
A Matrix Product Approach to Weighted Graph Problems

Virginia Vassilevska

Carnegie Mellon University
June 16, 2007

Introduction

2

Introduction

Using fast matrix multiplication one can often obtain faster algorithms.

2-a

Introduction

Using fast matrix multiplication one can often obtain faster algorithms.

E.g., in a graph G = (V,E) to find a TRIANGLE (a, b, c) look at the

diagonal of the cube of the adjacency matrix. [Itai and Rodeh, 1978]

G3
=

































2 · · · · ·

· 2 · · · ·

· · 2 · · ·

...

































a

b

cd

e
f

g

h
i

j

Naiive algorithm: O(n3), matrix mult.: O(nω) = O(n2.38).

2-b

Introduction

Using fast matrix multiplication one can often obtain faster algorithms.

E.g., in a graph G = (V,E) to find a TRIANGLE (a, b, c) look at the

diagonal of the cube of the adjacency matrix. [Itai and Rodeh, 1978]

G3
=

































2 · · · · ·

· 2 · · · ·

· · 2 · · ·

...

































a

b

cd

e
f

g

h
i

j

Naiive algorithm: O(n3), matrix mult.: O(nω) = O(n2.38).

Other examples: LP, exact algorithms for NP-hard problems, graph perfect

matching, unweighted APSP.

2-c

What about weighted problems?

3

What about weighted problems?

Itai and Rodeh’s paper ends with:

“A related problem is finding a minimum weighted circuit in a weighted

graph. It is unclear to us whether our methods can be modified to answer

this problem too.”

3-a

What about weighted problems?

Itai and Rodeh’s paper ends with:

“A related problem is finding a minimum weighted circuit in a weighted

graph. It is unclear to us whether our methods can be modified to answer

this problem too.”

In general it is not clear how to speed-up weighted versions of problems in

a similar way.

Example open problems include: maximum weighted matching, finding

minimum weighted triangles and other patterns, weighted APSP.

3-b

Matrix product approach

Instead of matrix multiplication we use other matrix products to speed-up

weighted problems: dominance product, MaxMin product,

(min,≤)-product .

We demonstrate the approach on finding minimum weighted triangles,

computing bits of the distance product, all pairs bottleneck paths, all pairs

nondecreasing paths.

4

Talk outline

1. Some definitions

2. Maximum weighted triangle

3. Computing bits of the distance product

4. All pairs bottleneck paths

5. All pairs nondecreasing paths

6. Open problems

5

Various Matrix Products: definitions

6

Various Matrix Products: definitions

Algebraic Product:

C[i, j] = (A ·B)[i, j] =
∑

k{A[i, k] ·B[k, j]}.

6-a

Various Matrix Products: definitions

Algebraic Product:

C[i, j] = (A ·B)[i, j] =
∑

k{A[i, k] ·B[k, j]}.

Distance Product:

C[i, j] = (A ⋆ B)[i, j] = mink{A[i, k] + B[k, j]}.

6-b

Various Matrix Products: definitions

Algebraic Product:

C[i, j] = (A ·B)[i, j] =
∑

k{A[i, k] ·B[k, j]}.

Distance Product:

C[i, j] = (A ⋆ B)[i, j] = mink{A[i, k] + B[k, j]}.

MaxMin Product:

C[i, j] = (A •B)[i, j] = maxk min{A[i, k], B[k, j]}.

6-c

Various Matrix Products: definitions

Algebraic Product:

C[i, j] = (A ·B)[i, j] =
∑

k{A[i, k] ·B[k, j]}.

Distance Product:

C[i, j] = (A ⋆ B)[i, j] = mink{A[i, k] + B[k, j]}.

MaxMin Product:

C[i, j] = (A •B)[i, j] = maxk min{A[i, k], B[k, j]}.

Dominance Product:

C[i, j] = (A⊙B)[i, j] = |{k : A[i, k] ≤ B[k, j]}|.

6-d

Various Matrix Products: definitions

Algebraic Product:

C[i, j] = (A ·B)[i, j] =
∑

k{A[i, k] ·B[k, j]}.

Distance Product:

C[i, j] = (A ⋆ B)[i, j] = mink{A[i, k] + B[k, j]}.

MaxMin Product:

C[i, j] = (A •B)[i, j] = maxk min{A[i, k], B[k, j]}.

Dominance Product:

C[i, j] = (A⊙B)[i, j] = |{k : A[i, k] ≤ B[k, j]}|.

(min,≤)-Product:

C[i, j] = (A 4 B)[i, j] = mink{B[k, j] : A[i, k] ≤ B[k, j]}.

6-e

Various Matrix Products: definitions

Algebraic Product:

C[i, j] = (A ·B)[i, j] =
∑

k{A[i, k] ·B[k, j]}. nω

Distance Product:

C[i, j] = (A ⋆ B)[i, j] = mink{A[i, k] + B[k, j]}.

