
Finding a Maximum Weight Triangle in

O(n3−δ) Time, With Applications

Virginia Vassilevska and Ryan Williams
Carnegie Mellon University

0-0

The Problem

Input: Graph with real-number weights on the nodes

Task: Find a triangle of maximum weight sum

1

The Problem

Input: Graph with real-number weights on the nodes

Task: Find a triangle of maximum weight sum

20

10

5

42 17

19 4

96

9.1

1-a

The Problem

Input: Graph with real-number weights on the nodes

Task: Find a triangle of maximum weight sum

20

10

5

42 17

19 4

96

9.1

2

Past Work

3

Past Work

[Itai and Rodeh, ’78]

Triangle Detection is in O(nω) time:

Check if (A ∧ (A × A)) 6= 0

3-a

Past Work

[Itai and Rodeh, ’78]

Triangle Detection is in O(nω) time:

Check if (A ∧ (A × A)) 6= 0

Their paper ends with:

“A related problem is finding a minimum weighted circuit in a weighted

graph. It is unclear to us whether our methods can be modified to answer

this problem too.”

3-b

Folklore Result

4

Folklore Result

Def. The distance product of A and B is the matrix

(A ⋆ B)[i, j] = min
k

{A[i, k] + B[k, j]}

4-a

Folklore Result

Def. The distance product of A and B is the matrix

(A ⋆ B)[i, j] = min
k

{A[i, k] + B[k, j]}

Observation: Distance Product can solve Max Weight Triangle

4-b

Folklore Result

Def. The distance product of A and B is the matrix

(A ⋆ B)[i, j] = min
k

{A[i, k] + B[k, j]}

Observation: Distance Product can solve Max Weight Triangle

1. Push weights from nodes to edges: w(u, v) = (w(u) + w(v))/2

(Reduce Node-Weighted Triangle to Edge-Weighted Triangle)

2. Compute MAXi,j{((−A) ⋆ (−A))[i, j] − A[i, j]}

(Min Weight Triangle: MINi,j{(A ⋆ A)[i, j] + A[i, j]})

4-c

Easy Weighted Triangle Algorithms

5

Easy Weighted Triangle Algorithms

• [Zwick, ’02] O(M · nω) distance product algorithm

=⇒ Max Weight Triangle in O(M · nω) (Pseudopolynomial)

5-a

Easy Weighted Triangle Algorithms

• [Zwick, ’02] O(M · nω) distance product algorithm

=⇒ Max Weight Triangle in O(M · nω) (Pseudopolynomial)

• [Chan, ’05] O(n3/ log n) distance product

=⇒ Max Weighted Triangle in O(n3/ log n)

5-b

Easy Weighted Triangle Algorithms

• [Zwick, ’02] O(M · nω) distance product algorithm

=⇒ Max Weight Triangle in O(M · nω) (Pseudopolynomial)

• [Chan, ’05] O(n3/ log n) distance product

=⇒ Max Weighted Triangle in O(n3/ log n)

Truly Sub-Cubic Algorithm?

5-c

Talk Outline

• Deterministic Algorithm

O(B · n(3+ω)/2) ≤ O(B · n2.688), where B is the bit precision

• Randomized (Strongly Polynomial) Algorithm

O(n(3+ω)/2 log n) ≤ O(n2.688)

• Some Applications

6

Deterministic Algorithm

Key Steps:

• Suffices to check if there’s a triangle of weight ≥ K

• Compute a matrix A′ s.t.

A′[i, j] = |{k : i → k → j, w(i) + w(k) + w(j) ≥ K}|.

• Check if ∃i, j where A[i, j] and A′[i, j] are non-zero.

7

Computing C

Def. The dominance product of A and B is the matrix C s.t.

C[i, j] = |{k : A[i, k] ≤ B[k, j]}|

8

Computing C

Def. The dominance product of A and B is the matrix C s.t.

C[i, j] = |{k : A[i, k] ≤ B[k, j]}|

Thm. (Matousek) Dominance Product can be computed in n(3+ω)/2 time.

(Sketched in next few slides)

8-a

Computing C

Def. The dominance product of A and B is the matrix C s.t.

