A Dominance Approach to Weighted Graph Problems

Virginia Vassilevska

Theory Lunch
Nov. 8, 2006

Introduction

Introduction

Using fast matrix multiplication one can often obtain faster algorithms.

2-a

Introduction

Using fast matrix multiplication one can often obtain faster algorithms.

E.g., inagraph G = (V, F) to find a TRIANGLE (a, b, ¢) look at the
diagonal of the cube of the adjacency matrix. [Itai and Rodeh, 1978]

Naiive algorithm: O(n?), matrix mult.: O(n*) = O(n*3%).

2-b

Introduction

Using fast matrix multiplication one can often obtain faster algorithms.

E.g., inagraph G = (V, F) to find a TRIANGLE (a, b, ¢) look at the
diagonal of the cube of the adjacency matrix. [Itai and Rodeh, 1978]

Naiive algorithm: O(n?), matrix mult.: O(n*) = O(n*?%).

Other examples: LP, exact algorithms for NP-hard problems, graph perfect
matching, unweighted APSP.

2-C

What about weighted problems?

What about weighted problems?

Itai and Rodeh’s paper ends with:

“A related problem is finding a minimum weighted circuit in a weighted
graph. It is unclear to us whether our methods can be modified to answer

this problem too.”

3-a

What about weighted problems?

Ital and Rodeh’s paper ends with:

“A related problem is finding a minimum weighted circuit in a weighted
graph. It is unclear to us whether our methods can be modified to answer

this problem too.”

In general it is not clear how to speed-up weighted versions of problems in

a similar way.

Example open problems include: maximum weighted matching, finding

minimum weighted triangles and other patterns, weighted APSP.

3-b

Our approach [VWO06]

Instead of matrix multiplication we use the so called dominance product to

speed-up weighted problems.

We demonstrate the approach on finding minimum weighted triangles,
computing bits of the distance product, all pairs bottleneck paths.

Talk outline

. Some definitions

. Dominance product in subcubic time

. Maximum weighted triangle

. Computing bits of the distance product
. All pairs bottleneck paths

. Open problems

Various Matrix Products: definitions

Various Matrix Products: definitions

Algebraic Product:
Cli, gl = (A- B)li, j] = >_,{ Ali, k] - Blk, j]}.

6-a

Various Matrix Products: definitions

Algebraic Product:
Cli, jl = (A- B)li, j] = 2.1 Ali, k| - Blk, jl}.
Distance Product:

Cli, j] = (A% B)i, j] = ming{ A, k] + Bk, j]}-

6-b

Various Matrix Products: definitions

Algebraic Product:

Cli, gl = (A- B)li, j] = >_,{ Ali, k] - Blk, j]}.
Distance Product:

Cli, j] = (A% B)[i,] = ming{ A[i, k] + Bk, j]}.
MaxMin Product:

Cli, j| = (A e B)[i, j] = max, min{ Ali, k|, Bk, j]}.

6-c

Various Matrix Products: definitions

Algebraic Product:
Cli,j] = (A- B)li,j] = >, A Al k] - Blk, jl}-
Distance Product:
Cli.j] = (Ax B)i. j] = ming{A[i,] + Blk. j]}.
MaxMin Product:
Cli, j| = (A e B)[i, j] = max, min{ Ali, k|, Bk, j]}.
Dominance Product:

Cli,jl = (A© B)li,j| = Kk - Ali,k] < Bk, j]}].

= 2_w(Ali k] < Blk, j]).

6-d

How to compute the dominance product

Recall (A ® B)|i,j] = |{k : Ali, k| < Bk, j]}.

How to compute the dominance product

Recall (A ® B)[i, j] = [{k : A[i, k] < Blk, j]}|
Thm. (Matousek) Dominance Product can be computed in nG+9)/2 time.

We sketch the elegant algorithm in the next few slides.

It uses fast matrix multiplication.

7-a

Dominance Productin n(3tw)/2

(Cli, gl = [k = Al k] < Blk, j]31)

Dominance Productin n(31w)/2

(Cli,j] = {1k = Ali, k] < Blk, j]})
ldea 1: Just care about the sorted order of coordinates

—> WLOG each column of A and the corresponding row of B is a
permutation of |2n).