MaxMin Product:

C[i, j] = (A •B)[i, j] = maxk min{A[i, k], B[k, j]}.

Dominance Product:

C[i, j] = (A⊙B)[i, j] = |{k : A[i, k] ≤ B[k, j]}|.

(min,≤)-Product:

C[i, j] = (A 4 B)[i, j] = mink{B[k, j] : A[i, k] ≤ B[k, j]}.

6-f

Various Matrix Products: definitions

Algebraic Product:

C[i, j] = (A ·B)[i, j] =
∑

k{A[i, k] ·B[k, j]}. nω

Distance Product:

C[i, j] = (A ⋆ B)[i, j] = mink{A[i, k] + B[k, j]}.

MaxMin Product:

C[i, j] = (A •B)[i, j] = maxk min{A[i, k], B[k, j]}.

Dominance Product:

C[i, j] = (A⊙B)[i, j] = |{k : A[i, k] ≤ B[k, j]}|. n
3+ω

2

(min,≤)-Product:

C[i, j] = (A 4 B)[i, j] = mink{B[k, j] : A[i, k] ≤ B[k, j]}.

6-g

Various Matrix Products: definitions

Algebraic Product:

C[i, j] = (A ·B)[i, j] =
∑

k{A[i, k] ·B[k, j]}. nω

Distance Product:

C[i, j] = (A ⋆ B)[i, j] = mink{A[i, k] + B[k, j]}.

MaxMin Product:

C[i, j] = (A •B)[i, j] = maxk min{A[i, k], B[k, j]}. n2+ω
3

Dominance Product:

C[i, j] = (A⊙B)[i, j] = |{k : A[i, k] ≤ B[k, j]}|. n
3+ω

2

(min,≤)-Product:

C[i, j] = (A 4 B)[i, j] = mink{B[k, j] : A[i, k] ≤ B[k, j]}. n2+ω
3

6-h

Various Matrix Products: definitions

Algebraic Product:

C[i, j] = (A ·B)[i, j] =
∑

k{A[i, k] ·B[k, j]}. nω

Distance Product:

C[i, j] = (A ⋆ B)[i, j] = mink{A[i, k] + B[k, j]}. subcubic?

MaxMin Product:

C[i, j] = (A •B)[i, j] = maxk min{A[i, k], B[k, j]}. n2+ω
3

Dominance Product:

C[i, j] = (A⊙B)[i, j] = |{k : A[i, k] ≤ B[k, j]}|. n
3+ω

2

(min,≤)-Product:

C[i, j] = (A 4 B)[i, j] = mink{B[k, j] : A[i, k] ≤ B[k, j]}. n2+ω
3

6-i

Maximum node weighted triangle

Input: Graph with real-number weights on the nodes

Task: Find a triangle of maximum weight sum

7

Maximum node weighted triangle

Input: Graph with real-number weights on the nodes

Task: Find a triangle of maximum weight sum

20

10

5

42 17

19 4

96

9.1

7-a

Maximum edge weighted triangle

Input: Graph with real-number weights on the edges

Task: Find a triangle of maximum weight sum

8

Maximum edge weighted triangle

Input: Graph with real-number weights on the edges

Task: Find a triangle of maximum weight sum

(Reduce Node-Weighted Triangle to Edge-Weighted Triangle):

Push weights from nodes to edges: w(u, v) = (w(u) + w(v))/2

8-a

Folklore Result

9

Folklore Result

Recall the distance product of A and B is

(A ⋆ B)[i, j] = min
k
{A[i, k] + B[k, j]}

9-a

Folklore Result

Recall the distance product of A and B is

(A ⋆ B)[i, j] = min
k
{A[i, k] + B[k, j]}

Observation: Distance Product can solve Max Weighted Triangle

9-b

Folklore Result

Recall the distance product of A and B is

(A ⋆ B)[i, j] = min
k
{A[i, k] + B[k, j]}

Observation: Distance Product can solve Max Weighted Triangle

→ Compute MAXi,j{−((−A) ⋆ (−A))[i, j] + A[i, j]}

(Min Weight Triangle: MINi,j{(A ⋆ A)[i, j] + A[i, j]})

9-c

”Easy” Weighted Triangle Algorithms

10

”Easy” Weighted Triangle Algorithms

• [Zwick, ’02] O(M · nω) distance product algorithm, M is the largest

weight of an edge

=⇒ Max Weight Triangle in O(M · nω) (Pseudopolynomial)

10-a

”Easy” Weighted Triangle Algorithms

• [Zwick, ’02] O(M · nω) distance product algorithm, M is the largest

weight of an edge

=⇒ Max Weight Triangle in O(M · nω) (Pseudopolynomial)

• [Chan, ’07] O(n3 log log3 n/ log2 n) distance product

=⇒ Max Weighted Triangle in O(n3 log log3 n/ log2 n)

10-b

”Easy” Weighted Triangle Algorithms

• [Zwick, ’02] O(M · nω) distance product algorithm, M is the largest

weight of an edge

=⇒ Max Weight Triangle in O(M · nω) (Pseudopolynomial)

• [Chan, ’07] O(n3 log log3 n/ log2 n) distance product

=⇒ Max Weighted Triangle in O(n3 log log3 n/ log2 n)

Truly Sub-Cubic Algorithm for Max Weighted Triangle?

