Hybrid Algorithms for Graph Problems

Joint work with Ryan Williams and Maverick Woo

Hybrid Algorithms for Graph Problems
Defying Hardness using Graph Minors and Separators

Joint work with Ryan Williams and Maverick Woo

Introduction

Conventional algorithms guarantee good

performance under a prescribed measure:

Introduction

Conventional algorithms guarantee good

performance under a prescribed measure:

Running Time , or

2-a

Introduction

Conventional algorithms guarantee good

performance under a prescribed measure:

Running Time , or

Space, or

2-b

Introduction

Conventional algorithms guarantee good

performance under a prescribed measure:

Running Time , or
Space, or

Simultaneous Time and Space , or

2-C

Introduction

Conventional algorithms guarantee good

performance under a prescribed measure:

Running Time , or
Space, or
Simultaneous Time and Space , or

Approximation Ratio and Time , etc.

2-d

Hybrid Algorithms

Hybrid Algorithms

Aset H = {hy,..., hi} of heuristics , optimizing

different complexity measures.

3-a

Hybrid Algorithms

Aset H = {hy,..., hi} of heuristics , optimizing

different complexity measures.

E.qg.

3-b

Hybrid Algorithms

Aset H = {hy,..., hi} of heuristics , optimizing

different complexity measures.

E.qg.

h1 approximates the optimal solution within a factor of «

and runs in polynomial time.

3-c

Hybrid Algorithms

Aset H = {hy,..., hi} of heuristics , optimizing

different complexity measures.

E.qg.

h1 approximates the optimal solution within a factor of «

and runs in polynomial time.

ho solves the problem exactly but runs in subexponential
time (2°(")),

3-d

Hybrid Algorithms cont.

Hybrid Algorithms cont.

Aset H ={hq,...,h;} of heuristics , optimizing

different complexity measures.

4-a

Hybrid Algorithms cont.

Aset H ={hq,...,h;} of heuristics , optimizing

different complexity measures.

A selector S which on each instance selects in

polynomial time the best heuristic.

4-b

Hybrid Algorithms cont.

Hybrid Algorithms cont.

Defying Hardness: Some NP-Hard problems are known or
conjectured to be hard on several complexity measures

m,; separately.

5-a

Hybrid Algorithms cont.

Defying Hardness: Some NP-Hard problems are known or

conjectured to be hard on several complexity measures
m,; separately.
E.g. Cligue cannot be approximated within a factor of n°,

and cannot be solved in polynomial time, unless P=NP.

5-b

Hybrid Algorithms cont.

Defying Hardness: Some NP-Hard problems are known or
conjectured to be hard on several complexity measures

m,; separately.

E.g. Cligue cannot be approximated within a factor of n°,

and cannot be solved in polynomial time, unless P=NP.

There exist hybrid algorithms for NP-Hard problems
which for each h; (on the instances on which .S chooses
h; to be run) do strictly better than the corresponding

known hardness guarantees m,;.

5-c

Max Cut

Problem: Given a graph G, find a cut which maximizes the number of

edges crossing it.

Max Cut

Problem: Given a graph G, find a cut which maximizes the number of

edges crossing it.

Solvable exactly in O(2™/%) by Scott and Sorkin, 2003, or in O(2“™/3) by
Ryan Williams, 2004.

6-a

Max Cut

Problem: Given a graph G, find a cut which maximizes the number of

edges crossing it.

Solvable exactly in O(2™/%) by Scott and Sorkin, 2003, or in O(2“™/3) by
Ryan Williams, 2004.

Approximable within 0.87856 using SDP by Goemans and Williamson,
1995 and within 0.5 by Sahni and Gonzales, 1976 without using SDP.

6-b

Max Cut

Problem: Given a graph G, find a cut which maximizes the number of

edges crossing it.

Solvable exactly in O(2™/%) by Scott and Sorkin, 2003, or in O(2“™/3) by
Ryan Williams, 2004.

Approximable within 0.87856 using SDP by Goemans and Williamson,
1995 and within 0.5 by Sahni and Gonzales, 1976 without using SDP.

No better than 1/2-approximation is known without using SDP.

6-C

A Simple Hybrid Algorithm for Max Cut

A Simple Hybrid Algorithm for Max Cut

Find a maximum matching, V.

7-a

A Simple Hybrid Algorithm for Max Cut

Find a maximum matching, V.
If | M| < e,
try all 2°"" cuts of the vertices in M to find the maximum. Add the

vertices from the independent set V' — M so that the cut is maximized.