8-a

Dominance Productin n(31w)/2

(Cli,j] = {1k = Ali, k] < Blk, j]})
ldea 1: Just care about the sorted order of coordinates

—> WLOG each column of A and the corresponding row of B is a

permutation of |2n).
Make n sorted lists L1, ..., L,,, where

L. has the kth column of A and the kth row of BB

8-b

Dominance Productin n(31w)/2

(Cli,j] = {1k = Ali, k] < Blk, j]})
ldea 1: Just care about the sorted order of coordinates

—> WLOG each column of A and the corresponding row of B is a

permutation of |2n).
Make n sorted lists L1, ..., L,,, where

L. has the kth column of A and the kth row of BB

Partition each L. into “buckets” with s elements in each bucket
Lk 2n

‘B[k,Q]‘ ‘A[Q,k]‘ ‘B[k,l}‘ ,,,‘A[Lk}‘

8-c

Dominance Product Iin n(3+w)/2, Cont.

(Cli, gl = Rk = Al k] < BlE, jl})

Idea 2: Two types of data are counted in C":

Dominance Productin n37%)/2 cont.

(Cli,g] =k - Ali, k] < B[k, jl}|)
Idea 2: Two types of data are counted in C":

1. Pairs (Ali. k|, B[k, j]) such that A, k] < Blk, j].
but Ali, k| and Bk, j] fall in the same bucket of L,

e Only O(n?s) possible pairs of this form

e Can compute these in O(1) amortized time

9-a

Dominance Productin n3T%)/2 cont.

(Cli, g} = {k - Ali, k] < Bk, j]})
Idea 2: Two types of data are counted in C":

2. Pairs (Ali, k|, B[k, j]) such that A[i, k] < B[k, j],
but Ali, k| and B|k, 7| fall in different buckets of L,

e Can count these using Qn/s matrix multiplications

(One matrix multiply for each bucket)

10

Dominance computation step 2

Foreveryt =1,..., Qn/s, create matrices A; and B; such that

1 if Ajz, k| in bucket ¢ of L 1 if B|k, j|in bucket s > t of L

0O otherwise 0O otherwise

11

Dominance computation step 2

Foreveryt =1,..., Zn/s, create matrices A; and B; such that
, 1 if Alz, k] in bucket ¢ of Ly , 1 if Blk,j]inbucket s > t of L
At[7’7k] — Bt[kaj] —
0 otherwise 0 otherwise

>, Ay By gives the pairs Ali, k|, Bk, j] such that Ai, k| < Bk,]
and they are in different buckets of L.

This can be done inn /s - n“ time.

11-a

Dominance computation step 2

Foreveryt =1,..., Zn/s, create matrices A; and B; such that
, 1 if Alz, k] in bucket ¢ of Ly , 1 if Blk,j]inbucket s > t of L
At[7’7k] — Bt[kaj] —
0 otherwise 0 otherwise

>, Ay By gives the pairs Ali, k|, Bk, j] such that Ai, k| < Bk,]
and they are in different buckets of L.

This can be done inn /s - n“ time.

w—1

Overall Runtime: Pick s : n?s=n/s-n¥ < s=n 2 .

The final running time is O(n 2~) = O(n%%9),

11-b

Maximum node weighted triangle

Input: Graph with real-number weights on the nodes

Task: Find a triangle of maximum weight sum

12

Maximum node weighted triangle

Input: Graph with real-number weights on the nodes

Task: Find a triangle of maximum weight sum

12-a

Maximum edge weighted triangle

Input: Graph with real-number weights on the edges

Task: Find a triangle of maximum weight sum

13

Maximum edge weighted triangle

Input: Graph with real-number weights on the edges

Task: Find a triangle of maximum weight sum

(Reduce Node-Weighted Triangle to Edge-Weighted Triangle):