10-c

Using Dominance Product we get:

• Deterministic Algorithm [VW06]

O(B · n(3+ω)/2) ≤ O(B · n2.688), where B is the bit precision

• Randomized (Strongly Polynomial) Algorithm [VW06]

O(n(3+ω)/2 log n) ≤ O(n2.688)

11

Using Dominance Product we get:

• Deterministic Algorithm [VW06]

O(B · n(3+ω)/2) ≤ O(B · n2.688), where B is the bit precision

• Randomized (Strongly Polynomial) Algorithm [VW06]

O(n(3+ω)/2 log n) ≤ O(n2.688)

Aside: It is already known how to find a max node weighted triangle in

O(nω) [CzumajLingas07].

We can get for all edges the max node weighted triangle including the

edge in O(n2.58) time [VWY06].

11-a

Deterministic Algorithm: Outline

12

Deterministic Algorithm: Outline

1. Does there exist a triangle of weight sum at least K?

→ dominance product instance.

12-a

Deterministic Algorithm: Outline

1. Does there exist a triangle of weight sum at least K?

→ dominance product instance.

2. Do binary search on K to find the maximum weight W of a triangle.

12-b

Deterministic Algorithm: Outline

1. Does there exist a triangle of weight sum at least K?

→ dominance product instance.

2. Do binary search on K to find the maximum weight W of a triangle.

3. Find a triangle of weight W .

12-c

Step 1: Given K , reduce to dominance product instance.

Vertex i ∈ V →

13

Step 1: Given K , reduce to dominance product instance.

Vertex i ∈ V →

• row vector A[i, ;] = (A[i, 1], . . . , A[i, n]) s.t.

A[i, j] =

{

K − w(i) if there is an edge from i to j

∞ otherwise.

13-a

Step 1: Given K , reduce to dominance product instance.

Vertex i ∈ V →

• row vector A[i, ;] = (A[i, 1], . . . , A[i, n]) s.t.

A[i, j] =

{

K − w(i) if there is an edge from i to j

∞ otherwise.

• column vector B[; , i] = (B[1, i], . . . , B[n, i]) s.t.

B[j, i] =

{

w(i) + w(j) if there is an edge from i to j

−∞ otherwise.

13-b

Step 1: Given K , reduce to dominance product instance.

Vertex i ∈ V →

• row vector A[i, ;] = (A[i, 1], . . . , A[i, n]) s.t.

A[i, j] =

{

K − w(i) if there is an edge from i to j

∞ otherwise.

• column vector B[; , i] = (B[1, i], . . . , B[n, i]) s.t.

B[j, i] =

{

w(i) + w(j) if there is an edge from i to j

−∞ otherwise.

A[i, j] ≤ B[j, k] ⇐⇒ K ≤ w(i) + w(k) + w(j) and (i, j), (j, k) ∈ E

13-c

Step 1 cont.

Recall C[i, j] = (A⊙B)[i, k] = |{j : A[i, j] ≤ B[j, k]}|.

14

Step 1 cont.

Recall C[i, j] = (A⊙B)[i, k] = |{j : A[i, j] ≤ B[j, k]}|.

(A⊙B)[i, k] 6= 0 iff

∃j such that there is a path i→ j → k and w(i) + w(k) + w(j) ≥ K

14-a

Step 1 cont.

Recall C[i, j] = (A⊙B)[i, k] = |{j : A[i, j] ≤ B[j, k]}|.

(A⊙B)[i, k] 6= 0 iff

∃j such that there is a path i→ j → k and w(i) + w(k) + w(j) ≥ K

Hence to check whether there is a triangle of weight at least K , compute

C = A⊙B and check for an entry C[i, j] 6= 0 such that (i, j) ∈ E.

14-b

Runtime

15

Runtime

Let B be the max number of bits needed to represent a weight.

15-a

Runtime

Let B be the max number of bits needed to represent a weight.

Then the binary search calls at most O(B) dominance computations, and

hence the runtime is O(B · n
3+ω

2).

15-b

Runtime

Let B be the max number of bits needed to represent a weight.

Then the binary search calls at most O(B) dominance computations, and

hence the runtime is O(B · n
3+ω

2).

But this algorithm is not strongly polynomial because of the binary search.

