Finding a Maximum Weight Triangle in $O(n^{3-\delta})$ Time, With Applications

Virginia Vassilevska and Ryan Williams
Carnegie Mellon University

The Problem

Input: Graph with real-number weights on the nodes

Task: Find a triangle of maximum weight sum

The Problem

Input: Graph with real-number weights on the nodes

Task: Find a triangle of maximum weight sum

The Problem

Input: Graph with real-number weights on the nodes

Task: Find a triangle of maximum weight sum

Past Work

Past Work

[Itai and Rodeh, '78]

Triangle Detection is in $O(n^{\omega})$ time:

Check if
$$(A \wedge (A \times A)) \neq 0$$

Past Work

[Itai and Rodeh, '78]

Triangle Detection is in $O(n^{\omega})$ time:

Check if
$$(A \wedge (A \times A)) \neq 0$$

Their paper ends with:

"A related problem is finding a minimum weighted circuit in a weighted graph. It is unclear to us whether our methods can be modified to answer this problem too."

Def. The **distance product** of A and B is the matrix

$$(A \star B)[i,j] = \min_{k} \{A[i,k] + B[k,j]\}$$

Def. The **distance product** of A and B is the matrix

$$(A \star B)[i,j] = \min_{k} \{A[i,k] + B[k,j]\}$$

Observation: Distance Product can solve Max Weight Triangle

Def. The distance product of A and B is the matrix

$$(A \star B)[i,j] = \min_{k} \{A[i,k] + B[k,j]\}$$

Observation: Distance Product can solve Max Weight Triangle

- 1. Push weights from nodes to edges: w(u,v)=(w(u)+w(v))/2 (Reduce Node-Weighted Triangle to Edge-Weighted Triangle)
- 2. Compute $MAX_{i,j}\{((-A)\star (-A))[i,j] A[i,j]\}$ (Min Weight Triangle: $MIN_{i,j}\{(A\star A)[i,j] + A[i,j]\}$)

• [Zwick, '02] $O(M \cdot n^{\omega})$ distance product algorithm

 \Longrightarrow Max Weight Triangle in $O(M \cdot n^{\omega})$ (Pseudopolynomial)

- [Zwick, '02] $O(M \cdot n^{\omega})$ distance product algorithm \Longrightarrow Max Weight Triangle in $O(M \cdot n^{\omega})$ (Pseudopolynomial)
- [Chan, '05] $O(n^3/\log n)$ distance product \Longrightarrow Max Weighted Triangle in $O(n^3/\log n)$

- [Zwick, '02] $O(M \cdot n^{\omega})$ distance product algorithm \Longrightarrow Max Weight Triangle in $O(M \cdot n^{\omega})$ (Pseudopolynomial)
- [Chan, '05] $O(n^3/\log n)$ distance product \Longrightarrow Max Weighted Triangle in $O(n^3/\log n)$

Truly Sub-Cubic Algorithm?

Talk Outline

Deterministic Algorithm

$$O(B \cdot n^{(3+\omega)/2}) \le O(B \cdot n^{2.688})$$
, where B is the bit precision

Randomized (Strongly Polynomial) Algorithm

$$O(n^{(3+\omega)/2}\log n) \le O(n^{2.688})$$

Some Applications

Deterministic Algorithm

Key Steps:

- ullet Suffices to check if there's a triangle of weight $\geq K$
- ullet Compute a matrix A' s.t.

$$A'[i,j] = |\{k : i \to k \to j, w(i) + w(k) + w(j) \ge K\}|.$$

ullet Check if $\exists i,j$ where A[i,j] and A'[i,j] are non-zero.