7-b

A Simple Hybrid Algorithm for Max Cut

Find a maximum matching, V.
If | M| < e,
try all 2°"" cuts of the vertices in M to find the maximum. Add the

vertices from the independent set V' — M so that the cut is maximized.
If | M| > 2,

for each edge in M, with probability 1/2 choose which of its endpoints

to put in A. Put the other endpoint in B:

7-C

A Simple Hybrid Algorithm for Max Cut

Find a maximum matching, V.
If | M| < e,
try all 2°"" cuts of the vertices in M to find the maximum. Add the

vertices from the independent set V' — M so that the cut is maximized.
If | M| > 2,
for each edge in M, with probability 1/2 choose which of its endpoints

to put in A. Put the other endpoint in B:

for each vertex v not covered by M, with probability 1/2 choose

whether to place it in A or B.

7-d

Max Cut cont.

Max Cut cont.
If | M| < e®,

M has at most em vertices, and the rest of the vertices form an
independent set /. Placing the vertices of / so that the cut is maximized,

given an arrangement of M is easy.

We get an exact solution in 0(257”) time.

8-a

Max Cut cont.
If | M| < e®,

M has at most em vertices, and the rest of the vertices form an
independent set /. Placing the vertices of / so that the cut is maximized,

given an arrangement of M is easy.
We get an exact solution in 0(25”‘) time.
Iif | M| > 2,

The probability that an edge not in M crosses the cut is 1/2. Hence

we get a cut of expected size at least (¢2) + 2 (m — &) = (3 + 5)m.

We get a (% -+ i)-approximation with no semidefinite programming.

8-b

The Longest Path Problem

The Longest Path Problem

Karger, Motwani and Ramkumar, 1993: Longest Path is hard to
(logn

g
approximate within 27 107)| unless NPC ﬂ5>ODTIME(20(”5)).

9-a

The Longest Path Problem

Karger, Motwani and Ramkumar, 1993: Longest Path is hard to

logn

approximate within 2° (s 107 unless NPC ﬂ5>ODTIME(20(”5)).

Bellman and Karp, 1962: Best known exact algorithm by dynamic
programming in O(2"); can be extended to 20(L) where L is the length
of the longest path.

9-b

The Longest Path Problem

Karger, Motwani and Ramkumar, 1993: Longest Path is hard to
(logn

approximate within 27 107)| unless NPC ﬂ5>0DTIME(20(”5)).

Bellman and Karp, 1962: Best known exact algorithm by dynamic
programming in O(2"); can be extended to 20(L) where L is the length
of the longest path.

We give a hybrid algorithm which for any /(n)
e either finds a path of length 7, or

e solves the Longest Path exactly in time2© (¢ 1og Llog 7).

9-c

The Longest Path Problem

Karger, Motwani and Ramkumar, 1993: Longest Path is hard to
(logn

approximate within 27 107)| unless NPC ﬂ5>ODTIME(20(”5)).

Bellman and Karp, 1962: Best known exact algorithm by dynamic
programming in O(2"); can be extended to 20(L) where L is the length
of the longest path.

We give a hybrid algorithm which for any /(n)

e either finds a path of length 7, or

e solves the Longest Path exactly in time2© (¢ 1og Llog 7).

Notice that for / = n./polylog(n) we get subexponential exact running

time and a polylog approximation.

9-d

A Path/Separator Lemma

10

A Path/Separator Lemma

Given any graph G and any £ > 0 there is a poly time algorithm
Path-Separator which either finds a path of length at least ¢ or a

1/2 — 1/2 separator of size at most /.

10-a

A Path/Separator Lemma

Given any graph G and any £ > 0 there is a poly time algorithm
Path-Separator which either finds a path of length at least ¢ or a

1/2 — 1/2 separator of size at most /.

1. Start from a node v and add vertices forming a path / until a node f

with no neighbors is reached.

10-b

A Path/Separator Lemma

Given any graph G and any £ > 0 there is a poly time algorithm
Path-Separator which either finds a path of length at least ¢ or a

1/2 — 1/2 separator of size at most /.

1. Start from a node v and add vertices forming a path / until a node f

with no neighbors is reached.

2. If P has length at least ¢, stop and output F.

10-c

A Path/Separator Lemma

Given any graph G and any £ > 0 there is a poly time algorithm
Path-Separator which either finds a path of length at least ¢ or a

1/2 — 1/2 separator of size at most /.

1. Start from a node v and add vertices forming a path / until a node f
with no neighbors is reached.

2. If P has length at least ¢, stop and output F.

3. Else, remove f from P and add it to A.
If |A| = n/2, stop and output P as a separator.

Otherwise, attempt to continue P with vertices from V' — P — A until
f with no neighbors is reached. Go to 2.