C[i, j] = |{k : A[i, k] ≤ B[k, j]}|

Thm. (Matousek) Dominance Product can be computed in n(3+ω)/2 time.

(Sketched in next few slides)

Thm. If Dominance Product is in O(f(n)) time, then can check if there’s

a triangle of weight ≥ K , in O(f(n) + n2) time.

(Virginia will prove this)

8-b

Dominance Product in n(3+ω)/2

(C[i, j] = |{k : A[i, k] ≤ B[k, j]}|)

9

Dominance Product in n(3+ω)/2

(C[i, j] = |{k : A[i, k] ≤ B[k, j]}|)

Idea 1: Just care about the sorted order of coordinates

=⇒ WLOG each column of A and each row of B is a permutation of [n].

9-a

Dominance Product in n(3+ω)/2

(C[i, j] = |{k : A[i, k] ≤ B[k, j]}|)

Idea 1: Just care about the sorted order of coordinates

=⇒ WLOG each column of A and each row of B is a permutation of [n].

Make n sorted lists L1, . . . , Ln, where

Li has the ith column of A and the ith row of B

9-b

Dominance Product in n(3+ω)/2

(C[i, j] = |{k : A[i, k] ≤ B[k, j]}|)

Idea 1: Just care about the sorted order of coordinates

=⇒ WLOG each column of A and each row of B is a permutation of [n].

Make n sorted lists L1, . . . , Ln, where

Li has the ith column of A and the ith row of B

Partition each Li into “buckets” with s elements in each bucket

(roughly 2n/s buckets in total)

A[1, k] B[k, 1] B[k, 2]. A[2, k]

2nLk

s s s s

9-c

Dominance Product in n(3+ω)/2, Cont.

(C[i, j] = |{k : A[i, k] ≤ B[k, j]}|)

Idea 2: Two types of data are counted in C :

10

Dominance Product in n(3+ω)/2, Cont.

(C[i, j] = |{k : A[i, k] ≤ B[k, j]}|)

Idea 2: Two types of data are counted in C :

1. Pairs (A[i, k], B[k, j]) such that A[i, k] ≤ B[k, j],

but A[i, k] and B[k, j] fall in the same bucket of Lk

• Only O(n2s) possible pairs of this form

• Can compute these in O(1) amortized time

10-a

Dominance Product in n(3+ω)/2, Cont.

(C[i, j] = |{k : A[i, k] ≤ B[k, j]}|)

Idea 2: Two types of data are counted in C :

2. Pairs (A[i, k], B[k, j]) such that A[i, k] ≤ B[k, j],

but A[i, k] and B[k, j] fall in different buckets of Lk

• Can count these using 2n/s matrix multiplications

(One matrix multiply for each bucket)

11

Deterministic Algorithm: Outline

12

Deterministic Algorithm: Outline

1. Does there exist a triangle of weight sum at least K? →

dominance product instance .

12-a

Deterministic Algorithm: Outline

1. Does there exist a triangle of weight sum at least K? →

dominance product instance .

2. Do binary search on K to find the maximum weight W of

a triangle.

12-b

Deterministic Algorithm: Outline

1. Does there exist a triangle of weight sum at least K? →

dominance product instance .

2. Do binary search on K to find the maximum weight W of

a triangle.

3. Find a triangle of weight W .

12-c

Step 1: Given K , reduce to dominance product instance.

Vertex i ∈ V →

13

Step 1: Given K , reduce to dominance product instance.

Vertex i ∈ V →

• row vector A[i, ;] = (A[i, 1], . . . , A[i, n]) s.t.

A[i, j] =

{

K − w(i) if there is an edge from i to j

∞ otherwise.

13-a

Step 1: Given K , reduce to dominance product instance.

Vertex i ∈ V →

• row vector A[i, ;] = (A[i, 1], . . . , A[i, n]) s.t.

A[i, j] =

{

K − w(i) if there is an edge from i to j

∞ otherwise.

• column vector B[; , i] = (B[1, i], . . . , B[n, i]) s.t.

B[j, i] =

{

w(i) + w(j) if there is an edge from i to j

−∞ otherwise.

