
On the crossing number of K(9,9)
SURF 2002 Final Report

Virginia Vassilevska
Mentor: Richard Wilson

10/1/02

Abstract

Because of the large success of very large scale integration (VLSI)
technology many researchers have focused on optimizing the VLSI circuit
layout. One of the major tasks is minimizing the number of wire cross-
ings in a circuit, as this greatly reduces the chance of cross-talk in long
crossing wires carrying the same signal and also allows for faster operation
and less power dissipation. The question of finding the minimal number
of crossing wires can be abstracted to a graph theoretical problem of de-
termining the minimal number of edge crossings in a drawing of a given
graph. The crossing number problem is especially interesting for complete
bipartite graphs, for which Zarankiewicz conjectured a formula in 1954
that still remains unproven. In 1993 Woodall used a computer program
to solve the smallest then unknown case - that of K(7, 7) thus proving the
Zarankiewicz conjecture for K(m, n) with min(m, n) ≤ 8. The smallest
now unsolved case is that of K(9, 9). The purpose of this project is to
write a program that reproduces Woodall’s results and further checks the
conjecture for K(9, 9).

1 Introduction

Imagine you are an electrician and have multiple wires to connect but the
properties of the device you are building force you to minimize the number of
crossings between wires. Or, imagine you are a civil engineer and are planning
the construction of highways and you care that they cross and wind about each
other at as few places as possible. In both cases we are interested in the minimal
number of crossing points. Graph theory is an area of mathematics that provides
us with the tools to approach problems such as this one.

1.1 Some Definitions

Graphs are abstract mathematical objects composed of points, called vertices,
and lines, called edges, connecting the vertices. We can represent our wires

1

or bridges as edges in graphs and can ask ourselves: What are the crossing
numbers of these graphs. The crossing number of a graph G is defined as the
minimal number of crossings of edges one gets by drawing G in the plane. It is
assumed that the edges in a drawing are nonselfintersecting and that every two
edges have at most one point in common: either a common vertex or a crossing.

For many applications (such as in VLSI circuit design) we are particularly
interested in the crossing numbers of the so called bipartite graphs. A complete
bipartite graph K(m,n) is a graph with two subsets M and N of its vertex set
V , so that M and N are disjoint, their union is the whole V , there are no edges
among vertices inside any of the two sets, yet each vertex in M is connected
by a unique edge to each vertex in N , and vice versa. A bipartite graph is a
subgraph of a complete bipartite graph.

1.2 Zarankiewicz’ Conjecture

In 1954 Zarankiewicz proposed a formula for the crossing number of a complete
bipartite graph:

crK(m,n) = bm
2
cbm− 1

2
cbn

2
cbn− 1

2
c (1)

It can be shown that crK(m,n) ≤ Z(m)Z(n), where Z(m) = bm
2 cb

m−1
2 c

is the Zarankiewicz number. To see this, arrange the m and n vertices along
the x- and y-axis respectively with half of each set on each side of the origin.
Then connect them with straight lines (Fig. 1). This arrangement is due to
Zarankiewicz [5]. It gives Z(n)Z(m) as an upper bound for the crossing number
of a complete bipartite graph. Except for some special cases, nobody has yet
been able to prove that this is also a lower bound. In 1993 it was known that
Zarankiewicz’ conjecture holds for all K(m,n) with min(m,n) ≤ 6. In that
year D.R. Woodall published his result [1] that the conjecture also holds for
K(7, 7), thus showing that it holds in fact for all K(m,n) with min(m,n) ≤ 8.
This was one of the greatest achievements since 1969 when Kleitman [6] showed
that Zarankiewicz’ conjecture applies to K(5, n) for all n.

1.3 What Woodall Used

1.3.1 Some Theorems

In the development of his program Woodall used three theorems that were
known about crossing numbers of bipartite graphs:

Theorem 1 Every G = K(m,n) with crG = k contains a drawing of K(m −
1, n) with a number of crossings cr ≤ k(m−2)

m .