10-d

Tree Width

A tree decomposition of a graph (7 is a tree 1" and a bag collection

W = {Wi,..., W} such that

11

Tree Width

A tree decomposition of a graph (7 is a tree 1" and a bag collection

W ={Wy,...,Wp} such that
1 UL W = V(@)

11-a

Tree Width

A tree decomposition of a graph (7 is a tree 1" and a bag collection

W ={Wy,...,Wp} such that
1 UL W = V(@)

2. if (u,v) € E(G), then exists W, with u, v € W,

11-b

Tree Width

A tree decomposition of a graph (7 is a tree 1" and a bag collection

W ={Wy,...,Wp} such that
1 UB1 Wi = V(G)’
2. if (u,v) € E(G), then exists W, with u, v € W,

3. if j lies on a pathin 7" from ¢ to &, then WW; N W), € W,

11-c

Tree Width

A tree decomposition of a graph (7 is a tree 1" and a bag collection

W ={Wy,...,Wp} such that

1. UL, Wi = V(@)

2. if (u,v) € E(G), then exists W, with u, v € W,

3. if j lies on a pathin 7" from ¢ to &, then WW; N W), € W,

The width of a tree decomposition is the maximum size of a bag //;,
minus 1. The tree width of a graph (is the minimum width of a tree
decomposition of (5.

11-d

Towards a Hybrid Algorithm

12

Towards a Hybrid Algorithm

A result by Matousek and Thomas implies: if (G has treewidth at most /,
then there is a O(L**1n) algorithm to find a path of length L in G, or to
determine that no such exists.

12-a

Towards a Hybrid Algorithm

A result by Matousek and Thomas implies: if (G has treewidth at most /,
then there is a O(L**1n) algorithm to find a path of length L in G, or to
determine that no such exists.

We show: If G has a separator decomposition with separator size ¢, then
G has a tree decomposition of width at most O (£ log 7).

12-b

Towards a Hybrid Algorithm

A result by Matousek and Thomas implies: if (G has treewidth at most /,
then there is a O(L**1n) algorithm to find a path of length L in G, or to
determine that no such exists.

We show: If G has a separator decomposition with separator size ¢, then
G has a tree decomposition of width at most O (£ log 7).

VO O _ LY LY
QI 1Ol O] O

12-c

Hybrid Algorithm for Longest Path

13

Hybrid Algorithm for Longest Path

1. Run Path-Separator algorithm on (& and /.

13-a

Hybrid Algorithm for Longest Path

1. Run Path-Separator algorithm on (& and /.

2. If a path of length ¢ is found, return it.

13-b

Hybrid Algorithm for Longest Path

1. Run Path-Separator algorithm on (& and /.
2. If a path of length / is found, return it.

3. Otherwise the algorithm returns a separator and two disjoint parts (&,

and G’ of size at most n/2.

13-c

Hybrid Algorithm for Longest Path

. Run Path-Separator algorithm on (& and /.
. If a path of length ¢ is found, return it.

. Otherwise the algorithm returns a separator and two disjoint parts (&,

and G’ of size at most n/2.

. Recurse on (&, and (& to obtain either a path of length ¢, or a

separator decomposition.

13-d

Hybrid Algorithm for Longest Path

. Run Path-Separator algorithm on (& and /.
. If a path of length ¢ is found, return it.

. Otherwise the algorithm returns a separator and two disjoint parts (&,

and G’ of size at most n/2.

. Recurse on (&, and (& to obtain either a path of length ¢, or a

separator decomposition.

. Run the Matousek and Thomas algorithm on the tree decomposition
obtained from the separator tree, on successive powers of 2 for the
path length, to obtain the longest path in O(2€ log L log %).

13-e

Graph Minors and Separators

14

Graph Minors and Separators

A subgraph M is an H—minor of (5 if

14-a

Graph Minors and Separators

A subgraph M is an H —minor of GG if

1. the vertices of M can be partitioned into |V (H)| parts
Aq, ..., Ay called supernodes, A; corresponding to
v; € V(H), so that

14-b

Graph Minors and Separators

A subgraph M is an H —minor of GG if

1. the vertices of M can be partitioned into |V (H)| parts

Aq, ..., Ay called supernodes, A; corresponding to
v; € V(H), so that

2. if (v;,v;) € E(H), then there is an edge between A; and A; in M.

14-c

Graph Minors and Separators

A subgraph M is an H —minor of GG if

1. the vertices of M can be partitioned into |V (H)| parts

Aq, ..., Ay called supernodes, A; corresponding to
v; € V(H), so that

2. if (v;,v;) € E(H), then there is an edge between A; and A; in M.

S'is a a — separator of G if V() can be partitioned into A, B, S so that

14-d

Graph Minors and Separators

A subgraph M is an H —minor of GG if

1. the vertices of M can be partitioned into |V (H)| parts

Aq, ..., Ay called supernodes, A; corresponding to
v; € V(H), so that

2. if (v;,v;) € E(H), then there is an edge between A; and A; in M.

