
A Dominance Approach to Weighted Graph Problems

Virginia Vassilevska

Theory Lunch
Nov. 8, 2006

Introduction

2

Introduction

Using fast matrix multiplication one can often obtain faster algorithms.

2-a

Introduction

Using fast matrix multiplication one can often obtain faster algorithms.

E.g., in a graph G = (V,E) to find a TRIANGLE (a, b, c) look at the

diagonal of the cube of the adjacency matrix. [Itai and Rodeh, 1978]

G3
=

































2 · · · · ·

· 2 · · · ·

· · 2 · · ·

...

































a

b

cd

e
f

g

h
i

j

Naiive algorithm: O(n3), matrix mult.: O(nω) = O(n2.38).

2-b

Introduction

Using fast matrix multiplication one can often obtain faster algorithms.

E.g., in a graph G = (V,E) to find a TRIANGLE (a, b, c) look at the

diagonal of the cube of the adjacency matrix. [Itai and Rodeh, 1978]

G3
=

































2 · · · · ·

· 2 · · · ·

· · 2 · · ·

...

































a

b

cd

e
f

g

h
i

j

Naiive algorithm: O(n3), matrix mult.: O(nω) = O(n2.38).

Other examples: LP, exact algorithms for NP-hard problems, graph perfect

matching, unweighted APSP.

2-c

What about weighted problems?

3

What about weighted problems?

Itai and Rodeh’s paper ends with:

“A related problem is finding a minimum weighted circuit in a weighted

graph. It is unclear to us whether our methods can be modified to answer

this problem too.”

3-a

What about weighted problems?

Itai and Rodeh’s paper ends with:

“A related problem is finding a minimum weighted circuit in a weighted

graph. It is unclear to us whether our methods can be modified to answer

this problem too.”

In general it is not clear how to speed-up weighted versions of problems in

a similar way.

Example open problems include: maximum weighted matching, finding

minimum weighted triangles and other patterns, weighted APSP.

3-b

Our approach [VW06]

Instead of matrix multiplication we use the so called dominance product to

speed-up weighted problems.

We demonstrate the approach on finding minimum weighted triangles,

computing bits of the distance product, all pairs bottleneck paths.

4

Talk outline

1. Some definitions

2. Dominance product in subcubic time

3. Maximum weighted triangle

4. Computing bits of the distance product

5. All pairs bottleneck paths

6. Open problems

5

Various Matrix Products: definitions

6

Various Matrix Products: definitions

Algebraic Product:

C[i, j] = (A · B)[i, j] =
∑

k{A[i, k] · B[k, j]}.

6-a

Various Matrix Products: definitions

Algebraic Product:

C[i, j] = (A · B)[i, j] =
∑

k{A[i, k] · B[k, j]}.

Distance Product:

C[i, j] = (A ⋆ B)[i, j] = mink{A[i, k] + B[k, j]}.

6-b

Various Matrix Products: definitions

Algebraic Product:

C[i, j] = (A · B)[i, j] =
∑

k{A[i, k] · B[k, j]}.

Distance Product:

C[i, j] = (A ⋆ B)[i, j] = mink{A[i, k] + B[k, j]}.

MaxMin Product:

C[i, j] = (A • B)[i, j] = maxk min{A[i, k], B[k, j]}.

6-c

Various Matrix Products: definitions

Algebraic Product:

C[i, j] = (A · B)[i, j] =
∑

k{A[i, k] · B[k, j]}.

Distance Product:

C[i, j] = (A ⋆ B)[i, j] = mink{A[i, k] + B[k, j]}.

MaxMin Product:

C[i, j] = (A • B)[i, j] = maxk min{A[i, k], B[k, j]}.

Dominance Product:

C[i, j] = (A ⊙ B)[i, j] = |{k : A[i, k] ≤ B[k, j]}|.

=
∑

k(A[i, k] ≤ B[k, j]).