15-c

Runtime

Let B be the max number of bits needed to represent a weight.

Then the binary search calls at most O(B) dominance computations, and

hence the runtime is O(B · n
3+ω

2).

But this algorithm is not strongly polynomial because of the binary search.

Can use random sampling of weighted triangles to obtain a

O(n
3+ω

2 log n) strongly polynomial randomized algorithm.

15-d

Talk outline

1. Some definitions

2. Maximum weighted triangle

3. Computing bits of the distance product

4. All pairs bottleneck paths

5. All pairs nondecreasing paths

6. Open problems

16

The distance product

Recall (A ⋆ B)[i, j] = mink{A[i, k] + B[k, j]}.

17

The distance product

Recall (A ⋆ B)[i, j] = mink{A[i, k] + B[k, j]}.

The distance product is used to compute APSP.

17-a

The distance product

Recall (A ⋆ B)[i, j] = mink{A[i, k] + B[k, j]}.

The distance product is used to compute APSP.

The complexity of computing the distance product of two n× n matrices

is the same as that of computing all pairs shortest distances in an n vertex

graph.

17-b

The distance product

Recall (A ⋆ B)[i, j] = mink{A[i, k] + B[k, j]}.

The distance product is used to compute APSP.

The complexity of computing the distance product of two n× n matrices

is the same as that of computing all pairs shortest distances in an n vertex

graph.

The current best algorithm for arbitrary real weights is by Chan in

O(n3 log log3 n/ log2 n).

17-c

Computing bits of the distance product

18

Computing bits of the distance product

Suppose only need B bits of (A ⋆ B)[i, j] = mink{A[i, k] + B[k, j]}.

18-a

Computing bits of the distance product

Suppose only need B bits of (A ⋆ B)[i, j] = mink{A[i, k] + B[k, j]}.

For constant K , we can set up a matrix A(K) s.t. for all i, j,

A(K)[i, j] = K − A[i, j].

18-b

Computing bits of the distance product

Suppose only need B bits of (A ⋆ B)[i, j] = mink{A[i, k] + B[k, j]}.

For constant K , we can set up a matrix A(K) s.t. for all i, j,

A(K)[i, j] = K − A[i, j].

Compute D(K) = (A(K)⊙B)

and C(K)[i, j] =

{

1 if D(K)[i, j] = n

0 otherwise.

18-c

Computing bits of the distance product

Suppose only need B bits of (A ⋆ B)[i, j] = mink{A[i, k] + B[k, j]}.

For constant K , we can set up a matrix A(K) s.t. for all i, j,

A(K)[i, j] = K − A[i, j].

Compute D(K) = (A(K)⊙B)

→ D(K)[i, j] 6= n ⇐⇒ ∃k.K − A[i, k] > B[k, j]

and C(K)[i, j] =

{

1 if D(K)[i, j] = n

0 otherwise.

18-d

Computing bits of the distance product

Suppose only need B bits of (A ⋆ B)[i, j] = mink{A[i, k] + B[k, j]}.

For constant K , we can set up a matrix A(K) s.t. for all i, j,

A(K)[i, j] = K − A[i, j].

Compute D(K) = (A(K)⊙B)

→ D(K)[i, j] 6= n ⇐⇒ ∃k.K − A[i, k] > B[k, j]

and C(K)[i, j] =

{

1 if D(K)[i, j] = n

0 otherwise.

Then C(K)[i, j] = 1 ⇐⇒ mink(A[i, k] + B[k, j]) ≥ K .

18-e

Computing bits of the distance product

Suppose only need B bits of (A ⋆ B)[i, j] = mink{A[i, k] + B[k, j]}.

For constant K , we can set up a matrix A(K) s.t. for all i, j,

A(K)[i, j] = K − A[i, j].

Compute D(K) = (A(K)⊙B)

→ D(K)[i, j] 6= n ⇐⇒ ∃k.K − A[i, k] > B[k, j]

and C(K)[i, j] =

{

1 if D(K)[i, j] = n

0 otherwise.

Then C(K)[i, j] = 1 ⇐⇒ mink(A[i, k] + B[k, j]) ≥ K .

Most significant bit is then C(W
2

) where W is the smallest power of 2

larger than the largest distance.

18-f

Computing bits of the distance product

19

Computing bits of the distance product

C(K)[i, j] = 1 ⇐⇒ mink(A[i, k] + B[k, j]) ≥ K

The second most significant bit of (A ⋆ B)[i, j] is

(¬C(W)[i, j] ∧ C(
3W

4
)[i, j]) ∨ (¬C(

W

2
)[i, j] ∧ C(

W

4
)[i, j]).

Only compute 4 dominance products.