S'is a a — separator of G if V() can be partitioned into A, B, S so that

1. there are no edges between A and B, and

14-e

Graph Minors and Separators

A subgraph M is an H —minor of GG if

1. the vertices of M can be partitioned into |V (H)| parts

Aq, ..., Ay called supernodes, A; corresponding to
v; € V(H), so that

2. if (v;,v;) € E(H), then there is an edge between A; and A; in M.

S'is a a — separator of G if V() can be partitioned into A, B, S so that

1. there are no edges between A and B, and

2. |A| < |B| < alV(G)|.

14-f

Graph Minors and Separators

A subgraph M is an H —minor of GG if

1. the vertices of M can be partitioned into |V (H)| parts

Aq, ..., Ay called supernodes, A; corresponding to
v; € V(H), so that

2. if (v;,v;) € E(H), then there is an edge between A; and A; in M.

S'is a a — separator of G if V() can be partitioned into A, B, S so that
1. there are no edges between A and B, and
2. |A| < |B| < a|V(G)].

Often one says S isa 1/3 — 2/3 — separator, meaning that in the worst

case |A| = |V (G)| and | B| = 2|V (G)].

14-g

A More General Minor — Separator Theorem

The following is a generalization of Plotkin, Rao, Smith, 1994

Given graphs (&, H and some ¢ > 1, there is a polynomial time algorithm
which

15

A More General Minor — Separator Theorem

The following is a generalization of Plotkin, Rao, Smith, 1994

Given graphs (&, H and some ¢ > 1, there is a polynomial time algorithm
which

e either finds an H-minor of G of size O((hlogn), where
h=|E(H)|, or

15-a

A More General Minor — Separator Theorem

The following is a generalization of Plotkin, Rao, Smith, 1994

Given graphs (&, H and some ¢ > 1, there is a polynomial time algorithm
which

e either finds an H-minor of G of size O((hlogn), where
h=|E(H)|, or

o findsa 1/3 — 2/3-separator S of G of size O(7 + (hlogn).

15-b

A More General Minor — Separator Theorem

The following is a generalization of Plotkin, Rao, Smith, 1994

Given graphs (&, H and some ¢ > 1, there is a polynomial time algorithm

which

e either finds an H-minor of G of size O((hlogn), where
h=|E(H)|, or

o findsa 1/3 — 2/3-separator S of G of size O(7 + (hlogn).

For large values of £ the above can be generalized to finding a minor, or
finding a 1/2 — 1/2-separator.

15-c

A More General Minor-Separator Theorem

16

A More General Minor-Separator Theorem

Fix a parameter { > 1.

16-a

A More General Minor-Separator Theorem

Fix a parameter { > 1.

We build a minor M/ and a set B with M/ N B = () and B having few
neighborsin W = (V(G) — M — B).

16-b

A More General Minor-Separator Theorem

Fix a parameter ¢ > 1.

We build a minor M/ and a set B with M/ N B = () and B having few
neighborsin W = (V(G) — M — B).

In the end either)V will be an H -minor of the desired size, or B will be

the larger partition of V' with S = N(B) becoming the separator.

16-c

A More General Minor-Separator Theorem

Fix a parameter ¢ > 1.

We build a minor M/ and a set B with M/ N B = () and B having few
neighborsin W = (V(G) — M — B).

In the end either)V will be an H -minor of the desired size, or B will be

the larger partition of V' with S = N(B) becoming the separator.

At each stage M is an H’-minor of G where H’ is an induced subgraph
of H.

16-d

A More General Minor-Separator Theorem

Fix a parameter ¢ > 1.

We build a minor M/ and a set B with M/ N B = () and B having few
neighborsin W = (V(G) — M — B).

In the end either)V will be an H -minor of the desired size, or B will be

the larger partition of V' with S = N(B) becoming the separator.

At each stage M is an H’-minor of G where H’ is an induced subgraph
of H.

Bisasubsetof V(G), BN M =0,and |[N(B)NW| < %.

16-e

A More General Minor-Separator Theorem

17

A More General Minor-Separator Theorem

At each stage we look at a vertex v from H — H' and its neighbors

Ui, ..., u,in H'.

17-a

A More General Minor-Separator Theorem

At each stage we look at a vertex v from H — H' and its neighbors
Ui, ..., u,in H'.

If any of the supernodes in M/ corresponding to the u,; have no neighbors
in 11/, we move them to B (updating M and thus H").

17-b

A More General Minor-Separator Theorem

At each stage we look at a vertex v from H — H' and its neighbors
Ui, ..., u,in H'.

If any of the supernodes in M/ corresponding to the u,; have no neighbors
in 11/, we move them to B (updating M and thus H").

If 5 became large, we have found a separator.