Theorem 2 If m is even and the Zarankiewicz’ conjecture holds for K(m −
1, n), then it holds for K(m,n).

2

Figure 1: The drawing of K(5, 5) that shows that crK(5, 5) ≤ Z(5)Z(5) = 16.

Theorem 3 If m and n are odd and m′ < m is even, such that the Zarankiewicz’
conjecture holds for K(m′ + 1, n) and K(m − m′, n), then in any drawing of
K(m,n) that includes a drawing of K(m′, n) with Z(m′)Z(n) or fewer cross-
ings there are at least Z(m)Z(n) crossings.

The second theorem is particularly useful since it means that one only needs
to consider the cases in which m and n are both odd. The third theorem means
that if K(m,n) is to be a counterexample to the Zarankiewicz’ conjecture, then
in some drawing all K(m′, n) subgraphs (such that m′ is even and the conjecture
holds for K(m′+1, n) and K(m−m′, n)) have more than Z(m′)Z(n) crossings.
In particular this means that if K(5, 5) was to be a counterexample, then, since
the conjecture holds for K(3, 5), there exists a drawing of the graph so that all
K(2, 5) subgraphs have at least one crossing.

1.3.2 The cyclic order graph COn

Consider a drawing of K(m,n) and take a vertex v ∈ M . Vertex v is adjacent
to all vertices in N , and going clockwise one can order them according to which
edge leaves v when. Suppose that we have a drawing of K(2, 3) such as in
(Fig. 2). Then if the vertices in N are numbered one can give the ordering
using their numbers: 213 in the case of v in the figure.

Now suppose there is a crossing point P between two edges ax and by in a
bipartite graph, where a, b ∈ M and x, y ∈ N . If there are no crossings on
the segments aP and bP , then one can open out the crossing so that there is

3

Figure 2: Vertex v here has an ordering of the edges 213 and vertex u has an
ordering 231.

no crossing point anymore and no more crossings have been created(Fig. 3).
When this is done, the cyclic ordering of one of the vertices a or b is changed by
switching x and y. Thus, in attempting to planarize a graph, one switches the
places of digits in the orderings corresponding to the elements of M . It is then
useful to define the cyclic order graph COn: this is a graph whose vertices are
the (n−1)! cyclic orderings of n elements, and in which two vertices are adjacent
if and only if one can be obtained from the other by switching two digits. COn is
vertex-transitive, n-regular, and when n is odd, bipartite. If a ∈ V (COn) then
ā is the reverse ordering of a, called the antipode. The ab-antipath is defined
as the path from a to b̄ in COn. The distance between two vertices is just the
smallest number of edges in a path between them and the antidistance d̄(a, b) of
a and b is the distance between a and b̄ or between b and ā. M is an (m,n) set
if |M | = m and if its elements are all in V (COn). The sum of the antidistances
between all pairs of elements of an (m,n) set M is called the antisum Ā(M).

The reason behind the importance of the antidistance function lies in the
fact that if one has a drawing of K(2, n) on sets {A,B} and Vn, such that
the clockwise orders of edges leaving A and B respectively are a and b, then
cr(drawing) ≥ d̄(a, b) [1]. Now, if one has K(m,n), a lower bound for its
crossing number is the sum of the crossing numbers of all K(2, n) subgraphs,
which is greater than or equal to the antisum of the corresponding (m,n) set.
This antisum is an example for a lobspacron function: a function that assigns to
each (m,n) set an integer that is a lower bound for and has the same parity as
the crossing number of any good drawing corresponding to the set. The fact that
the antisum has the same parity as the crossing number of the corresponding
K(m,n) is based on the fact that for a K(2, n) we have that cr(drawing) ≡
d̄(a, b) (mod 2) [1].

4

Figure 3: The crossing is opened up and the order of x and y in the ordering of
b is changed.