6-d

How to compute the dominance product

Recall (A ⊙ B)[i, j] = |{k : A[i, k] ≤ B[k, j]}|.

7

How to compute the dominance product

Recall (A ⊙ B)[i, j] = |{k : A[i, k] ≤ B[k, j]}|.

Thm. (Matousek) Dominance Product can be computed in n(3+ω)/2 time.

We sketch the elegant algorithm in the next few slides.

It uses fast matrix multiplication.

7-a

Dominance Product in n(3+ω)/2

(C[i, j] = |{k : A[i, k] ≤ B[k, j]}|)

8

Dominance Product in n(3+ω)/2

(C[i, j] = |{k : A[i, k] ≤ B[k, j]}|)

Idea 1: Just care about the sorted order of coordinates

=⇒ WLOG each column of A and the corresponding row of B is a

permutation of [2n].

8-a

Dominance Product in n(3+ω)/2

(C[i, j] = |{k : A[i, k] ≤ B[k, j]}|)

Idea 1: Just care about the sorted order of coordinates

=⇒ WLOG each column of A and the corresponding row of B is a

permutation of [2n].

Make n sorted lists L1, . . . , Ln, where

Lk has the kth column of A and the kth row of B

8-b

Dominance Product in n(3+ω)/2

(C[i, j] = |{k : A[i, k] ≤ B[k, j]}|)

Idea 1: Just care about the sorted order of coordinates

=⇒ WLOG each column of A and the corresponding row of B is a

permutation of [2n].

Make n sorted lists L1, . . . , Ln, where

Lk has the kth column of A and the kth row of B

Partition each Lk into “buckets” with s elements in each bucket

A[1, k]B[k, 1]B[k, 2]. A[2, k]

2nLk

s s s s

8-c

Dominance Product in n(3+ω)/2, Cont.

(C[i, j] = |{k : A[i, k] ≤ B[k, j]}|)

Idea 2: Two types of data are counted in C :

9

Dominance Product in n(3+ω)/2, Cont.

(C[i, j] = |{k : A[i, k] ≤ B[k, j]}|)

Idea 2: Two types of data are counted in C :

1. Pairs (A[i, k], B[k, j]) such that A[i, k] ≤ B[k, j],

but A[i, k] and B[k, j] fall in the same bucket of Lk

• Only O(n2s) possible pairs of this form

• Can compute these in O(1) amortized time

9-a

Dominance Product in n(3+ω)/2, Cont.

(C[i, j] = |{k : A[i, k] ≤ B[k, j]}|)

Idea 2: Two types of data are counted in C :

2. Pairs (A[i, k], B[k, j]) such that A[i, k] ≤ B[k, j],

but A[i, k] and B[k, j] fall in different buckets of Lk

• Can count these using 2n/s matrix multiplications

(One matrix multiply for each bucket)

10

Dominance computation step 2

For every t = 1, . . . , 2n/s, create matrices At and Bt such that

At[i, k] =







1 if A[i, k] in bucket t of Lk

0 otherwise
Bt[k, j] =







1 if B[k, j] in bucket s > t of Lk

0 otherwise

11

Dominance computation step 2

For every t = 1, . . . , 2n/s, create matrices At and Bt such that

At[i, k] =







1 if A[i, k] in bucket t of Lk

0 otherwise
Bt[k, j] =







1 if B[k, j] in bucket s > t of Lk

0 otherwise

∑

t AtBt gives the pairs A[i, k], B[k, j] such that A[i, k] ≤ B[k, j]

and they are in different buckets of Lk.

This can be done in n/s · nω time.

11-a

Dominance computation step 2

For every t = 1, . . . , 2n/s, create matrices At and Bt such that

At[i, k] =







1 if A[i, k] in bucket t of Lk

0 otherwise
Bt[k, j] =







1 if B[k, j] in bucket s > t of Lk

0 otherwise

∑

t AtBt gives the pairs A[i, k], B[k, j] such that A[i, k] ≤ B[k, j]

and they are in different buckets of Lk.