17-c

A More General Minor-Separator Theorem

At each stage we look at a vertex v from H — H' and its neighbors
Ui, ..., u,in H'.

If any of the supernodes in M/ corresponding to the u,; have no neighbors
in 11/, we move them to B (updating M and thus H").

If 5 became large, we have found a separator.

Otherwise, we pick a node w in 1/ and start doing a two-stage BFS in 11/,

17-d

A More General Minor-Separator Theorem

At each stage we look at a vertex v from H — H' and its neighbors

Ui, ..., u,in H'.

If any of the supernodes in M/ corresponding to the u,; have no neighbors
in 11/, we move them to B (updating M and thus H").

If 5 became large, we have found a separator.
Otherwise, we pick a node w in 1/ and start doing a two-stage BFS in 11/,

This BFS finds the new supernode corresponding to v, or more nodes to

add to B. If 11/ becomes smaller than 2n /3, we have found a separator.

17-e

Two Stage BFSin W

Recall the parameter / > 1. Let R = {w}.

18

Two Stage BFSin W/

Recall the parameter / > 1. Let R = {w}.

1. Starting from R we do two steps of BFS, setting ' = N (N (R)).

18-a

Two Stage BFSin W/
Recall the parameter / > 1. Let R = {w}.
1. Starting from R we do two steps of BFS, setting ' = N (N (R)).

2. If both R did not expand too much (|7 < |R|(1 + 1/£)), and

W — R did not shrink too much (W — R| < (1 + 1/6)|W — T,
stop.

18-b

Two Stage BFSin W/

Recall the parameter / > 1. Let R = {w}.
1. Starting from R we do two steps of BFS, setting ' = N (N (R)).

2. If both R did not expand too much (|7 < |R|(1 + 1/£)), and

W — R did not shrink too much (W — R| < (1 4+ 1/0)|W =T
stop.

),

3. Otherwise, set /£ = ' and continue from 2.

18-c

Two Stage BFSin W/

Recall the parameter / > 1. Let R = {w}.

1.

2.

Starting from R we do two steps of BFS, setting 7' = N (N (R)).

If both IR did not expand too much (|T'| < |R|(1 + 1/£)), and

W — R did not shrink too much (W — R| < (1 4+ 1/0)|W =T
stop.

),

. Otherwise, set £ = 1" and continue from 2.

If in the end X contains a neighbor n,; of each u;, return a shortest
path tree from all the n; to w. This is the new supernode for vertex v
and M isa H' U {v}-minor.

18-d

Two Stage BFSin W/

Recall the parameter / > 1. Let R = {w}.

1.

2.

Starting from R we do two steps of BFS, setting 7' = N (N (R)).

If both IR did not expand too much (|T'| < |R|(1 + 1/£)), and
W — R did not shrink too much (W — R| < (1 4+ 1/0)|W =T
stop.

),

Otherwise, set R = I’ and continue from 2.

If in the end X contains a neighbor n,; of each u;, return a shortest
path tree from all the n; to w. This is the new supernode for vertex v
and M isa H' U {v}-minor.

Otherwise, the smaller of R’ = R U N(R),and R" =V — R’ has
few neighbors in W (| N (R')| < ‘}%‘ and | V(R")| < ‘RT;/‘).

We add it to 5.

18-e

Minor or Separator

19

Minor or Separator

If we find a minor M, its size is O(¢hlogn).

19-a

Minor or Separator

If we find a minor M, its size is O(/hlogn).

Why?: When a supernode corresponding to v € V' (H) is added it has
size at most O(degy (v)l logn) since the BFS tree has depth at most
210g (1119 n < 2€1log n, and since there are at most degy (v)

neighbors to be covered.

19-b

Minor or Separator

If we find a minor M, its size is O(¢hlogn).

Why?: When a supernode corresponding to v € V' (H) is added it has
size at most O(degy (v)l logn) since the BFS tree has depth at most
210g (1119 n < 2€1log n, and since there are at most degy (v)

neighbors to be covered.

Once a supernode is added, its size is never changed, unless the

supernode is removed.

19-c

Minor or Separator

If we find a minor M, its size is O(/hlogn).

Why?: When a supernode corresponding to v € V' (H) is added it has
size at most O(degy (v)l logn) since the BFS tree has depth at most
210g (1119 n < 2€1log n, and since there are at most degy (v)

neighbors to be covered.

Once a supernode is added, its size is never changed, unless the

supernode is removed.

In the end the size of the minor is

O ey degu(v)llogn) = O(hllogn) for h = |E(H)|.

19-d

Minor or Separator

If we find a minor M, its size is O(/hlogn).

Why?: When a supernode corresponding to v € V' (H) is added it has
size at most O(degy (v)l logn) since the BFS tree has depth at most
210g (1119 n < 2€1log n, and since there are at most degy (v)

neighbors to be covered.