Woodall also proves the following two theorems which complete the theoretical
preparation for his program:

Theorem 4 (a) If a ∈ V (COn), then d(a, ā) = Z(n).
(b) Every (3, n) set has antisum at least Z(n).
(c) If m and n are both odd, then the antisum of a (m,n) set is odd when
m ≡ n ≡ 3 (mod 4) and even otherwise.

Theorem 5 Let m and n be odd integers and m′ < m be even so that every
(m′ + 1, n)-set has antisum at least Z(m′ + 1)Z(n) and every (m − m′, n)-set
has antisum at least Z(m−m′)Z(n). Then if an (m,n)-set contains an (m′, n)
subset with antisum Z(m′)Z(n) or less, it has antisum at least Z(m)Z(n).

2 The Program

2.1 General Principles

Because of the way it was constructed, Dr.Woodall’s program was designed to
handle (m,n) sets with n ≤ 7. In order to make it possible to consider larger
sets, we wrote a new program, which is based mostly on Woodall’s ideas, yet is
quite different in its structure from Woodall’s program. The main goal of the
program is to check whether there exists a (m,n) set with antisum smaller than
Z(m)Z(n). Since considering all ((m − 1)!)n (m,n)-sets is clearly impractical
(this number is roughly 3× 1041 for (9,9)), we want to limit the number of sets
we look at. There are several types of isomorphisms between the sets. The

5

antisum of a set is invariant under reordering of the elements, under applying
an element of Sn to all of the elements simultaneously, and under taking the
inverses of all of its elements. Under those types of isomorphism, the set of
(m,n) sets is subdivided into several isomorphism classes. We want to find
one representative of each isomorphism class such that its antisum is less than
Z(m)Z(n). Let the lobspacron function f we use be the antisum. We pick our
representative abcde... according to the following two criteria:

1. it minimizes the sequence of lobspacrons f(abcde...), f(abcd...), f(abc...),
. . . , f(ab)

2. it is the lexicographically smallest among the ones satisfying condition 1.

When we search for class representatives we can take into account theorems
1 and 4. Then we have certain bounds for each set abcd..., fMAX(k) for a set w
of size k: if w is a subset of the representative we are looking for, then f(w) ≤
fMAX(k). From theorems 1 and 4 we have such a bound for all 2 ≤ k ≤ m.
The bounds for (9,9) are {254, 197, 146, 104, 68, 40, 20, 6} where 254 is the value
for k = 9 and 6 for k = 2.

We call each (k, n) set a Word of length k consisting of Letters of length n.
The search for class representatives proceeds constructively. We start from the
smallest lexicographically Letter 012345... and add a second Letter. At each
stage after a Letter is added to the current Word of length l two things are
checked: whether f(new word) ≤ fMAX(l+1) (check1) and whether there is no
Word isomorphic to it that would be a better representative according to our
criteria (check2).

2.2 Some Details

During the course of the project various versions of check1 and check2 were
designed. I will describe the current best versions.

2.2.1 check1

The program maintains a matrix of the antidistance values of all pairs of Letters
in the current Word. When check1 checks whether the antisum of the current
Word does not exceed the bound fMAX , it has to calculate all of the antidis-
tances and when it does it updates the matrix. If the current Word is abcd...,
the first row starting from the first column consists of all antidistances involving
a. The second row starting from the second column contains all antidistances
involving b, except for ab. The third row starting from the third column contains
all antidistances involving c except for the ones in the second column, and so
on. The entries in the zeroth row starting from the first column are the sums of
the entries in that column, the entries in the zeroth column are the sums of the
entries in the respective rows, and the (0, 0) entry is the sum of all antidistances
- the antisum of the current Word. The matrix is further used in check2.

6

Figure 4: The table used in check1.