This can be done in n/s · nω time.

Overall Runtime: Pick s : n2s = n/s · nω ⇐⇒ s = n
ω−1

2 .

The final running time is O(n
3+ω

2) = O(n2.69).

11-b

Maximum node weighted triangle

Input: Graph with real-number weights on the nodes

Task: Find a triangle of maximum weight sum

12

Maximum node weighted triangle

Input: Graph with real-number weights on the nodes

Task: Find a triangle of maximum weight sum

20

10

5

42 17

19 4

96

9.1

12-a

Maximum edge weighted triangle

Input: Graph with real-number weights on the edges

Task: Find a triangle of maximum weight sum

13

Maximum edge weighted triangle

Input: Graph with real-number weights on the edges

Task: Find a triangle of maximum weight sum

(Reduce Node-Weighted Triangle to Edge-Weighted Triangle):

Push weights from nodes to edges: w(u, v) = (w(u) + w(v))/2

13-a

Folklore Result

14

Folklore Result

Recall the distance product of A and B is

(A ⋆ B)[i, j] = min
k

{A[i, k] + B[k, j]}

14-a

Folklore Result

Recall the distance product of A and B is

(A ⋆ B)[i, j] = min
k

{A[i, k] + B[k, j]}

Observation: Distance Product can solve Max Weighted Triangle

14-b

Folklore Result

Recall the distance product of A and B is

(A ⋆ B)[i, j] = min
k

{A[i, k] + B[k, j]}

Observation: Distance Product can solve Max Weighted Triangle

→ Compute MAXi,j{((−A) ⋆ (−A))[i, j] − A[i, j]}

(Min Weight Triangle: MINi,j{(A ⋆ A)[i, j] + A[i, j]})

14-c

”Easy” Weighted Triangle Algorithms

15

”Easy” Weighted Triangle Algorithms

• [Zwick, ’02] O(M · nω) distance product algorithm, M is the largest

weight of an edge

=⇒ Max Weight Triangle in O(M · nω) (Pseudopolynomial)

15-a

”Easy” Weighted Triangle Algorithms

• [Zwick, ’02] O(M · nω) distance product algorithm, M is the largest

weight of an edge

=⇒ Max Weight Triangle in O(M · nω) (Pseudopolynomial)

• [Chan, ’05] O(n3/ log n) distance product

=⇒ Max Weighted Triangle in O(n3/ log n)

15-b

”Easy” Weighted Triangle Algorithms

• [Zwick, ’02] O(M · nω) distance product algorithm, M is the largest

weight of an edge

=⇒ Max Weight Triangle in O(M · nω) (Pseudopolynomial)

• [Chan, ’05] O(n3/ log n) distance product

=⇒ Max Weighted Triangle in O(n3/ log n)

Truly Sub-Cubic Algorithm?

15-c

Using the dominance product we get:

• Deterministic Algorithm [VW06]

O(B · n(3+ω)/2) ≤ O(B · n2.688), where B is the bit precision

• Randomized (Strongly Polynomial) Algorithm [VW06]

O(n(3+ω)/2 log n) ≤ O(n2.688)

16

Using the dominance product we get:

• Deterministic Algorithm [VW06]

O(B · n(3+ω)/2) ≤ O(B · n2.688), where B is the bit precision

• Randomized (Strongly Polynomial) Algorithm [VW06]

O(n(3+ω)/2 log n) ≤ O(n2.688)

Aside: It is already known how to find a max node weighted triangle in

O(nω) [CzumajLingas07].

We can get for all edges the max node weighted triangle including the

edge in O(n2.58) time [VWY06].

16-a

Deterministic Algorithm: Outline

17

Deterministic Algorithm: Outline

1. Does there exist a triangle of weight sum at least K?

→ dominance product instance.