Once a supernode is added, its size is never changed, unless the

supernode is removed.

In the end the size of the minor is

O ey degu(v)llogn) = O(hllogn) for h = |E(H)|.

The separator consists of the (unfinished) minor A/ and of the neighbors
of Bin IV. Since | Ny (B)| < |B|/¢ < 22, the size of the separator is
O(n/¢ + Chlogn).

19-e

A More General Minor-Separator Theorem

To summarize: Given graphs (G, H and some ¢ > 1, there is a polynomial

time algorithm which

20

A More General Minor-Separator Theorem

To summarize: Given graphs (G, H and some ¢ > 1, there is a polynomial

time algorithm which

e either finds an H-minor of G of size O((hlogn), where
h=|E(H)| or

20-a

A More General Minor-Separator Theorem

To summarize: Given graphs (G, H and some ¢ > 1, there is a polynomial

time algorithm which

e either finds an H-minor of G of size O((hlogn), where
h=|E(H)| or

o findsa 1/3 — 2/3-separator S of G of size O(7 + (hlogn).

20-b

A More General Minor-Separator Theorem

To summarize: Given graphs (G, H and some ¢ > 1, there is a polynomial

time algorithm which

e either finds an H-minor of G of size O((hlogn), where
h=|E(H)| or

o findsa 1/3 — 2/3-separator S of G of size O(7 + (hlogn).

For large values of £ the above can be generalized to finding a minor, or
finding a 1/2 — 1/2-separator.

20-c

A More General Minor-Separator Theorem

To summarize: Given graphs (G, H and some ¢ > 1, there is a polynomial

time algorithm which

e either finds an H-minor of G of size O((hlogn), where
h=|E(H)| or

o findsa 1/3 — 2/3-separator S of G of size O(7 + (hlogn).

For large values of £ the above can be generalized to finding a minor, or
finding a 1/2 — 1/2-separator.
As in the case of Path-Separator we can obtain a separator tree, or an

H -minor.

20-d

Minimum Bandwidth

Problem: Given a graph (&, give a permutation 7 on the vertices of G so
that the maximum edge stretch max(; jep(q) |7(2) — 7(7)] is

minimized.

Best approximation: O (log® n+/log logn) by Dunagan and Vempala,
2001, O(\/%log n) by Avrim Blum et al. where B is the optimum
bandwidth

Best Exact Algorithm: O~(10”) by Feige and Killian, 2000

21

Expanders

22

Expanders

For asubset S C V, let N(.5) be S’s neighbors.

22-a

Expanders

For asubset S C V, let N(.5) be S’s neighbors.

G = (V, E) is an c-expander iff for every S C V with |.S| < |[V|/2 we
have |[S U N(S)| > (1 +¢)|S].

That is, S’s set of neighbors consists of a constant fraction of new nodes.

22-b

Expanders

For asubset S C V, let N(.5) be S’s neighbors.

G = (V, E) is an c-expander iff for every S C V with |.S| < |[V|/2 we
have |[S U N(S)| > (1 +¢)|S].

That is, S’s set of neighbors consists of a constant fraction of new nodes.

A graph is d-regular if all its vertices have degree d.

22-c

Expanders

For asubset S C V, let N(.5) be S’s neighbors.

G = (V, E) is an c-expander iff for every S C V with |.S| < |[V|/2 we
have |[S U N(S)| > (1 +¢)|S].

That is, S’s set of neighbors consists of a constant fraction of new nodes.

A graph is d-regular if all its vertices have degree d.

o

2
4

Gabber and Galil show how to construct 5—regular ()—expanders

efficiently.

22-d

Graphs with Expander Minors have Large Bandwidth

23

Graphs with Expander Minors have Large Bandwidth

Lemma. Let H be an c-expander on h nodes for some constant ¢ > 0.

Let (& contain an /-minor M. Then the minimum bandwidth of (is at

least Q2(h).

23-a

Graphs with Expander Minors have Large Bandwidth

Lemma. Let H be an c-expander on h nodes for some constant ¢ > 0.

Let (& contain an /-minor M. Then the minimum bandwidth of (is at

least Q2(h).

Pi. Let |V(M)| = k.

23-b

Graphs with Expander Minors have Large Bandwidth

Lemma. Let H be an c-expander on & nodes for some constant £ > 0.

Let (& contain an /-minor M. Then the minimum bandwidth of (is at

least (2(h).

Pf. Let [V(M)| = k.

Let 7 be a linear arrangement of the nodes of /.

23-c

Graphs with Expander Minors have Large Bandwidth

Lemma. Let H be an e-expander on & nodes for some constant £ > 0.

Let (& contain an /-minor M. Then the minimum bandwidth of (is at

least (2(h).