19-a

Computing bits of the distance product

C(K)[i, j] = 1 ⇐⇒ mink(A[i, k] + B[k, j]) ≥ K

The second most significant bit of (A ⋆ B)[i, j] is

(¬C(W)[i, j] ∧ C(
3W

4
)[i, j]) ∨ (¬C(

W

2
)[i, j] ∧ C(

W

4
)[i, j]).

Only compute 4 dominance products.

The ℓth bit is

2ℓ−1
−1∨

s=0

[¬C(W (1−
s

2ℓ−1
))[i, j] ∧ C(W (1−

s

2ℓ−1
−

1

2ℓ
))[i, j]].

Here need O(2ℓ) dominance products.

19-c

Computing bits of the distance product

Thm. The first B most significant bits of the distance product

of two n× n matrices can be computed in O(2Bn
3+ω

2) time.

One can compute (3−ω
2 − ε) log n bits in O(n3−ε) time.

20

Talk outline

1. Some definitions

2. Maximum weighted triangle

3. Computing bits of the distance product

4. All pairs bottleneck paths

5. All pairs nondecreasing paths

6. Open problems

21

Bottleneck paths

The bottleneck edge of a path in a graph from vertex u to vertex v is the

edge of smallest weight.

In many applications (e.g. max flow), the path of maximum bottleneck is

needed.

7

8

1

2

6

2

7

5

2

10
u v

a b

c d

ab : 8

ac : 2

ad : 10

au : 2

av : 5

bc : −∞

cb : 6

bu : −∞

ub : 7

cd : 6

dc : 2

ud : 7

du : 2

uv : 5

In this talk we will consider the all pairs max bottlenecks problem.
22

Bottleneck paths – related work

single source:

• Folklore: in O(m + n log n) by Dijkstra, using Fibonacci heaps.

all pairs:

• Pollack 1960: introduced the problem, first cubic algorithm.

• Hu 1961: undirected, edge weighted using max spanning tree. Now

O(n2).

• Shapira, Yuster, Zwick 2007: directed, node weighted in O(n2.58).

• V., Williams, Yuster 2007: directed, edge weighted in O(n2.79).

23

MaxMin product

The MaxMin product of two n× n matrices A and B is

(A •B)[i, j] = max
k

min{A[i, k], B[k, j]}.

24

MaxMin product

The MaxMin product of two n× n matrices A and B is

(A •B)[i, j] = max
k

min{A[i, k], B[k, j]}.

Adjacency matrix for weighted graph G = (V,E,w): A[i, j] = wij .

(A • A)[i, j] is the maximum bottleneck edge weight over all paths of

length 2 from i to j.

A • A • . . . • A
︸ ︷︷ ︸

n times

: the maximum bottleneck weights for all vertex pairs.

24-a

MaxMin product

25

MaxMin product

The MaxMin product is used to compute all pairs maximum bottleneck

paths (APBP), similar to how one uses distance product for APSP.

25-a

MaxMin product

The MaxMin product is used to compute all pairs maximum bottleneck

paths (APBP), similar to how one uses distance product for APSP.

Computing the MaxMin product of two n× n matrices takes the same

time as computing all pairs bottleneck distances in an n vertex graph.

[AhoHopcroftUllman74]

25-b

Computing the MaxMin product faster

C = (A •B)[i, j] = maxk min{A[i, k], B[k, j]}

We use the dominance product again:

(A⊙B)[i, j] = |{k : A[i, k] ≤ B[k, j]}|.

We will proceed as follows:

26

Computing the MaxMin product faster

C = (A •B)[i, j] = maxk min{A[i, k], B[k, j]}

We use the dominance product again:

(A⊙B)[i, j] = |{k : A[i, k] ≤ B[k, j]}|.

We will proceed as follows:

1. compute for all i, j, aij = maxk{A[i, k] | A[i, k] ≤ B[k, j]},

2. compute for all i, j, bij = maxk{B[k, j] | B[k, j] ≤ A[i, k]},

26-a

Computing the MaxMin product faster

C = (A •B)[i, j] = maxk min{A[i, k], B[k, j]}

We use the dominance product again:

(A⊙B)[i, j] = |{k : A[i, k] ≤ B[k, j]}|.

We will proceed as follows:

1. compute for all i, j, aij = maxk{A[i, k] | A[i, k] ≤ B[k, j]},

2. compute for all i, j, bij = maxk{B[k, j] | B[k, j] ≤ A[i, k]},

3. set for all i, j, C[i, j] = max{aij, bij}.

26-b

Computing the MaxMin product faster

C = (A •B)[i, j] = maxk min{A[i, k], B[k, j]}

We use the dominance product again:

(A⊙B)[i, j] = |{k : A[i, k] ≤ B[k, j]}|.

We will proceed as follows:

1. compute for all i, j, aij = maxk{A[i, k] | A[i, k] ≤ B[k, j]},

2. compute for all i, j, bij = maxk{B[k, j] | B[k, j] ≤ A[i, k]},

(max,≤)-Product!, (min,≤)-Product analogous.