Computing C

Def. The dominance product of A and B is the matrix C s.t.

$$C[i,j] = |\{k : A[i,k] \le B[k,j]\}|$$

Computing C

Def. The dominance product of A and B is the matrix C s.t.

$$C[i,j] = |\{k : A[i,k] \le B[k,j]\}|$$

Thm. (Matousek) Dominance Product can be computed in $n^{(3+\omega)/2}$ time. (Sketched in next few slides)

Computing C

Def. The dominance product of A and B is the matrix C s.t.

$$C[i,j] = |\{k : A[i,k] \le B[k,j]\}|$$

Thm. (Matousek) Dominance Product can be computed in $n^{(3+\omega)/2}$ time. (Sketched in next few slides)

Thm. If Dominance Product is in O(f(n)) time, then can check if there's a triangle of weight $\geq K$, in $O(f(n)+n^2)$ time. (Virginia will prove this)

$$(C[i,j] = |\{k : A[i,k] \le B[k,j]\}|)$$

$$(C[i,j] = |\{k : A[i,k] \le B[k,j]\}|)$$

Idea 1: Just care about the sorted order of coordinates

 \Longrightarrow WLOG each column of A and each row of B is a permutation of [n].

$$(C[i,j] = |\{k : A[i,k] \le B[k,j]\}|)$$

Idea 1: Just care about the sorted order of coordinates

 \Longrightarrow WLOG each column of A and each row of B is a permutation of [n].

Make n sorted lists L_1, \ldots, L_n , where

 L_i has the *i*th column of A and the *i*th row of B

$$(C[i,j] = |\{k : A[i,k] \le B[k,j]\}|)$$

Idea 1: Just care about the sorted order of coordinates

 \Longrightarrow WLOG each column of A and each row of B is a permutation of [n].

Make n sorted lists L_1, \ldots, L_n , where

 L_i has the *i*th column of A and the *i*th row of B

Partition each L_i into "buckets" with s elements in each bucket (roughly 2n/s buckets in total)

$$(C[i,j] = |\{k : A[i,k] \le B[k,j]\}|)$$

Idea 2: Two types of data are counted in C:

$$(C[i,j] = |\{k : A[i,k] \le B[k,j]\}|)$$

Idea 2: Two types of data are counted in C:

- **1.** Pairs (A[i,k],B[k,j]) such that $A[i,k] \leq B[k,j]$, but A[i,k] and B[k,j] fall in **the same** bucket of L_k
 - Only $O(n^2s)$ possible pairs of this form
 - ullet Can compute these in O(1) amortized time

$$(C[i,j] = |\{k : A[i,k] \le B[k,j]\}|)$$

Idea 2: Two types of data are counted in C:

- **2.** Pairs (A[i,k],B[k,j]) such that $A[i,k] \leq B[k,j]$, but A[i,k] and B[k,j] fall in **different** buckets of L_k
 - Can count these using 2n/s matrix multiplications (One matrix multiply for each bucket)

1. Does there exist a triangle of weight sum at least K? \rightarrow dominance product instance .

- 1. Does there exist a triangle of weight sum at least K? \rightarrow dominance product instance .
- 2. Do binary search on ${\cal K}$ to find the maximum weight ${\cal W}$ of a triangle.

- 1. Does there exist a triangle of weight sum at least K? \rightarrow dominance product instance .
- 2. Do binary search on ${\cal K}$ to find the maximum weight ${\cal W}$ of a triangle.
- 3. Find a triangle of weight W.

$\label{eq:step 1: Given K, reduce to dominance product instance.}$

 $\text{Vertex } i \in V \to$

Step 1: Given K, reduce to dominance product instance.

Vertex $i \in V \rightarrow$

ullet row vector $A[i, ;] = (A[i, 1], \ldots, A[i, n])$ s.t.

$$A[i,j] = \begin{cases} K - w(i) & \text{if there is an edge from } i \text{ to } j \\ \infty & \text{otherwise.} \end{cases}$$

Step 1: Given K, reduce to dominance product instance.

Vertex $i \in V \rightarrow$

ullet row vector $A[i,;]=(A[i,1],\ldots,A[i,n])$ s.t.

$$A[i,j] = \begin{cases} K - w(i) & \text{if there is an edge from } i \text{ to } j \\ \infty & \text{otherwise.} \end{cases}$$

ullet column vector $B[;,i]=(B[1,i],\ldots,B[n,i])$ s.t.

$$B[j,i] = \begin{cases} w(i) + w(j) & \text{if there is an edge from } i \text{ to } j \\ -\infty & \text{otherwise.} \end{cases}$$

Step 1: Given K, reduce to dominance product instance.