Check1 also checks whether the newly added Letter falls within certain bounds
we calculated. Suppose the current Word is abcde and the Letter next to be
added is f . Then we know that if abcdef is to be a subset of the representative we
are looking for, abcdf , abcfe, abfde, afcde and fbcde all have to have antisums
greater than or equal to that of abcde. If we sum up all of these requirements,
except the one for fbcde we get that 4af ≥ 4abcde − (abcd + abce + abde +
acde)−3(bf +cf +df +ef), where by the Words we mean their antisums. After
a little simplification we get that af ≥ AS +

∑
x6=a,f ax−3

∑
x6=f xf , where AS

is the current antisum, before f is added. In general, af ≥ AS +
∑

x6=a,f ax−
(currentLength− 2)

∑
x6=f xf .

We also calculated an upper bound for af : af ≤ fMAX(currentLength+1)−
AS −

∑
x6=a,f ax. These two bounds make some difference in the running time

since less Words are considered in check2, which is by far the slower function. We
have also incorporated Theorem 5 in our program which substantially decreases
the running time.

2.2.2 check2

The purpose of check2 is to check whether the given Word has Words isomorphic
to it that would be better as representatives. In order to do this, we need to
check all possible orderings of the Letters in the Word, out of those to select
the ones that have lobspacron sequences smaller than or equal to those of the
original ordering, if there are no orderings with smaller lobspacron sequences,
but there are some with the same, to check whether there is a way to map
these into something lexicographically smaller than the original Word. To do
the ordering part at each step we omit a Letter from the Word. For example, if
it was originally abcde we may choose to omit d. This means that we are about

7

to check all orderings in which d is the last Letter. After omitting the Letter we
check whether the subword has a smaller lobspacron value. If it does, we reject
the Word. If it has a greater value, we reject the ordering, return the omitted
Letter and omit a new one. If the lobspacron value is the same, we run our
mapping function on it to check whether the ordering can be mapped into one
lexicographically smaller than the original one.

For an (m,n) Word abcd... and a given current ordering a′b′c′d′... one has to
check 2n mappings: the ones that map the first Letter a′ into the zeroth Letter
a0 (which by our construction will be the same as a) and the ones that map
a′ to ā′ and then map that to a0. This is since the representative should be
the lexicographically smallestand thus its first Letter must be a0. The second
n maps are applied to the inverses of the remaining Letters in the Word. It is
easy to see that we need not find all such maps. We only need to get one map
of each type and afterwards just apply shifts 0 7→ 1 7→ 2 7→ . . . 7→ n 7→ 0 to the
result of the previous mapping. Furthermore, we can save the representatives of
the equivalence classes obtained by applying the 2n maps to all (n−1)! Letters.
We can also save the maps that send a given Letter to the representative of its
equivalence class. This does not increase the memory usage significantly (just by
about an eighth), yet can decrease the CPU time substantially. The reasoning is
as follows: suppose you want to check Word a′b′c′d′e′ versus the original Word
abcde. You first use any map to map a′ into a0 and then apply it to b′ to get,
say, b′′. Then you check in the list replist you created to find the representative
corresponding to b′′. If that representative is lexicographically smaller than b,
then abcde cannot be the representative of its class, so you reject it. If the
representative is larger than b, then you try a new reordering of abcde. If the
representative is b, then you consider c′. Apply one of the maps in the list of
the mappings in replist that yield b from b′ to c′ to get c′′ and then check the
representative corresponding to c′′ in replist versus c. If the representative is
not c make the same decisions as before, if it is c, then consider d′ applying
the same map to it as to c′. This procedure continues until either the current
Word is rejected, the current ordering is rejected or all Letters in a′b′c′d′e′ have
been checked, in which case a new ordering is attempted, until all orderings
are exhausted. After that, if the Word has not been rejected, it must be a
representative.