3. set for all i, j, C[i, j] = max{aij, bij}.

26-c

Computing the MaxMin product faster

We want aij = maxk{A[i, k] | A[i, k] ≤ B[k, j]}.

1. Take the rows of A and sort the entries of each row.

2. Bucket the entries of each row of A, in their sorted order into s roughly

equal buckets.

A =










10 −1.1 5.1 3.2

2 3 7 1

0 −1 −2 −3

7 2.1 4 2.1










row 1 : A[1, 2], A[1, 4], A[1, 3], A[1, 1]

row 2 : A[2, 4], A[2, 1], A[2, 2], A[2, 3]

row 3 : A[3, 4], A[3, 3], A[3, 2], A[3, 1]

row 4 : A[4, 4], A[4, 2], A[4, 3], A[4, 1]

27

Computing the MaxMin product faster

3. For each bucket b create a matrix A(b) containing only the elements in

bucket b and∞ in all other entries.

A(1) =










∞ −1.1 ∞ 3.2

2 ∞ ∞ 1

∞ ∞ −2 −3

∞ 2.1 ∞ 2.1










A(2) =










10 ∞ 5.1 ∞

∞ 3 7 ∞

0 −1 ∞ ∞

7 ∞ 4 ∞










28

Computing the MaxMin product faster

4. Compute A(b)⊙B for each bucket b.

A(2)⊙A =










10 ∞ 5.1 ∞

∞ 3 7 ∞

0 −1 ∞ ∞

7 ∞ 4 ∞










⊙










10 −1.1 5.1 3.2

2 3 7 1

0 −1 −2 −3

7 2.1 4 2.1










=










1 0 0 0

0 1 1 0

2 1 2 2

1 0 0 0










This tells us for every bucket b and each i, j, the number of coords k such

that A[i, k] is in bucket b and A[i, k] ≤ B[k, j].

This step takes O(sn
3+ω

2).

29

Computing the MaxMin product faster

30

Computing the MaxMin product faster

5. For each i, j we know the largest bucket b in which there is an entry

A[i, k] such that A[i, k] ≤ B[k, j].

30-a

Computing the MaxMin product faster

5. For each i, j we know the largest bucket b in which there is an entry

A[i, k] such that A[i, k] ≤ B[k, j].

For each i, j, search that bucket for k - there are at most O(n/s)

entries we have to go through for each pair i, j.

This step takes O(n3/s) and explicitly finds witnesses.

30-b

Computing the MaxMin product faster

5. For each i, j we know the largest bucket b in which there is an entry

A[i, k] such that A[i, k] ≤ B[k, j].

For each i, j, search that bucket for k - there are at most O(n/s)

entries we have to go through for each pair i, j.

This step takes O(n3/s) and explicitly finds witnesses.

6. The overall runtime is maximized for s = n
3−ω

4 and the runtime is then

O(n
9+ω

4) = O(n2.85).

30-c

Computing the MaxMin product faster

5. For each i, j we know the largest bucket b in which there is an entry

A[i, k] such that A[i, k] ≤ B[k, j].

For each i, j, search that bucket for k - there are at most O(n/s)

entries we have to go through for each pair i, j.

This step takes O(n3/s) and explicitly finds witnesses.

6. The overall runtime is maximized for s = n
3−ω

4 and the runtime is then

O(n
9+ω

4) = O(n2.85).

7. You can do slightly better by using sparse dominance→ O(n2.79).

30-d

Talk outline

1. Some definitions

2. Maximum weighted triangle

3. Computing bits of the distance product

4. All pairs bottleneck paths

5. All pairs nondecreasing paths

6. Open problems

31

Nondecreasing paths

A path from s to t in a weighted graph G is nondecreasing if the

consecutive weights on the path are nondecreasing:

s
1
→ u1

20
→ u2

30
→ t

A minimum nondecreasing path from s to t is the path with minimum last

edge over all nondecreasing paths.

32

Nondecreasing paths

Why do we want the min last edge?

33

Nondecreasing paths

Why do we want the min last edge?

Train trip scheduling! You have a time table with train arrival, departure

times, origins and destinations.

Want to know, for all origins s and destinations t, how to hop from one

train to another to get to t as early as possible.