Vertex $i \in V \rightarrow$

ullet row vector $A[i, ;] = (A[i, 1], \ldots, A[i, n])$ s.t.

$$A[i,j] = \begin{cases} K - w(i) & \text{if there is an edge from } i \text{ to } j \\ \infty & \text{otherwise.} \end{cases}$$

ullet column vector $B[;,i]=(B[1,i],\ldots,B[n,i])$ s.t.

$$B[j,i] = \begin{cases} w(i) + w(j) & \text{if there is an edge from } i \text{ to } j \\ -\infty & \text{otherwise.} \end{cases}$$

$$A[i,j] \leq B[j,k] \iff K \leq w(i) + w(k) + w(j) \text{ and } (i,j), (j,k) \in E$$

Runtime

Runtime

Let B be the max number of bits needed to represent a weight.

Runtime

Let \boldsymbol{B} be the max number of bits needed to represent a weight.

Then the binary search calls at most O(B) dominance computations, and hence the runtime is $O(B \cdot n^{\frac{3+\omega}{2}})$.

Runtime

Let B be the max number of bits needed to represent a weight.

Then the binary search calls at most O(B) dominance computations, and hence the runtime is $O(B \cdot n^{\frac{3+\omega}{2}})$.

But this algorithm is NOT strongly polynomial because of the binary search.

A Strongly Polynomial Randomized Algorithm: Outline

- 1. show how to sample a triangle of weight in any interval $[W_1,W_2]$ efficiently uniformly at random
- 2. search using the weights of triangles chosen at random

A dominance computation gives us the number of coordinates for which a vector dominates another.

A dominance computation gives us the number of coordinates for which a vector dominates another.

Hence for each (i, j) we can get

A dominance computation gives us the number of coordinates for which a vector dominates another.

Hence for each (i, j) we can get

• the number E_{ij}^1 of k such that

$$(\dots, w(i) + w(k), \dots)$$
 dominated in coord. k by $(\dots, W_2 - w(j), \dots)$ $i \to k \to j$ and $w(i) + w(j) + w(k) \le W_2$

A dominance computation gives us the number of coordinates for which a vector dominates another.

Hence for each (i, j) we can get

• the number E_{ij}^1 of k such that

$$(\dots,w(i)+w(k),\dots)$$
 dominated in coord. k by $(\dots,W_2-w(j),\dots)$ $i\to k\to j$ and $w(i)+w(j)+w(k)\leq W_2$

• the number E_{ij}^2 of k such that

$$i \to k \to j \text{ and } w(i) + w(j) + w(k) < W_1$$

A dominance computation gives us the number of coordinates for which a vector dominates another.

Hence for each (i, j) we can get

• the number E_{ij}^1 of k such that

$$(\dots,w(i)+w(k),\dots)$$
 dominated in coord. k by $(\dots,W_2-w(j),\dots)$ $i\to k\to j$ and $w(i)+w(j)+w(k)\leq W_2$

• the number E_{ij}^2 of k such that

$$i \to k \to j \text{ and } w(i) + w(j) + w(k) < W_1$$

ullet the number $E_{ij}=(E_{ij}^1-E_{ij}^2)$ of k such that

$$i \to k \to j$$
 and $W_1 \le w(i) + w(j) + w(k) \le W_2$

Recall: E_{ij} is the number of k such that $i \to k \to j$ and $W_1 \le w(i) + w(j) + w(k) \le W_2$

Recall: E_{ij} is the number of k such that $i \to k \to j$ and $W_1 \le w(i) + w(j) + w(k) \le W_2$

Uniformly sample an edge from a triangle in $[W_1, W_2]$:

 $f = \sum_{(i,j)\in E} E_{ij}$ is $3 \times [$ number of triangles in $[W_1, W_2]$].

Recall: E_{ij} is the number of k such that $i \to k \to j$ and $W_1 \le w(i) + w(j) + w(k) \le W_2$

Uniformly sample an edge from a triangle in $[W_1,W_2]$:

 $f = \sum_{(i,j)\in E} E_{ij}$ is $3 \times [$ number of triangles in $[W_1, W_2]$].

Pick each $(i, j) \in E$ with probability E_{ij}/f .

Recall: E_{ij} is the number of k such that $i \to k \to j$ and $W_1 \le w(i) + w(j) + w(k) \le W_2$

Uniformly sample an edge from a triangle in $[W_1, W_2]$:

 $f = \sum_{(i,j)\in E} E_{ij}$ is $3 \times [$ number of triangles in $[W_1, W_2]$].