Push weights from nodes to edges: w(u, v) = (w(u) + w(v))/2

13-a

Folklore Result

14

Folklore Result

Recall the distance product of A and B is

(A B)li, j] = mkin{A[i, k| + Blk, 7]}

14-a

Folklore Result

Recall the distance product of A and B is

(A B)li, j] = min{Ali, k] + B[k, j]}

Observation: Distance Product can solve Max Weighted Triangle

14-b

Folklore Result

Recall the distance product of A and B is

(A B)li, j] = min{Ali, k] + B[k, j]}

Observation: Distance Product can solve Max Weighted Triangle

— Compute MAX, i {((—A)x(—A))z, 5] — Al7, 7]}
(Min Weight Triangle: M IN; ;{(A x A)[t, j| + Ali, 5]})

14-c

"Easy” Weighted Triangle Algorithms

15

"Easy” Weighted Triangle Algorithms

e [Zwick, '02] O(M - n*) distance product algorithm, M is the largest

weight of an edge

— Max Weight Triangle in O(M - n*) (Pseudopolynomial)

15-a

"Easy” Weighted Triangle Algorithms

e [Zwick, '02] O(M - n*) distance product algorithm, M is the largest

weight of an edge

— Max Weight Triangle in O(M - n*) (Pseudopolynomial)

e [Chan,'05] O(n?/logn) distance product
—> Max Weighted Triangle in O(n?/logn)

15-b

"Easy” Weighted Triangle Algorithms

e [Zwick, '02] O(M - n*) distance product algorithm, M is the largest
weight of an edge

— Max Weight Triangle in O(M - n*) (Pseudopolynomial)

e [Chan,'05] O(n?/logn) distance product
—> Max Weighted Triangle in O(n?/logn)

Truly Sub-Cubic Algorithm?

15-c

Using the dominance product we get:

e Deterministic Algorithm [VWO0G6]
O(B - nB+2)/2) < O(B - n*%%8), where B is the bit precision

e Randomized (Strongly Polynomial) Algorithm [VWO0G6]
O(n(S—I—w)/Z log n) < O(n2'688)

16

Using the dominance product we get:
e Deterministic Algorithm [VWO0G6]
O(B - nB+2)/2) < O(B - n*%%8), where B is the bit precision

e Randomized (Strongly Polynomial) Algorithm [VWO0G6]
O(n(3+w)/2 log TL) < O(n2'688)

Aside: Itis already known how to find a max node weighted triangle in
O(n*) [CzumajLingas07].

We can get for all edges the max node weighted triangle including the
edge in O(n*°%) time [VWYO06].

16-a

Deterministic Algorithm: Outline

17

Deterministic Algorithm: Outline

1. Does there exist a triangle of weight sum at least /K ?

— dominance product instance.

17-a

Deterministic Algorithm: Outline

1. Does there exist a triangle of weight sum at least /K ?

— dominance product instance.

2. Do binary search on K to find the maximum weight W1 of a triangle.

17-b

Deterministic Algorithm: Outline

. Does there exist a triangle of weight sum at least /& ?

— dominance product instance.
. Do binary search on K to find the maximum weight 11 of a triangle.

. Find a triangle of weight 11/,

17-c

Step 1: Given K, reduce to dominance product instance.

Vertex1 € V —

18

Step 1: Given K, reduce to dominance product instance.
Vertext € V —

e rowvector Ali,;] = (Ali, 1],..., Ali,n]) s.t.

o K —w(2) if there is an edge from i to j
Ali, j] =

o0 otherwise.

18-a

Step 1: Given £, reduce to dominance product instance.

Vertex 1, € V —

e row vector Ali, ;| = (Ali, 1],..., Alz,n]) s.t.

o K —w(2) if there is an edge from i to j
Ali, j| = |
o0 otherwise.

e columnvector B|;,i| = (B[1,1%],..., B[n,1]) st

o (w(z) + w(j) ifthere is an edge from i to j
B[],Z] = 9

| — 0 otherwise.

18-b

Step 1: Given £, reduce to dominance product instance.

Vertex 1, € V —

e row vector Ali, ;| = (Ali, 1],..., Alz,n]) s.t.

o K —w(2) if there is an edge from i to j
Ali, j] =

o0 otherwise.

e columnvector B|;,i| = (B[1,1%],..., B[n,1]) st

o (w(z) + w(j) ifthere is an edge from i to j
B[],Z] = 9

| — 0 otherwise.