17-a

Deterministic Algorithm: Outline

1. Does there exist a triangle of weight sum at least K?

→ dominance product instance.

2. Do binary search on K to find the maximum weight W of a triangle.

17-b

Deterministic Algorithm: Outline

1. Does there exist a triangle of weight sum at least K?

→ dominance product instance.

2. Do binary search on K to find the maximum weight W of a triangle.

3. Find a triangle of weight W .

17-c

Step 1: Given K , reduce to dominance product instance.

Vertex i ∈ V →

18

Step 1: Given K , reduce to dominance product instance.

Vertex i ∈ V →

• row vector A[i, ;] = (A[i, 1], . . . , A[i, n]) s.t.

A[i, j] =

{

K − w(i) if there is an edge from i to j

∞ otherwise.

18-a

Step 1: Given K , reduce to dominance product instance.

Vertex i ∈ V →

• row vector A[i, ;] = (A[i, 1], . . . , A[i, n]) s.t.

A[i, j] =

{

K − w(i) if there is an edge from i to j

∞ otherwise.

• column vector B[; , i] = (B[1, i], . . . , B[n, i]) s.t.

B[j, i] =

{

w(i) + w(j) if there is an edge from i to j

−∞ otherwise.

18-b

Step 1: Given K , reduce to dominance product instance.

Vertex i ∈ V →

• row vector A[i, ;] = (A[i, 1], . . . , A[i, n]) s.t.

A[i, j] =

{

K − w(i) if there is an edge from i to j

∞ otherwise.

• column vector B[; , i] = (B[1, i], . . . , B[n, i]) s.t.

B[j, i] =

{

w(i) + w(j) if there is an edge from i to j

−∞ otherwise.

A[i, j] ≤ B[j, k] ⇐⇒ K ≤ w(i) + w(k) + w(j) and (i, j), (j, k) ∈ E

18-c

Step 1 cont.

19

Step 1 cont.

(A ⊙ B)[i, k] 6= 0 iff

∃j such that there is a path i → j → k and w(i) + w(k) + w(j) ≥ K

19-a

Step 1 cont.

(A ⊙ B)[i, k] 6= 0 iff

∃j such that there is a path i → j → k and w(i) + w(k) + w(j) ≥ K

Hence to check whether there is a triangle of weight at least K , compute

C = A ⊙ B and check for an entry C[i, j] 6= 0 such that (i, j) ∈ E.

19-b

Runtime

20

Runtime

Let B be the max number of bits needed to represent a weight.

20-a

Runtime

Let B be the max number of bits needed to represent a weight.

Then the binary search calls at most O(B) dominance computations, and

hence the runtime is O(B · n
3+ω

2).

20-b

Runtime

Let B be the max number of bits needed to represent a weight.

Then the binary search calls at most O(B) dominance computations, and

hence the runtime is O(B · n
3+ω

2).

But this algorithm is not strongly polynomial because of the binary search.

20-c

Runtime

Let B be the max number of bits needed to represent a weight.

Then the binary search calls at most O(B) dominance computations, and

hence the runtime is O(B · n
3+ω

2).

But this algorithm is not strongly polynomial because of the binary search.

Can use random sampling of weighted triangles to obtain a

O(n
3+ω

2 log n) strongly polynomial randomized algorithm.

20-d

The distance product

Recall (A ⋆ B)[i, j] = mink{A[i, k] + B[k, j]}.

21

The distance product

Recall (A ⋆ B)[i, j] = mink{A[i, k] + B[k, j]}.

The distance product is used to compute APSP.

21-a

The distance product

Recall (A ⋆ B)[i, j] = mink{A[i, k] + B[k, j]}.

The distance product is used to compute APSP.

The complexity of computing the distance product of two n × n matrices

is the same as that of computing all pairs shortest distances in an n vertex

graph.