Pick each $(i,j) \in E$ with probability E_{ij}/f .

Uniformly sample a triangle in $[W_1, W_2]$: Let S_{ij} be the common

neighbors of i and j.

Recall: E_{ij} is the number of k such that $i \to k \to j$ and $W_1 \le w(i) + w(j) + w(k) \le W_2$

Uniformly sample an edge from a triangle in $[W_1,W_2]$:

 $f = \sum_{(i,j)\in E} E_{ij}$ is $3 \times [$ number of triangles in $[W_1, W_2]$].

Pick each $(i,j) \in E$ with probability E_{ij}/f .

Uniformly sample a triangle in $[W_1,W_2]$: Let S_{ij} be the common

neighbors of i and j.

Pick $k \in S_{ij}$ uniformly at random.

Recall: E_{ij} is the number of k such that $i \to k \to j$ and $W_1 \le w(i) + w(j) + w(k) \le W_2$

Uniformly sample an edge from a triangle in $[W_1,W_2]$:

 $f = \sum_{(i,j)\in E} E_{ij}$ is $3 \times [$ number of triangles in $[W_1, W_2]$].

Pick each $(i,j) \in E$ with probability E_{ij}/f .

Uniformly sample a triangle in $[W_1, W_2]$: Let S_{ij} be the common neighbors of i and j.

Pick $k \in S_{ij}$ uniformly at random.

 $\{i,j,k\}$ is a random triangle with weight in $[W_1,W_2]$.

Strongly Polynomial Algorithm

- 1. Let $M = 3 \cdot \max_{i \in V} w(i)$ and K = 0.
- 2. Pick a random triangle T in [K, M]. Set K to its weight.
- 3. Check if there exists a triangle of weight > K. If not, return T.
- 4. Repeat from 2.

Strongly Polynomial Algorithm

- 1. Let $M = 3 \cdot \max_{i \in V} w(i)$ and K = 0.
- 2. Pick a random triangle T in [K, M]. Set K to its weight.
- 3. Check if there exists a triangle of weight > K. If not, return T.
- 4. Repeat from 2.

The algorithm will terminate in $O(n^{\frac{3+\omega}{2}}\log n)$ expected worst case time.

ullet maximum node-weighted 3K-clique in $\tilde{O}(n^{\frac{3+\omega}{2}K})$

- ullet maximum node-weighted 3K-clique in $\widetilde{O}(n^{\frac{3+\omega}{2}K})$
- ullet for any 3K-node graph H, maximum node-weighted H-subgraph in $\tilde{O}(n^{\frac{3+\omega}{2}K})$

- ullet maximum node-weighted 3K-clique in $\tilde{O}(n^{\frac{3+\omega}{2}K})$
- \bullet for any 3K -node graph H , maximum node-weighted H -subgraph in $\tilde{O}(n^{\frac{3+\omega}{2}K})$
- generalized K-SUM

- ullet maximum node-weighted 3K-clique in $\tilde{O}(n^{\frac{3+\omega}{2}K})$
- ullet for any 3K-node graph H, maximum node-weighted H-subgraph in $\tilde{O}(n^{\frac{3+\omega}{2}K})$
- generalized K-SUM
- computing K most significant bits of distance product in $O(2^K \cdot n^{\frac{3+\omega}{2}} \log W \log n) \dots$

• [VWY] have recently discovered a faster algorithm for node-weighted triangle: $O(n^{2.58})$ using rectangular matrix multiplication (ICALP 2006)

- [VWY] have recently discovered a faster algorithm for node-weighted triangle: $O(n^{2.58})$ using rectangular matrix multiplication (ICALP 2006)
- Can we use our approach to edge-weighted triangle?
 Important stepping stone towards truly sub-cubic APSP?

- [VWY] have recently discovered a faster algorithm for node-weighted triangle: $O(n^{2.58})$ using rectangular matrix multiplication (ICALP 2006)
- Can we use our approach to edge-weighted triangle?
 Important stepping stone towards truly sub-cubic APSP?
- Conjecture:

Dominance product can be computed in $O(n^{\omega+o(1)})$ time.

Thank You!