Pf. Let [V (M)| = k.
Let 7 be a linear arrangement of the nodes of /.

Let h; g and hry g be the number of supernodes completely contained
among the first k/2 nodes (respectively, last /~c/2 nodes) in 7.

23-d

Graphs with Expander Minors have Large Bandwidth

Lemma. Let H be an e-expander on & nodes for some constant £ > 0.

Let (& contain an /-minor M. Then the minimum bandwidth of (is at

least (2(h).

Pf. Let [V (M)| = k.
Let 7 be a linear arrangement of the nodes of /.

Let h; g and hry g be the number of supernodes completely contained
among the first k/2 nodes (respectively, last /~c/2 nodes) in 7.

Leths = h — hrgs — hpys.

23-e

Lemma Proof cont.

24

Lemma Proof cont.

If hg > € - h for some € > 0, then the bandwidth is at least ¢ - h:

24-a

Lemma Proof cont.

If hg > € - h for some £ > 0, then the bandwidth is at least € - h:

Each supernode is disjoint from other supernodes and is connected, so the arrangement

has € - h nodes in the first half that connect to distinct nodes in the second half.

Any arrangement with this property has bandwidth at least € - h.

24-b

Lemma Proof cont.

If hg > € - h for some £ > 0, then the bandwidth is at least € - h:

Each supernode is disjoint from other supernodes and is connected, so the arrangement

has € - h nodes in the first half that connect to distinct nodes in the second half.

Any arrangement with this property has bandwidth at least € - h.

fhrps < h/3orhrps < h/3then hg > 2h/3, so the bandwidth is £2(/) in this

case.

24-d

Lemma Proof cont.

If hg > € - h for some £ > 0, then the bandwidth is at least € - h:

Each supernode is disjoint from other supernodes and is connected, so the arrangement

has € - h nodes in the first half that connect to distinct nodes in the second half.

Any arrangement with this property has bandwidth at least € - h.

fhrps < h/3orhrps < h/3then hg > 2h/3, so the bandwidth is £2(/) in this

case.

If hrrs > h/3, then the supernodes contained in the first half have at least £/ /3

supernodes as neighbors, by the expansion condition. Thus either

24-e

Lemma Proof cont.

If hg > € - h for some £ > 0, then the bandwidth is at least € - h:

Each supernode is disjoint from other supernodes and is connected, so the arrangement

has € - h nodes in the first half that connect to distinct nodes in the second half.

Any arrangement with this property has bandwidth at least € - h.

fhrps < h/3orhrps < h/3then hg > 2h/3, so the bandwidth is £2(/) in this

case.

If hrrs > h/3, then the supernodes contained in the first half have at least £/ /3

supernodes as neighbors, by the expansion condition. Thus either

e hg > eh/6, which by the above implies the bandwidth is at least £ - h /6, or

24-f

Lemma Proof cont.

If hg > € - h for some £ > 0, then the bandwidth is at least € - h:

Each supernode is disjoint from other supernodes and is connected, so the arrangement

has € - h nodes in the first half that connect to distinct nodes in the second half.

Any arrangement with this property has bandwidth at least € - h.

fhrps < h/3orhrps < h/3then hg > 2h/3, so the bandwidth is £2(/) in this

case.

If hrrs > h/3, then the supernodes contained in the first half have at least £/ /3

supernodes as neighbors, by the expansion condition. Thus either
e hg > eh/6, which by the above implies the bandwidth is at least £ - h /6, or

e there are at least €/ /6 first half neighbors in the second half, in which case there are
€h/6 edges crossing from nodes in the first half to distinct nodes in the second half,

so0 again the bandwidth is at least (2(h).

24-g

Hybrid Algorithm Idea

25

Hybrid Algorithm Idea

e Either find a large constant degree expander as a minor of (5.

This guarantees that the bandwidth of (5 is large, and hence the
O(\/%log n)—-approximation algorithm by Avrim et al. gives a good

approximation.

25-a

Hybrid Algorithm Idea

e Either find a large constant degree expander as a minor of (5.

This guarantees that the bandwidth of (5 is large, and hence the
O(\/%log n)—-approximation algorithm by Avrim et al. gives a good

approximation.

e Otherwise use the separator tree to get a good exact algorithm for
bandwidth.

25-b

How to use the separator tree to solve Minimum
Bandwidth

26

How to use the separator tree to solve Minimum
Bandwidth

At each separator node we specify:

26-a

How to use the separator tree to solve Minimum
Bandwidth

At each separator node we specify:

e a log n bit index for the position of each separator node in the current

allowed set of indices,

26-b

How to use the separator tree to solve Minimum
Bandwidth

At each separator node we specify:

e a log n bit index for the position of each separator node in the current

allowed set of indices,

e a length n bit string specifying whether left or right subtree nodes go at
the corresponding position. We recurse on the left and right subtree

separately, using the positions specified by the corresponding bits.

