Finding a Maximum Weight Triangle in
O(n*7?) Time, With Applications

Virginia Vassilevska and Ryan Williams
Carnegie Mellon University

0-0

The Problem

Input: Graph with real-number weights on the nodes

Task: Find a triangle of maximum weight sum

The Problem

Input: Graph with real-number weights on the nodes

Task: Find a triangle of maximum weight sum

(20 —(42—(17
96,

@' 19\

1-a

The Problem

Input: Graph with real-number weights on the nodes

Task: Find a triangle of maximum weight sum

(20 —42—(17
96,

@' 19\

Past Work

Past Work

[Itai and Rodeh, '78]

Triangle Detection is in O(n®) time:

Check if (AN (A x A)) #0

3-a

Past Work

[Itai and Rodeh, '78]

Triangle Detection is in O(n®) time:
Check if (AN (A x A)) #0

Their paper ends with:

“A related problem is finding a minimum weighted circuit in a weighted
graph. It is unclear to us whether our methods can be modified to answer

this problem too.”

3-b

Folklore Result

Folklore Result

Def. The distance product of A and B is the matrix

(A B)li, j] = mljn{A[i, k| + Blk, 7]}

4-a

Folklore Result

Def. The distance product of A and B is the matrix

(A B)li, j] = min{Ali, k] + Blk, j]}

Observation: Distance Product can solve Max Weight Triangle

4-b

Folklore Result

Def. The distance product of A and B is the matrix

(A B)li, j] = min{Ali, k] + Blk, j]}

Observation: Distance Product can solve Max Weight Triangle

1. Push weights from nodes to edges: w(u, v) = (w(u) + w(v))/2
(Reduce Node-Weighted Triangle to Edge-Weighted Triangle)

2. Compute MAX; {((—A) « (—A)[i,j] — Ali, j]}
(Min Weight Triangle: M IN; ;{(A % A)[i, 7] + Alt, j]})

4-c

Easy Weighted Triangle Algorithms

Easy Weighted Triangle Algorithms

e [Zwick, '02] O(M - n*) distance product algorithm
— Max Weight Triangle in O(M - n*) (Pseudopolynomial)

5-a

Easy Weighted Triangle Algorithms

e [Zwick, '02] O(M - n*) distance product algorithm
— Max Weight Triangle in O(M - n*) (Pseudopolynomial)

e [Chan, '05] O(n?/logn) distance product
—> Max Weighted Triangle in O(n?/logn)

5-b

Easy Weighted Triangle Algorithms

e [Zwick, '02] O(M - n*) distance product algorithm
— Max Weight Triangle in O(M - n*) (Pseudopolynomial)

e [Chan, '05] O(n?/logn) distance product
—> Max Weighted Triangle in O(n?/logn)

Truly Sub-Cubic Algorithm?

5-Cc

Talk Outline

e Deterministic Algorithm
O(B - nB+)/2) < O(B - n>%%8), where B is the bit precision
e Randomized (Strongly Polynomial) Algorithm

O(n(3+w)/2 log n) < O(n2'688)

e Some Applications

Deterministic Algorithm
Key Steps:
e Suffices to check if there’s a triangle of weight > K&

e Compute a matrix A’ s.t.

Al jl = {k i — k — j,w(i) +w(k) +w(g) > K.

e Check if 37, j where Ali, j| and A’[¢, j| are non-zero.

Computing C

Def. The dominance product of A and B is the matrix C' s.t.

Cli, gl =k - Ali, k] < Bk, jl}]

Computing C

Def. The dominance product of A and B is the matrix C' s.t.

Cli, gl =k - Ali, k] < Bk, jl}]

Thm. (Matousek) Dominance Product can be computed in nB+@)/2 time.

(Sketched in next few slides)

8-a

Computing C

Def. The dominance product of A and B is the matrix C' s.t.
Cli,j] = [k + Al k| < Blk, j]}|
Thm. (Matousek) Dominance Product can be computed in nB+@)/2 time.

(Sketched in next few slides)

Thm. If Dominance Product is in O(f(n)) time, then can check if there’s
a triangle of weight > K, in O(f(n) + n?) time.

(Virginia will prove this)

8-b

Dominance Product in n3tw)/2

(Cli, gl = Rk = Al k] < Bk, jl})

Dominance Product in n(3t«)/2

(Cli, 7] =k = Ali, k] < Bk, j]}])
ldea 1: Just care about the sorted order of coordinates

— WLOG each column of A and each row of B is a permutation of [7].

9-a

Dominance Product in n(3t«)/2

(Cli, 7] =k = Ali, k] < Bk, j]}])
ldea 1: Just care about the sorted order of coordinates
— WLOG each column of A and each row of B is a permutation of [7].

Make n sorted lists L1, ..., L,,, where

L, has the 7th column of A and the 7th row of BB

9-b

Dominance Product in n(3t«)/2

(Cle, 5] = Kk = Al k] < Blk, j]}])
ldea 1: Just care about the sorted order of coordinates
— WLOG each column of A and each row of B is a permutation of [7].
Make n sorted lists L1, ..., L,,, where

L, has the 7th column of A and the 7th row of BB

Partition each L; into “buckets” with s elements in each bucket
(roughly 21/ s buckets in total)

Ly 2n
|

‘A[lak]‘ ‘A[Zk]‘ ‘B[k,l]‘ ...‘B[k,Z]‘

9-c

Dominance Product in n(3+w)/2, Cont.