21-b

The distance product

Recall (A ⋆ B)[i, j] = mink{A[i, k] + B[k, j]}.

The distance product is used to compute APSP.

The complexity of computing the distance product of two n × n matrices

is the same as that of computing all pairs shortest distances in an n vertex

graph.

The best algorithms for arbitrary real weights are

21-c

The distance product

Recall (A ⋆ B)[i, j] = mink{A[i, k] + B[k, j]}.

The distance product is used to compute APSP.

The complexity of computing the distance product of two n × n matrices

is the same as that of computing all pairs shortest distances in an n vertex

graph.

The best algorithms for arbitrary real weights are

• by Chan in O(n3/ log n)

21-d

The distance product

Recall (A ⋆ B)[i, j] = mink{A[i, k] + B[k, j]}.

The distance product is used to compute APSP.

The complexity of computing the distance product of two n × n matrices

is the same as that of computing all pairs shortest distances in an n vertex

graph.

The best algorithms for arbitrary real weights are

• by Chan in O(n3/ log n), and

• by Han in O(n3(log log n/ log n)5/4).

21-e

Computing bits of the distance product

22

Computing bits of the distance product

Suppose only need B bits of (A ⋆ B)[i, j] = mink{A[i, k] + B[k, j]}.

22-a

Computing bits of the distance product

Suppose only need B bits of (A ⋆ B)[i, j] = mink{A[i, k] + B[k, j]}.

For constant K , we can set up a matrix A(K) s.t. for all i, j,

A(K)[i, j] = K − A[i, j].

22-b

Computing bits of the distance product

Suppose only need B bits of (A ⋆ B)[i, j] = mink{A[i, k] + B[k, j]}.

For constant K , we can set up a matrix A(K) s.t. for all i, j,

A(K)[i, j] = K − A[i, j].

Compute D(K) = (A(K) ⊙ B)

and C(K)[i, j] =

{

1 if D(K)[i, j] = n

0 otherwise.
.

22-c

Computing bits of the distance product

Suppose only need B bits of (A ⋆ B)[i, j] = mink{A[i, k] + B[k, j]}.

For constant K , we can set up a matrix A(K) s.t. for all i, j,

A(K)[i, j] = K − A[i, j].

Compute D(K) = (A(K) ⊙ B)

→ D(K)[i, j] 6= n ⇐⇒ ∃k.K − A[i, k] > B[k, j]

and C(K)[i, j] =

{

1 if D(K)[i, j] = n

0 otherwise.
.

22-d

Computing bits of the distance product

Suppose only need B bits of (A ⋆ B)[i, j] = mink{A[i, k] + B[k, j]}.

For constant K , we can set up a matrix A(K) s.t. for all i, j,

A(K)[i, j] = K − A[i, j].

Compute D(K) = (A(K) ⊙ B)

→ D(K)[i, j] 6= n ⇐⇒ ∃k.K − A[i, k] > B[k, j]

and C(K)[i, j] =

{

1 if D(K)[i, j] = n

0 otherwise.
.

Then C(K)[i, j] = 1 ⇐⇒ mink(A[i, k] + B[k, j]) ≥ K .

22-e

Computing bits of the distance product

Suppose only need B bits of (A ⋆ B)[i, j] = mink{A[i, k] + B[k, j]}.

For constant K , we can set up a matrix A(K) s.t. for all i, j,

A(K)[i, j] = K − A[i, j].

Compute D(K) = (A(K) ⊙ B)

→ D(K)[i, j] 6= n ⇐⇒ ∃k.K − A[i, k] > B[k, j]

and C(K)[i, j] =

{

1 if D(K)[i, j] = n

0 otherwise.
.

Then C(K)[i, j] = 1 ⇐⇒ mink(A[i, k] + B[k, j]) ≥ K .

Most significant bit is then C(W
2

) where W is the smallest power of 2

larger than the largest distance.