13-b

Step 1: Given K , reduce to dominance product instance.

Vertex i ∈ V →

• row vector A[i, ;] = (A[i, 1], . . . , A[i, n]) s.t.

A[i, j] =

{

K − w(i) if there is an edge from i to j

∞ otherwise.

• column vector B[; , i] = (B[1, i], . . . , B[n, i]) s.t.

B[j, i] =

{

w(i) + w(j) if there is an edge from i to j

−∞ otherwise.

A[i, j] ≤ B[j, k] ⇐⇒ K ≤ w(i) + w(k) + w(j) and (i, j), (j, k) ∈ E

13-c

Runtime

14

Runtime

Let B be the max number of bits needed to represent a

weight.

14-a

Runtime

Let B be the max number of bits needed to represent a

weight.

Then the binary search calls at most O(B) dominance

computations, and hence the runtime is O(B · n
3+ω

2).

14-b

Runtime

Let B be the max number of bits needed to represent a

weight.

Then the binary search calls at most O(B) dominance

computations, and hence the runtime is O(B · n
3+ω

2).

But this algorithm is NOT strongly polynomial because of the

binary search.

14-c

A Strongly Polynomial Randomized Algorithm: Outline

1. show how to sample a triangle of weight in any interval

[W1, W2] efficiently uniformly at random

2. search using the weights of triangles chosen at random

15

Getting a uniform random triangle in [W1, W2]

16

Getting a uniform random triangle in [W1, W2]

A dominance computation gives us the number of coordinates for which a

vector dominates another.

16-a

Getting a uniform random triangle in [W1, W2]

A dominance computation gives us the number of coordinates for which a

vector dominates another.

Hence for each (i, j) we can get

16-b

Getting a uniform random triangle in [W1, W2]

A dominance computation gives us the number of coordinates for which a

vector dominates another.

Hence for each (i, j) we can get

• the number E1
ij of k such that

(. . . , w(i) + w(k), . . .) dominated in coord. k by (. . . , W2 − w(j), . . .)

i → k → j and w(i) + w(j) + w(k) ≤ W2

16-c

Getting a uniform random triangle in [W1, W2]

A dominance computation gives us the number of coordinates for which a

vector dominates another.

Hence for each (i, j) we can get

• the number E1
ij of k such that

(. . . , w(i) + w(k), . . .) dominated in coord. k by (. . . , W2 − w(j), . . .)

i → k → j and w(i) + w(j) + w(k) ≤ W2

• the number E2
ij of k such that

i → k → j and w(i) + w(j) + w(k) < W1

16-d

Getting a uniform random triangle in [W1, W2]

A dominance computation gives us the number of coordinates for which a

vector dominates another.

Hence for each (i, j) we can get

• the number E1
ij of k such that

(. . . , w(i) + w(k), . . .) dominated in coord. k by (. . . , W2 − w(j), . . .)

i → k → j and w(i) + w(j) + w(k) ≤ W2

• the number E2
ij of k such that

i → k → j and w(i) + w(j) + w(k) < W1

• the number Eij = (E1
ij − E2

ij) of k such that

i → k → j and W1 ≤ w(i) + w(j) + w(k) ≤ W2

16-e

Getting a uniform random triangle in [W1, W2]

Recall: Eij is the number of k such that i → k → j and

W1 ≤ w(i) + w(j) + w(k) ≤ W2

17

Getting a uniform random triangle in [W1, W2]

Recall: Eij is the number of k such that i → k → j and

W1 ≤ w(i) + w(j) + w(k) ≤ W2

Uniformly sample an edge from a triangle in [W1,W2]:

f =
∑

(i,j)∈E Eij is 3 × [number of triangles in [W1,W2]].

17-a

Getting a uniform random triangle in [W1, W2]

Recall: Eij is the number of k such that i → k → j and

W1 ≤ w(i) + w(j) + w(k) ≤ W2

Uniformly sample an edge from a triangle in [W1,W2]:

f =
∑

(i,j)∈E Eij is 3 × [number of triangles in [W1,W2]].

Pick each (i, j) ∈ E with probability Eij/f .