(Cli, gl = Rk = Al k] < BlE, jl})

Idea 2: Two types of data are counted in C":

10

Dominance Product in n®1t%)/2 cont.

(Cli,g] =k - Ali, k] < B[k, jl}|)
Idea 2: Two types of data are counted in C":

1. Pairs (Ali. k|, B[k, j]) such that A, k] < Blk, j].
but Ali, k| and Bk, j] fall in the same bucket of L,

e Only O(n?s) possible pairs of this form

e Can compute these in O(1) amortized time

10-a

Dominance Product in n31t%)/2 cont.

(Cli, g} = {k - Ali, k] < Bk, j]})
Idea 2: Two types of data are counted in C":

2. Pairs (Ali, k|, B[k, j]) such that A[i, k] < B[k, j],
but Ali, k| and B|k, j]| fall in different buckets of L,

e Can count these using Qn/s matrix multiplications

(One matrix multiply for each bucket)

11

Deterministic Algorithm: Outline

12

Deterministic Algorithm: Outline

1. Does there exist a triangle of weight sum at least K ? —

dominance product instance .

12-a

Deterministic Algorithm: Outline

1. Does there exist a triangle of weight sum at least K ? —

dominance product instance .

2. Do binary search on K to find the maximum weight W of

a triangle.

12-b

Deterministic Algorithm: Outline

1. Does there exist a triangle of weight sum at least K ? —

dominance product instance .

2. Do binary search on K to find the maximum weight W of

a triangle.

3. Find a triangle of weight /.

12-c

Step 1: Given K, reduce to dominance product instance.

Vertex1 € V —

13

Step 1: Given K, reduce to dominance product instance.
Vertext € V —

e rowvector Ali,;] = (Ali, 1],..., Ali,n]) s.t.

o K —w(2) if there is an edge from i to j
Ali, j] =

o0 otherwise.

13-a

Step 1: Given K, reduce to dominance product instance.

Vertex 1, € V —

e row vector Ali, ;| = (Ali, 1],..., Alz,n]) s.t.

o K —w(2) if there is an edge from i to j
Ali, j| = |
o0 otherwise.

e columnvector B|;,i| = (B[1,1%],..., B[n,1]) st

o (w(z) + w(j) ifthere is an edge from i to j
B[],Z] = 9

| — 0 otherwise.

13-b

Step 1: Given K, reduce to dominance product instance.

Vertex 1, € V —

e row vector Ali, ;| = (Ali, 1],..., Alz,n]) s.t.

o K —w(2) if there is an edge from i to j
Ali, j] =

o0 otherwise.

e columnvector B|;,i| = (B[1,1%],..., B[n,1]) st

o (w(z) + w(j) ifthere is an edge from i to j
B[],Z] = 9

| — 0 otherwise.

Ali,j| < Blj, k| <= K <w(i)+w(k)+w(j)and (i,7),(j,k) € &

13-c

Runtime

14

Runtime

Let 55 be the max number of bits needed to represent a

weight.

14-a

Runtime

Let 55 be the max number of bits needed to represent a

weight.

Then the binary search calls at most O(5) dominance

computations, and hence the runtime is O(B - n "z)

14-b

Runtime

Let 55 be the max number of bits needed to represent a

weight.

Then the binary search calls at most O(5) dominance

computations, and hence the runtime is O(B - n "z)

But this algorithm is NOT strongly polynomial because of the

binary search.

14-c

A Strongly Polynomial Randomized Algorithm: Outline

1. show how to sample a triangle of weight in any interval

W1, W] efficiently uniformly at random

2. search using the weights of triangles chosen at random

15

Getting a uniform random triangle in [W7, W]

16

Getting a uniform random triangle in [W7, W]

A dominance computation gives us the number of coordinates for which a
vector dominates another.

16-a

Getting a uniform random triangle in [W7, W]

A dominance computation gives us the number of coordinates for which a
vector dominates another.

Hence for each (7, j) we can get

16-b

Getting a uniform random triangle in [W7, W]

A dominance computation gives us the number of coordinates for which a
vector dominates another.

Hence for each (7, j) we can get

e the number E}j of £ such that
(...,w(t) +w(k),...)dominated in coord. k by (..., Wa —w(j),...)
i — k — jandw(i) + w(j) + w(k) < Ws

16-c

Getting a uniform random triangle in [/, W5

A dominance computation gives us the number of coordinates for which a
vector dominates another.

Hence for each (7, j) we can get

e the number E@-lj of £ such that

(...,w(t) +w(k),...)dominated in coord. k by (..., Wa —w(j),...)
i — k — jandw(i) + w(j) + w(k) < Ws

e the number EZZJ of k£ such that
i — k—jandw(t) +w(g) +wk) < W,

16-d

Getting a uniform random triangle in [/, W5

A dominance computation gives us the number of coordinates for which a
vector dominates another.