22-f

Computing bits of the distance product

23

Computing bits of the distance product

C(K)[i, j] = 1 ⇐⇒ mink(A[i, k] + B[k, j]) ≥ K

The second most significant bit of (A ⋆ B)[i, j] is

(¬C(W)[i, j] ∧ C(
3W

4
)[i, j]) ∨ (¬C(

W

2
)[i, j] ∧ C(

W

4
)[i, j]).

Only compute 4 dominance products.

23-a

Computing bits of the distance product

C(K)[i, j] = 1 ⇐⇒ mink(A[i, k] + B[k, j]) ≥ K

The second most significant bit of (A ⋆ B)[i, j] is

(¬C(W)[i, j] ∧ C(
3W

4
)[i, j]) ∨ (¬C(

W

2
)[i, j] ∧ C(

W

4
)[i, j]).

Only compute 4 dominance products.

The ℓth bit is

2ℓ−1
−1

∨

s=0

[¬C(W (1 −
s

2ℓ−1
))[i, j] ∧ C(W (1 −

s

2ℓ−1
−

1

2ℓ
))[i, j]].

Here need O(2ℓ) dominance products.

23-c

Computing bits of the distance product

Thm. The first B most significant bits of the distance product

of two n × n matrices can be computed in O(2Bn
3+ω

2) time.

One can compute (3−ω
2 − ε) log n bits in O(n3−ε) time.

24

Bottleneck paths

The bottleneck edge of a path in a graph from vertex u to vertex v is the

edge of smallest weight.

In many applications (e.g. max flow), the path of maximum bottleneck is

needed.

7

8

1

2

6

2

7

5

2

10
u v

a b

c d

ab : 8

ac : 2

ad : 10

au : 2

av : 5

bc : −∞

cb : 6

bu : −∞

ub : 7

cd : 6

dc : 2

ud : 7

du : 2

uv : 5

In this talk we will consider the all pairs max bottlenecks problem.
25

Bottleneck paths – related work

single source:

• Folklore: in O(m + n log n) by Dijkstra.

all pairs:

• Folklore: undirected edge weighted in O(n2) using min spanning tree.

• Shapira, Yuster, Zwick 2007: directed node weighted in O(n2.58).

• VW: directed edge weighted in O(n2.79).

26

MaxMin product

Recall (A • B)[i, j] = maxk min{A[i, k], B[k, j]}.

27

MaxMin product

Recall (A • B)[i, j] = maxk min{A[i, k], B[k, j]}.

The MaxMin product is used to compute all pairs maximum bottleneck

paths (APBP), similar to how one uses distance product for APSP.

27-a

MaxMin product

Recall (A • B)[i, j] = maxk min{A[i, k], B[k, j]}.

The MaxMin product is used to compute all pairs maximum bottleneck

paths (APBP), similar to how one uses distance product for APSP.

Computing the MaxMin product of two n × n matrices takes the same

time as computing all pairs bottleneck distances in an n vertex graph.

27-b

Computing the MaxMin product faster

C = (A • B)[i, j] = maxk min{A[i, k], B[k, j]}

We use the dominance product again:

(A ⊙ B)[i, j] = |{k : A[i, k] ≤ B[k, j]}|.

We will proceed as follows:

28

Computing the MaxMin product faster

C = (A • B)[i, j] = maxk min{A[i, k], B[k, j]}

We use the dominance product again:

(A ⊙ B)[i, j] = |{k : A[i, k] ≤ B[k, j]}|.

We will proceed as follows:

1. compute for all i, j, aij = maxk{A[i, k] | A[i, k] ≤ B[k, j]},

2. compute for all i, j, bij = maxk{B[k, j] | B[k, j] ≤ A[i, k]},

28-a

Computing the MaxMin product faster

C = (A • B)[i, j] = maxk min{A[i, k], B[k, j]}

We use the dominance product again:

(A ⊙ B)[i, j] = |{k : A[i, k] ≤ B[k, j]}|.