Further major adjustments to check2 can be made since we do not want to
repeat operations unnecessarily. For example, we may want to exclude the
possibility that if in the previous level check2 checked abc and determined that
no reorderings give a better Word, we exhaustively check all orderings of abcd in
which a, b, c in some order are first in the Word, and thus repeat what was done
in the previous stage. In such cases we only need to run the mapping part of
check2, not the reordering of abc. One problem is that currently the reordering
and the mapping part are integrated one into another, and such an adjustment
would be a major change possibly involving a lot of bookkeeping. We are also

8

currently working on developing better bounds to incorporate into check1, since
that would limit the number of calls to check2 even more and that would be
important since check2 is the slowest part of the program.

3 Results and Conclusions

One of the first things we did after the program was first constructed was to run
it on the cases Woodall ran his program in order to check that the two programs
gave the same results. This is useful in two aspects. Firstly, since no one else
has looked at Woodall’s program and no one else has so far reproduced his
results, it is good to see whether we would get the same things independently.
Secondly, if Woodall’s results are correct, then we would have a sign that our
program is also correct. We ran the program on (5, 5), (5, 7) and (7, 7) and we
got the exact same results as Woodall. Unfortunately, since our program was
designed to handle more cases than Woodall’s, it has a worse time complexity.
Woodall was able to save certain data that we are not able to store with a case
5000 times greater. We are currently still working on improving the speed.

After we had reproduced Woodall’s results we decided to attempt (5, 9), the
smallest until now set with unknown minimal antisum. Since the program
was going to take substantial amounts of CPU time, we split the job into 167
branches according to which was the second Letter in the Words we looked at.
Running the program on (2, 9) with the same fMAX(2) as for (5, 9) showed us
that there are only 167 possible second Letters and we only used those. We
ran those branches on 30 computers, 20 of which were 990MHz and 10 of which
were 900MHz. We also adapted the program so that it can handle ranges for
the third added Letter, in case one of the larger branches took too long to finish
and we would have to split that branch onto more computers. Altogether, the
program took 123 days 17 hours 35 min and 3.4 sec of CPU time and returned
no counterexamples. This was before the adjustments were done to check2 and
before the addition of the two bounds to check1. Now the program should run
slightly faster. The algorithm is easily parallelizable and this is one aim for the
future.

The result of running the program is the following

Theorem 6 a) Every (5, 9) set has antisum at least Z(5)Z(9) = 64.
b) No (7, 9) or (9, 9) set can contain a (4, 9) subset with antisum 32 or less.

Part a is a direct result of running the program since the program returned
no counterexamples. Part b follows from theorem 5 with m′ = 4 for both cases.
In the first case we know that all (3, 9) [1] and all (5, 9) (from the program) sets
have antisums at least Z(3)Z(9) and Z(5)Z(9) respectively, in the second case

9

we only need the result for (5, 9). This theorem would be useful if one wants to
attempt (7, 9) and (9, 9). This would reduce the CPU time greatly since more
sets would be eliminated from earlier on. To be able to run (7, 9) in reasonable
time, however, some major adjustments to the program have to be made.

4 Acknowledgments

I would like to thank

• my mentor and advisor Dr. Richard M. Wilson for his help and support

• Dr. D.R. Woodall for providing us with the source of his 1986 program

• the SURF committee for the opportunity to work on this project

• Mr. Peter Adams for sponsoring me.

References

[1] D.R. Woodall, Cyclic-order graphs and Zarankiewicz’s crossing-number
conjecture. J. Graph Theory 17 (1993) 657-671

[2] J. Pach, G. Toth, Graphs drawn with few crossings per edge. Combinatorica
17 (3) (1997) 427-439

[3] R. Guy, The decline and fall of Zarankiewicz’s theorem, Proof techniques
in graph theory, 1969, Academic Press, New York

[4] S.N.Bhatt, F.T. Leighton. A Framework For Solving VLSI Graph Layout
Problems. Journal of Computer and System Sciences 28 (1984) 300-343

[5] K. Zarankiewicz, On a problem of P. Turán concerning graphs. Fund. Math.
41 (1954) 137-145

[6] D.J. Kleitman, The crossing number of K(5, n), J.Combinat. Theory 9
(1970) 315-323

10