26-C

How to use the separator tree to solve Minimum
Bandwidth, cont.

27

How to use the separator tree to solve Minimum
Bandwidth, cont.

For example, for { = 3, n = 5, we may specify (0, 2,4) and (00111). If the allowed
positions are 3,6, 7,9, 10, then

27-a

How to use the separator tree to solve Minimum
Bandwidth, cont.

For example, for { = 3, n = 5, we may specify (0, 2,4) and (00111). If the allowed
positions are 3,6, 7,9, 10, then

e the first, second and third separator nodes are in positions 3, 7, and 10 respectively,

27-b

How to use the separator tree to solve Minimum
Bandwidth, cont.

For example, for { = 3, n = 5, we may specify (0, 2,4) and (00111). If the allowed
positions are 3,6, 7,9, 10, then

e the first, second and third separator nodes are in positions 3, 7, and 10 respectively,

e a node from the left subtree in position 6, a node from the right subtree in position 9.

27-c

How to use the separator tree to solve Minimum
Bandwidth, cont.

For example, for { = 3, n = 5, we may specify (0, 2,4) and (00111). If the allowed
positions are 3,6, 7,9, 10, then

e the first, second and third separator nodes are in positions 3, 7, and 10 respectively,
e a node from the left subtree in position 6, a node from the right subtree in position 9.

e The recursive call is for position 6 on the left and position 9 on the right.

27-d

How to use the separator tree to solve Minimum
Bandwidth, cont.

For example, for { = 3, n = 5, we may specify (0, 2,4) and (00111). If the allowed
positions are 3,6, 7,9, 10, then

e the first, second and third separator nodes are in positions 3, 7, and 10 respectively,
e a node from the left subtree in position 6, a node from the right subtree in position 9.

e The recursive call is for position 6 on the left and position 9 on the right.

At the end, the best linear arrangement is returned.

27-e

How to use the separator tree to solve Minimum
Bandwidth, cont.

For example, for { = 3, n = 5, we may specify (0, 2,4) and (00111). If the allowed
positions are 3,6, 7,9, 10, then

e the first, second and third separator nodes are in positions 3, 7, and 10 respectively,
e a node from the left subtree in position 6, a node from the right subtree in position 9.

e The recursive call is for position 6 on the left and position 9 on the right.

At the end, the best linear arrangement is returned.

The recurrence for the running time is (assuming a 1/2-1/2-separator):

T(n) < 2"FH18™ . 27 (n/2) + poly(n)

27-f

How to use the separator tree to solve Minimum
Bandwidth, cont.

For example, for { = 3, n = 5, we may specify (0, 2,4) and (00111). If the allowed
positions are 3,6, 7,9, 10, then

e the first, second and third separator nodes are in positions 3, 7, and 10 respectively,
e a node from the left subtree in position 6, a node from the right subtree in position 9.

e The recursive call is for position 6 on the left and position 9 on the right.

At the end, the best linear arrangement is returned.

The recurrence for the running time is (assuming a 1/2-1/2-separator):

T(n) < 2"FH18™ . 27 (n/2) + poly(n)

T(n) = 6(4” . nt1oe(n/0) “and if £ is chosen to be small, say of Tog lgg oa)),
T(n) = 4n+on),

27-9

Conclusion

28

Conclusion

We introduced hybrid algorithms.

28-a

Conclusion

We introduced hybrid algorithms.

We gave a hybrid algorithm for Longest Path which either finds a path of

length ¢, or solves the problem exactly in time 2¢108 Llog 7

28-b

Conclusion
We introduced hybrid algorithms.

We gave a hybrid algorithm for Longest Path which either finds a path of
length ¢, or solves the problem exactly in time 2¢108 Llog 7

For / = o(lognlgg logn) we obtain either a log n log log n approximation,

or a subexponential 2°(™) exact solution. This beats the known

conventional algorithms on both accounts. It also beats the
(logn

Inapproximability (20 log 10gn)) by a huge margin.

28-c

Conclusion

We introduced hybrid algorithms.

We gave a hybrid algorithm for Longest Path which either finds a path of
length ¢, or solves the problem exactly in time 2¢108 Llog 7

For / = O(IOgnlgLg logn) we obtain either a log n log log n approximation,
or a subexponential 2°(™) exact solution. This beats the known

conventional algorithms on both accounts. It also beats the

logn

Inapproximability (20(10g 10gn)) by a huge margin.

We gave a hybrid algorithm for Minimum Bandwidth which either
approximates within a:(n) log™” n log log n (for unbounded av(n)) or
solves exactly in 477°(") time. This also beats the best known

conventional algorithms on both accounts.

28-d

Thank You!

29