We will proceed as follows:

1. compute for all i, j, aij = maxk{A[i, k] | A[i, k] ≤ B[k, j]},

2. compute for all i, j, bij = maxk{B[k, j] | B[k, j] ≤ A[i, k]},

3. set for all i, j, C[i, j] = max{aij, bij}.

28-b

Computing the MaxMin product faster

We want aij = maxk{A[i, k] | A[i, k] ≤ B[k, j]}.

1. Take the rows of A and sort the entries of each row.

2. Bucket the entries of each row of A, in their sorted order into s roughly

equal buckets.

A =















10 −1.1 5.1 3.2

2 3 7 1

0 −1 −2 −3

7 2.1 4 2.1















row 1 : A[1, 2], A[1, 4], A[1, 3], A[1, 1]

row 2 : A[2, 4], A[2, 1], A[2, 2], A[2, 3]

row 3 : A[3, 4], A[3, 3], A[3, 2], A[3, 1]

row 4 : A[4, 4], A[4, 2], A[4, 3], A[4, 1]

29

Computing the MaxMin product faster

3. For each bucket b create a matrix A(b) containing only the elements in

bucket b and ∞ in all other entries.

A(1) =















∞ −1.1 ∞ 3.2

2 ∞ ∞ 1

∞ ∞ −2 −3

∞ 2.1 ∞ 2.1















A(2) =















10 ∞ 5.1 ∞

∞ 3 7 ∞

0 −1 ∞ ∞

7 ∞ 4 ∞















30

Computing the MaxMin product faster

4. Compute A(b) ⊙ B for each bucket b.

A(2)⊙A =















10 ∞ 5.1 ∞

∞ 3 7 ∞

0 −1 ∞ ∞

7 ∞ 4 ∞















⊙















10 −1.1 5.1 3.2

2 3 7 1

0 −1 −2 −3

7 2.1 4 2.1















=















1 0 0 0

0 1 1 0

2 1 2 2

1 0 0 0















This tells us for every bucket b and each i, j, the number of coords k such

that A[i, k] is in bucket b and A[i, k] ≤ B[k, j].

This step takes O(sn
3+ω

2).

31

Computing the MaxMin product faster

32

Computing the MaxMin product faster

5. For each i, j we know the largest bucket b in which there is an entry

A[i, k] such that A[i, k] ≤ B[k, j].

32-a

Computing the MaxMin product faster

5. For each i, j we know the largest bucket b in which there is an entry

A[i, k] such that A[i, k] ≤ B[k, j].

For each i, j, search that bucket for k - there are at most O(n/s)

entries we have to go through for each pair i, j.

This step takes O(n3/s) and explicitly finds witnesses.

32-b

Computing the MaxMin product faster

5. For each i, j we know the largest bucket b in which there is an entry

A[i, k] such that A[i, k] ≤ B[k, j].

For each i, j, search that bucket for k - there are at most O(n/s)

entries we have to go through for each pair i, j.

This step takes O(n3/s) and explicitly finds witnesses.

6. The overall runtime is maximized for s = n
3−ω

4 and the runtime is then

O(n
9+ω

4) = O(n2.81).

32-c

Computing the MaxMin product faster

5. For each i, j we know the largest bucket b in which there is an entry

A[i, k] such that A[i, k] ≤ B[k, j].

For each i, j, search that bucket for k - there are at most O(n/s)

entries we have to go through for each pair i, j.

This step takes O(n3/s) and explicitly finds witnesses.

6. The overall runtime is maximized for s = n
3−ω

4 and the runtime is then

O(n
9+ω

4) = O(n2.81).

7. You can do slightly better by using sparse dominance → O(n2.79).

32-d

Open Problems

1. dominance product in nω? (VW Conjecture)

2. truly subcubic distance product using dominance product?

3. generalize the technique for some class of problems?

33

Thank You!

34