Ali,j| < Blj, k| <= K <w(i)+w(k)+w(j)and (i,7),(j,k) € &

18-c

Step 1 cont.

19

Step 1 cont.

(A® B)|i, k] # 0iff
17 such that there isapath 7 — 7 — kand w(i) +w(k) +w(j) > K

19-a

Step 1 cont.

(A® B)|i, k] # 0iff
37 such that there isapathi — 7 — kand w(i) + w(k) +w(j) > K

Hence to check whether there is a triangle of weight at least /X, compute
C' = A ® B and check for an entry C'[i, j] # 0 such that (i, j) € F.

19-b

Runtime

20

Runtime

Let /5 be the max number of bits needed to represent a weight.

20-a

Runtime

Let /5 be the max number of bits needed to represent a weight.

Then the binary search calls at most O(B) dominance computations, and
: : 3tw
hence the runtimeis O(B - n"2).

20-b

Runtime

Let /5 be the max number of bits needed to represent a weight.

Then the binary search calls at most O(B) dominance computations, and
: : 3tw
hence the runtimeis O(B - n"2).

But this algorithm is not strongly polynomial because of the binary search.

20-c

Runtime

Let /5 be the max number of bits needed to represent a weight.

Then the binary search calls at most O(B) dominance computations, and
3+w)

hence the runtime is O(B - n >
But this algorithm is not strongly polynomial because of the binary search.

Can use random sampling of weighted triangles to obtain a

O(n"2" logn) strongly polynomial randomized algorithm.

20-d

The distance product

Recall (A x B)li, j] = ming{ Ali, k| + Blk, j]}.

21

The distance product

Recall (A x B)li, j] = ming{ Ali, k| + B[k, j| }.

The distance product is used to compute APSP.

21-a

The distance product

Recall (A x B)li, j| = ming{ Ali, k] + Blk, 7]}
The distance product is used to compute APSP.

The complexity of computing the distance product of two 7 X n matrices

IS the same as that of computing all pairs shortest distances in an n vertex

graph.

21-b

The distance product

Recall (A x B)li, j| = ming{ Ali, k] + Blk, 7]}
The distance product is used to compute APSP.

The complexity of computing the distance product of two 7 X n matrices

IS the same as that of computing all pairs shortest distances in an n vertex

graph.

The best algorithms for arbitrary real weights are

21-c

The distance product

Recall (A x B)li, j| = ming{ Ali, k] + Blk, 7]}
The distance product is used to compute APSP.

The complexity of computing the distance product of two 7 X n matrices

IS the same as that of computing all pairs shortest distances in an n vertex

graph.
The best algorithms for arbitrary real weights are

e by Chanin O(n’/logn)

21-d

The distance product

Recall (A x B)li, j| = ming{ Ali, k] + Blk, 7]}
The distance product is used to compute APSP.

The complexity of computing the distance product of two 7 X n matrices

IS the same as that of computing all pairs shortest distances in an n vertex
graph.

The best algorithms for arbitrary real weights are

e by Chan in O(n?/logn), and
e by Han in O(n?(loglogn/logn)5/4).

21-e

Computing bits of the distance product

22

Computing bits of the distance product

Suppose only need B bits of (A x B)[i, j] = ming{ A7, k] + Bk, j|}.

22-a

Computing bits of the distance product
Suppose only need B bits of (A x B)|i, j] = ming{Al¢, k] + Bk, j|}.

For constant K, we can set up a matrix A(K) s.t. for all 7, 7,
A,) = K — Afi,j]

22-b

Computing bits of the distance product
Suppose only need B bits of (A x B)|i, j] = ming{Al¢, k] + Bk, j|}.