33-a

A train schedule graph

A

A

B

D

B

D

C

C

1 : 00

2 : 00

3 : 00

2 : 45

4 : 30

2 : 15

2 : 00 4 : 00

T1

T2

T3

T4

T5 1 : 30A C 4 : 45

A

B

D

C

T1

T2

T3

T4

1 : 00

2 : 45

2 : 00

2 : 15

3 : 00

4 : 30

2 : 00

4 : 00

T5

1 : 30 4 : 45

34

A train schedule graph

A

A

B

D

B

D

C

C

1 : 00

2 : 00

3 : 00

2 : 45

4 : 30

2 : 15

2 : 00 4 : 00

T1

T2

T3

T4

T5 1 : 30A C 4 : 45

A

B

D

C

T1

T2

T3

T4

1 : 00

2 : 45

2 : 00

2 : 15

3 : 00

4 : 30

2 : 00

4 : 00

T5

1 : 30 4 : 45

All pairs nondecreasing paths (APNP): for all pairs of nodes s, t find the

minimum weight of a last edge over all nondecreasing paths from s to t.

34-a

Related work

Single source version has a long history; studied alongside SSSP.

Minty 1958, Moore 1959: single source version in O(mn)

Dijkstra + Fibonacci heaps: single source version in O(m + n log n).

The best running time in terms of n for APNP: O(n3).

35

(min,≤)-Product

Recall: (min,≤)-Product:

C[i, j] = (A 4 B)[i, j] = min
k
{B[k, j] : A[i, k] ≤ B[k, j]}.

36

(min,≤)-Product

Recall: (min,≤)-Product:

C[i, j] = (A 4 B)[i, j] = min
k
{B[k, j] : A[i, k] ≤ B[k, j]}.

For edge weighted graph G, if

A[i, j] = wij , wii = −∞, wij =∞ if (i, j) /∈ E:

A 4 A gives all pairs min nondecreasing paths of length≤ 2.

36-a

(min,≤)-Product

Recall: (min,≤)-Product:

C[i, j] = (A 4 B)[i, j] = min
k
{B[k, j] : A[i, k] ≤ B[k, j]}.

For edge weighted graph G, if

A[i, j] = wij , wii = −∞, wij =∞ if (i, j) /∈ E:

A 4 A gives all pairs min nondecreasing paths of length≤ 2.

A 4 A 4 . . . ,4A
︸ ︷︷ ︸

k times

: all pairs min nondecreasing paths of length≤ k.

36-b

(min,≤)-Product

Recall: (min,≤)-Product:

C[i, j] = (A 4 B)[i, j] = min
k
{B[k, j] : A[i, k] ≤ B[k, j]}.

For edge weighted graph G, if

A[i, j] = wij , wii = −∞, wij =∞ if (i, j) /∈ E:

A 4 A gives all pairs min nondecreasing paths of length≤ 2.

A 4 A 4 . . . ,4A
︸ ︷︷ ︸

k times

: all pairs min nondecreasing paths of length≤ k.

Unclear how to compute transitive closure under (min,≤)-Product

efficiently...

36-c

APNP

IDEA (GalilMargalit97, Zwick02 . . .): Handle short and long paths

separately.

37

APNP

IDEA (GalilMargalit97, Zwick02 . . .): Handle short and long paths

separately.

Short paths: at most s edges. Finding all pairs min nondecreasing paths

on at most s edges:

C1 = A

For k = 2, . . . , s: Ck = Ck−1 4 A.

This takes O(sn2+ω/3) time.

Also, using the witnesses keep track of actual paths of length at most s.

37-a

Long nondecreasing paths

38

Long nondecreasing paths

Long paths: Consider min nondecreasing path P , which is minimal but on

at least s edges.

P = i→ u1 → u2 → . . .→ us → . . .→ j.

38-a

Long nondecreasing paths

Long paths: Consider min nondecreasing path P , which is minimal but on

at least s edges.

P = i→ u1 → u2 → . . .→ us → . . .→ j.

The subpath from i to us can be replaced WLOG with a minimum

nondecreasing path from i to us of length s, without changing the

minimality of the path from i to j.

38-b

Long nondecreasing paths

Long paths: Consider min nondecreasing path P , which is minimal but on

at least s edges.

P = i→ u1 → u2 → . . .→ us → . . .→ j.

The subpath from i to us can be replaced WLOG with a minimum

nondecreasing path from i to us of length s, without changing the

minimality of the path from i to j.

When computing Cs one will find a minimum nondecreasing path from i to

us and it will be of length s by the minimality of P .

38-c

Long nondecreasing paths

A best nondecreasing path from i to j on at least s nodes can be obtained

by continuing some path of length s obtained when computing Cs.

39

Long nondecreasing paths

A best nondecreasing path from i to j on at least s nodes can be obtained

by continuing some path of length s obtained when computing Cs.

Consider all min nondecreasing paths of length s found when computing

Cs (ignore shorter paths). We have at most n2 such paths.

39-a

Long nondecreasing paths

A best nondecreasing path from i to j on at least s nodes can be obtained

by continuing some path of length s obtained when computing Cs.

Consider all min nondecreasing paths of length s found when computing

Cs (ignore shorter paths). We have at most n2 such paths.

