/ log n) (Chan06). Ours is better

when m = n2−o(1).

Similar algorithms for AP shortest, AP nondecreasing, or AP

bottleneck paths?

32-b

Approximate Timeline

a

33

Approximate Timeline

• November 19th - STOC deadline - combinatorial results?

a

33-a

Approximate Timeline

• November 19th - STOC deadline - combinatorial results?

• After Thanksgiving - start writing thesis

a

33-b

Approximate Timeline

• November 19th - STOC deadline - combinatorial results?

• After Thanksgiving - start writing thesis

• Beginning of March - have all results until now merged

a

33-c

Approximate Timeline

• November 19th - STOC deadline - combinatorial results?

• After Thanksgiving - start writing thesis

• Beginning of March - have all results until now merged

• April - thesis defense?

a

33-d

Thank you!

34