For constant K, we can set up a matrix A(K) s.t. for all 7, 7,
A,) = K — Afi,j]

Compute D(K) = (A(K) ® B)

1 if D(K)[e,j] = n

0 otherwise.

and C'(K)[i, j] = {

22-Cc

Computing bits of the distance product
Suppose only need B bits of (A x B)|i, j] = ming{Al¢, k] + Bk, j|}.
For constant K, we can set up a matrix A(K) s.t. for all 7, 7,

A(K)i,] = K — Ali, j]

Compute D(K) = (A(K) ® B)
— D(K)[i,j] #n < 3k.K — Afi, k] > Blk, j]

1 if D(K)[e,j] = n

0 otherwise.

and C'(K)[i, j] = {

22-d

Computing bits of the distance product
Suppose only need B bits of (A x B)|i, j] = ming{Al¢, k] + Bk, j|}.
For constant K, we can set up a matrix A(K) s.t. for all 7, 7,

A(K)i,] = K — Ali, j]

Compute D(K) = (A(K) ® B)
— D(K)[i,j] #n < 3k.K — Afi, k] > Blk, j]

1 if D(K)[e,j] = n

0 otherwise.

and C'(K)[i, j] = {

Then C(K)|i, 7] = 1 <= ming(Ali, k| + Blk, j]) > K.

22-e

Computing bits of the distance product
Suppose only need B bits of (A x B)|i, j] = ming{Al¢, k] + Bk, j|}.

For constant K, we can set up a matrix A(K) s.t. for all 7, 7,
A) = K — Alij)

Compute D(K) = (A(K) ® B)

— D(K)[i,j] #n < 3Ik.K — Ali, k] > Blk, j|

1 it D(K)i,j] =n

0 otherwise.

and C'(K)[i, j] = {

Then C(K)|i, 7] = 1 <= ming(Ali, k| + Blk, j]) > K.

Most significant bit is then C(%) where WV is the smallest power of 2
larger than the largest distance.

22-f

Computing bits of the distance product

23

Computing bits of the distance product

C(K)[i,j] =1 <= ming(Afi, k] + Blk,j]) > K

The second most significant bit of (A x B)[z, 7] is

(O] A DI v (AC ()l 4 A O i),

Only compute 4 dominance products.

23-a

Computing bits of the distance product

C(K)[i,j] =1 <= ming(A[i, k] + Blk,j]) > K

The second most significant bit of (A x B)[z, 7] is

(O] A DI v (AC ()l 4 A O i),

Only compute 4 dominance products.

The (th bit is
V071 =)4 OOV~ 5 =)il

Here need O(2") dominance products.

23-C

Computing bits of the distance product

Thm. The first 5 most significant bits of the distance product

of two n X n matrices can be computed in O(QBn 2) time,

One can compute (22 — ¢) log n bits in O(n*) time.

24

Bottleneck paths

The bottleneck edge of a path in a graph from vertex u to vertex v is the
edge of smallest weight.

In many applications (e.g. max flow), the path of maximum bottleneck is
needed.

ab : 8 bu : —o0
ac: 2 ub 7
ad 10 ed: 6
U au : 2 de : 2
av : o ud 7
bc: —00 uy -9
cb: 6 uv 5

In this talk we will consider the all pairs max bottlenecks problem.

25

Bottleneck paths — related work

single source:
e Folklore: in O(m + nlog n) by Dijkstra.

all pairs:
e Folklore: undirected edge weighted in O(n?) using min spanning tree.
e Shapira, Yuster, Zwick 2007: directed node weighted in O(n?°®).

e VW: directed edge weighted in O(n?* ™).

26

MaxMin product

Recall (A e B)|i, j| = max; min{ Az, k|, Bk, j|}.

27

MaxMin product

Recall (A e B)[i, j| = max, min{ Ali, k|, Blk, j]}.

The MaxMin product is used to compute all pairs maximum bottleneck

paths (APBP), similar to how one uses distance product for APSP.

27-a

MaxMin product

Recall (A e B)[i, j| = max, min{ Ali, k|, Blk, j]}.

The MaxMin product is used to compute all pairs maximum bottleneck

paths (APBP), similar to how one uses distance product for APSP.

Computing the MaxMin product of two 1. X 1 matrices takes the same

time as computing all pairs bottleneck distances in an n vertex graph.

27-b

Computing the MaxMin product faster

C' = (A e B)li,j| = max, min{Als, k|, Blk, j|}
We use the dominance product again:

(A© B)i,j] = ik = Ali, k] < Blk, j]}|.