Hence for each (7, j) we can get

e the number E@-lj of £ such that
(...,w(t) +w(k),...)dominated in coord. k by (..., Wa —w(j),...)
i — k — jandw(i) + w(j) + w(k) < Ws

e the number EZZJ of k£ such that
i — k—jandw(t) +w(g) +wk) < W,

e the number /;; — ([}, — L) of k such that

i —k—jand Wi <w(i)+w(j) +wlk) < W

16-e

Getting a uniform random triangle in [W7, W]

Recall: L;; is the number of k such that: — k — 7 and
Wy <w(i) +w(y) +wlk) < W

17

Getting a uniform random triangle in [W7, W]

Recall: L;; is the number of k such that: — k — 7 and
Wi <w(i) +w(j) + w(k) < Ws

Uniformly sample an edge from a triangle in [W7, W]
f="2_tijer Eijis 3 X [number of triangles in |11, 115]].

17-a

Getting a uniform random triangle in [W7, W]

Recall: L;; is the number of k such that: — k — 7 and
Wi <w(i) +w(j) + w(k) < Ws

Uniformly sample an edge from a triangle in [W7, W]
f="2_tijer Eijis 3 X [number of triangles in |11, 115]].

Pick each (7, j) € E with probability F;;/ f.

17-b

Getting a uniform random triangle in [W7, W]

Recall: L;; is the number of k such that: — k — 7 and
Wi <w(i) +w(y) + w(k) < Ws

Uniformly sample an edge from a triangle in [W7, W]
f="2_tijer Eijis 3 X [number of triangles in |11, 115]].

Pick each (7, j) € E with probability £;,/ f.

Uniformly sample a triangle in [, W5]: Let S;; be the common

neighbors of 7 and . 5,

17-c

Getting a uniform random triangle in [W7, W]

Recall: L;; is the number of k such that: — k — 7 and
Wi <w(i) +w(y) + w(k) < Ws

Uniformly sample an edge from a triangle in [W7, W]
f="2_tijer Eijis 3 X [number of triangles in |11, 115]].

Pick each (7, j) € E with probability £;,/ f.

Uniformly sample a triangle in [, W5]: Let S;; be the common

neighbors of 7 and . 5,

Pick & € .5;; uniformly at random.

17d

Getting a uniform random triangle in [W7, W]

Recall: L;; is the number of k such that: — k — 7 and
Wi <w(i) +w(y) + w(k) < Ws

Uniformly sample an edge from a triangle in [W7, W]
f="2_tijer Eijis 3 X [number of triangles in |11, 115]].

Pick each (7, j) € E with probability £;,/ f.

Uniformly sample a triangle in [, W5]: Let S;; be the common

neighbors of 7 and . 5,

Pick & € .5;; uniformly at random.

J

{i,7,k} is a random triangle with weight in |11/, 117].

17-e

Strongly Polynomial Algorithm

.Let M = 3 - max;cy w(2) and K = 0,
. Pick a random triangle T"in | K, M|. Set K to its weight.

. Check if there exists a triangle of weight > /. If not,

return 1.

. Repeat from 2.

18

Strongly Polynomial Algorithm

1. Let M = 3 - max;cy w(i) and K = 0.
2. Pick a random triangle 7" in |, M |. Set K to its weight.

3. Check if there exists a triangle of weight > /. If not,

return 1.

4. Repeat from 2.

The algorithm will terminate in O(n 2 logn) expected worst

case time.

18-a

Applications

19

Applications

e maximum node-weighted 3 /< -clique in O(nHTwK)

19-a

Applications

~

e maximum node-weighted 3 /< -clique in O(nHTwK)

e for any 3/ -node graph /{, maximum node-weighted
H-subgraph in O(n 2" 5)

19-b

Applications

~

e maximum node-weighted 3 /< -clique in O(nHTwK)

e for any 3/ -node graph /{, maximum node-weighted
H-subgraph in O(n 2" 5)

e generalized /A -SUM

19-c

Applications

~

e maximum node-weighted 3 /< -clique in O(nHTwK)

e for any 3/ -node graph /{, maximum node-weighted
H -subgraph in O(HHTWK)
e generalized /A -SUM

e computing /X most significant bits of distance product in
3+w

O2% -n™2 logWlogn) ...

19-d

Conclusions

20

e [VWY] have recently discovered a faster algorithm for
node-weighted triangle: O(n*°%) using rectangular matrix
multiplication (ICALP 2006)

20-a

e [VWY] have recently discovered a faster algorithm for
node-weighted triangle: O(n*°%) using rectangular matrix
multiplication (ICALP 2006)

e Can we use our approach to triangle?

Important stepping stone towards truly sub-cubic APSP?

20-b

e [VWY] have recently discovered a faster algorithm for
node-weighted triangle: O(n*°%) using rectangular matrix
multiplication (ICALP 2006)

e Can we use our approach to triangle?

Important stepping stone towards truly sub-cubic APSP?

e Conjecture:

wFo(1)) time.

Dominance product can be computed Iin O(n

20-c

Thank You!

21