Lemma (Zwick02, Chan07. . .): Given a collection of≤ n2 subsets of

vertices, each of size s, one can find in O(sn2) time a set of n log n/s

vertices, hitting every one of the subsets.

39-b

Long nondecreasing paths

A best nondecreasing path from i to j on at least s nodes can be obtained

by continuing some path of length s obtained when computing Cs.

Consider all min nondecreasing paths of length s found when computing

Cs (ignore shorter paths). We have at most n2 such paths.

Lemma (Zwick02, Chan07. . .): Given a collection of≤ n2 subsets of

vertices, each of size s, one can find in O(sn2) time a set of n log n/s

vertices, hitting every one of the subsets.

In O(sn2) time we obtain a vertex set S of size n log n/s hitting for every

pair of vertices i, j some minimal long minimum nondecreasing path from

i to j (if one exists).

39-c

Long nondecreasing paths

We have a set S of size n log n/s. We want for all pairs of vertices i, j a

minimum nondecreasing path from i to j going through S.

40

Long nondecreasing paths

We have a set S of size n log n/s. We want for all pairs of vertices i, j a

minimum nondecreasing path from i to j going through S.

We show that one can find all pairs min nondecreasing paths going

through a given vertex in O(n2 log n) time. So all pairs min

nondecreasing paths through S can be found in O((n3 log2 n)/s) time.

40-a

APNP

All pairs min nondecreasing paths of length at most s can be found in

O(sn2+ω/3) time.

Minimal best nondecreasing paths of length at least s can be found in

O((n3 log2 n)/s) time.

To obtain APNP, take for all pairs the minimum of the short paths and long

paths min weights.

Setting s to Θ(n
1−ω/3

2 log n), compute APNP in

O(n
15+ω

6 log n) = O(n2.9) time.

41

Open Problems

1. dominance product in nω?

2. remove bucketting?

3. truly subcubic distance product?

42

Thank You!

43

All pairs through a given vertex T

1. Find for each node u the minimum weight W (u) of a last edge on a

nondecreasing path from u to T

2. Find for each pair of nodes u, v the minimum weight of a last edge on

a nondecreasing path from T to v starting with an edge of weight

≥ W (u).← use data structure.

3. Do all of this in O(n2 log n) time.

44

Computing W (u)

1. For each u, sort inedges and store in binary search tree, so that

successors can be found in O(log n) time.

2. start from T ; For current vertex u, let w be the weight out of T used to

get to u;

If w is the first weight used to get to u, set W (u) = w.

3. Let w′ be the weight used to enter u. In O(log n) time find the first

inedge (v, u) of u in sorted order with weight≥ w′.

Delete (v, u) from bintree and graph, recurse on v with w and

w(v, u).

4. This all takes O(m log n) and computes W (u) for all u.

45

Last edge weights for paths from T to v

1. For each v, create a bintree T (v) with the edges out of T as leaves.

← O(n2 log n) time to create all T (v).

2. Fill in two nums for each node:

(a) min weight of leaf in subtree

(b) min last weight edge on path from T to v starting with an edge in

subtree;

46

Last edge weights for paths from T to v

1. For each v, create a bintree T (v) with the edges out of T as leaves.

← O(n2 log n) time to create all T (v).

2. Fill in two nums for each node:

(a) min weight of leaf in subtree Fill in at creation of tree.

(b) min last weight edge on path from T to v starting with an edge in

subtree;

46-a

Last edge weights for paths from T to v

1. For each v, create a bintree T (v) with the edges out of T as leaves.

← O(n2 log n) time to create all T (v).

2. Fill in two nums for each node:

(a) min weight of leaf in subtree Fill in at creation of tree.

(b) min last weight edge on path from T to v starting with an edge in

subtree;Fill in with a second search.

46-b

1

2

10

20

12

11

1

11

10

21

5

T

v

1 2 20 2110 10∞12

1 1012 10

1 10

1.5
T (v)

47

Second search

store for each v the outedges in a binary tree Out(v), sorted in

nondecreasing order of weights

start from T and go thru its outedges (T, v) in nonincreasing order,

running the following ALG(v, w(T, v), w(T, v))

ALG(v, w, w′):

let w be weight of edge out of T used to get to v; let w′ be weight used to

enter v. find w leaf in T (v), if w′ is current smallest weight into v then

update second number of leaf,

go up path in tree and update second nums on path if necessary in

O(log n) time.

then, for all edges (v, u) out of v with weights≥ w′, delete (v, u) from

graph and Out(v) in O(log n) per edge, recurse on u with w and

48

w(u, v). this takes O(n2 log n) over all.

for all pairs u, v do: get min weight w of last edge on nondec path from u

to T . in tree for v, find w, then walk up path to root, checking right children

of nodes to find min weight w′ on a nondec path from T to v starting with

a weight≥ w. this takes O(log n) time per pair u, v, so O(n2 log n)

overall.

49