17-b

Getting a uniform random triangle in [W1, W2]

Recall: Eij is the number of k such that i → k → j and

W1 ≤ w(i) + w(j) + w(k) ≤ W2

Uniformly sample an edge from a triangle in [W1,W2]:

f =
∑

(i,j)∈E Eij is 3 × [number of triangles in [W1,W2]].

Pick each (i, j) ∈ E with probability Eij/f .

Uniformly sample a triangle in [W1,W2]: Let Sij be the common

neighbors of i and j.

i j

Sij

k

17-c

Getting a uniform random triangle in [W1, W2]

Recall: Eij is the number of k such that i → k → j and

W1 ≤ w(i) + w(j) + w(k) ≤ W2

Uniformly sample an edge from a triangle in [W1,W2]:

f =
∑

(i,j)∈E Eij is 3 × [number of triangles in [W1,W2]].

Pick each (i, j) ∈ E with probability Eij/f .

Uniformly sample a triangle in [W1,W2]: Let Sij be the common

neighbors of i and j.

Pick k ∈ Sij uniformly at random.

i j

Sij

k

17-d

Getting a uniform random triangle in [W1, W2]

Recall: Eij is the number of k such that i → k → j and

W1 ≤ w(i) + w(j) + w(k) ≤ W2

Uniformly sample an edge from a triangle in [W1,W2]:

f =
∑

(i,j)∈E Eij is 3 × [number of triangles in [W1,W2]].

Pick each (i, j) ∈ E with probability Eij/f .

Uniformly sample a triangle in [W1,W2]: Let Sij be the common

neighbors of i and j.

Pick k ∈ Sij uniformly at random.

i j

Sij

k

{i, j, k} is a random triangle with weight in [W1,W2].

17-e

Strongly Polynomial Algorithm

1. Let M = 3 · maxi∈V w(i) and K = 0.

2. Pick a random triangle T in [K, M]. Set K to its weight.

3. Check if there exists a triangle of weight > K . If not,

return T .

4. Repeat from 2.

18

Strongly Polynomial Algorithm

1. Let M = 3 · maxi∈V w(i) and K = 0.

2. Pick a random triangle T in [K, M]. Set K to its weight.

3. Check if there exists a triangle of weight > K . If not,

return T .

4. Repeat from 2.

The algorithm will terminate in O(n
3+ω

2 log n) expected worst

case time.

18-a

Applications

19

Applications

• maximum node-weighted 3K-clique in Õ(n
3+ω

2
K)

19-a

Applications

• maximum node-weighted 3K-clique in Õ(n
3+ω

2
K)

• for any 3K-node graph H , maximum node-weighted

H-subgraph in Õ(n
3+ω

2
K)

19-b

Applications

• maximum node-weighted 3K-clique in Õ(n
3+ω

2
K)

• for any 3K-node graph H , maximum node-weighted

H-subgraph in Õ(n
3+ω

2
K)

• generalized K-SUM

19-c

Applications

• maximum node-weighted 3K-clique in Õ(n
3+ω

2
K)

• for any 3K-node graph H , maximum node-weighted

H-subgraph in Õ(n
3+ω

2
K)

• generalized K-SUM

• computing K most significant bits of distance product in

O(2K · n
3+ω

2 log W log n) . . .

19-d

Conclusions

20

Conclusions

• [VWY] have recently discovered a faster algorithm for

node-weighted triangle: O(n2.58) using rectangular matrix

multiplication (ICALP 2006)

20-a

Conclusions

• [VWY] have recently discovered a faster algorithm for

node-weighted triangle: O(n2.58) using rectangular matrix

multiplication (ICALP 2006)

• Can we use our approach to edge-weighted triangle?

Important stepping stone towards truly sub-cubic APSP?

20-b

Conclusions

• [VWY] have recently discovered a faster algorithm for

node-weighted triangle: O(n2.58) using rectangular matrix

multiplication (ICALP 2006)

• Can we use our approach to edge-weighted triangle?

Important stepping stone towards truly sub-cubic APSP?

• Conjecture:

Dominance product can be computed in O(nω+o(1)) time.

20-c

Thank You!

21