We will proceed as follows:

28

Computing the MaxMin product faster

C' = (A e B)|i,j] = max, min{ Ali, k|, Blk, 7]}

We use the dominance product again:

(A©B)i, gl = [tk Al k] < Blk, 5]}

We will proceed as follows:

1. compute for all 4, j, a;; = maxi{Ali, k| | Ali, k] < Bk, j]},
2. compute for all 4, 7, b;; = maxg{ B|k, 7] | B|k, 7] < Als, k|},

28-a

Computing the MaxMin product faster

C' = (A e B)|i,j] = max, min{ Ali, k|, Blk, 7]}
We use the dominance product again:

(A© B)i,j] = ik = Ali, k] < Blk, j]}|.

We will proceed as follows:
1. compute for all 4, j, a;; = maxi{Ali, k| | Ali, k] < Bk, j]},
2. compute for all 4, 7, b;; = maxg{ B|k, 7] | B|k, 7] < Als, k|},

3. setforalli, 7, C'|i,j] = max{a;;,b;;}.

28-b

Computing the MaxMin product faster

We want a;; = max{Ali, k| | Ali, k| < Blk, j]}.

1. Take the rows of A and sort the entries of each row.

2. Bucket the entries of each row of A, in their sorted order into s roughly

equal buckets.

(10 —11 51 32\ rowl: A[L2], A[L4], A[L3]
A 2 3 7 1 row?2: A[2,4], A]2,1], A[2, 2],
0 -1 -2 -3 ow3: A[3,4], A[3,3], A[3,2].

\ 721 4 21) rowd: A[44], A[4,2], A[4,3),

29

e

Computing the MaxMin product faster

3. For each bucket b create a matrix A(b) containing only the elements in

bucket b and oo in all other entries.

/oo —1.1 o0 3.2\ (10 oo 5.1 oo\
2 00 oo 1 oo 3 7 o0
A(l) = A(2) =
o0 00 -2 =3 0 —1 oo o0
\ o 21 oo 21) \ 7 o 4 oo)

30

Computing the MaxMin product faster

4. Compute A(b) - I3 for each bucket b.

(10 o0 51 oo\ (10 -11 51 32\ (1 0

A2)A — oo 3 7T o 5 2 3 T 1 _ 0 1
0 -1 oo oo o -1 -2 -3 2 1

\ 7 o 4 oo) \ 7 21 4 21/ \1 0

This tells us for every bucket b and each 7, 7, the number of coords k such
that Ali, k| is in bucket b and Ali, k| < Blk, j].

3+w

This step takes (OJ(sn 2).

31

S N o= O

Computing the MaxMin product faster

32

Computing the MaxMin product faster

5. For each 7, 7 we know the largest bucket b in which there is an entry

Ali, k] suchthat Ale, k] < Blk, j].

32-a

Computing the MaxMin product faster

5. For each 7, 7 we know the largest bucket b in which there is an entry
Ali, k] suchthat Ale, k] < Blk, j].
For each 7, j, search that bucket for & - there are at most O(n/s)

entries we have to go through for each pair 7, 7.

This step takes () (117 /5) and explicitly finds witnesses.

32-b

Computing the MaxMin product faster

5. For each 7, 7 we know the largest bucket b in which there is an entry
Ali, k] suchthat Ale, k] < Blk, j].
For each 7, j, search that bucket for & - there are at most O(n/s)

entries we have to go through for each pair 7, 7.

This step takes () (117 /5) and explicitly finds witnesses.

6. The overall runtime is maximized for s = n~ 4 and the runtime is then

O(n"5%) = O(n2%).

32-c

Computing the MaxMin product faster

5. For each 7, 7 we know the largest bucket b in which there is an entry
Ali, k] suchthat Ale, k] < Blk, j].
For each 7, j, search that bucket for & - there are at most O(n/s)

entries we have to go through for each pair 7, 7.

This step takes () (117 /5) and explicitly finds witnesses.

3—w
6. The overall runtime is maximized for s = n 4 and the runtime is then
9+w
O(n 4)=0(n"").

7. You can do slightly better by using sparse dominance — O(n2'79).

32-d

Open Problems

1. dominance product in n*? (VW Conjecture)
2. truly subcubic distance product using dominance product?

3. generalize the technigue for some class of problems?

33

Thank You!

34

