Confronting Hardness Using a Hybrid Approach

Virginia Vassilevska
Carnegie Mellon University

SODA 2006

Joint work with Ryan Williams and Maverick Woo

Conventional algorithms guarantee *good* performance under a prescribed *measure:*

Conventional algorithms guarantee *good* performance under a prescribed *measure:*

Running Time

Conventional algorithms guarantee *good* performance under a prescribed *measure:*

Running Time

Space

Conventional algorithms guarantee *good* performance under a prescribed *measure:*

Running Time

Simultaneous Time and Space

Space

Conventional algorithms guarantee *good* performance under a prescribed *measure:*

Running Time Simultaneous Time and Space

Space Approximation Ratio and Time...

Consider a set $H = \{h_1, \ldots, h_k\}$ of heuristics, good w.r.t. different complexity measures, partitioning the instance space.

Consider a set $H = \{h_1, \ldots, h_k\}$ of heuristics, good w.r.t. different complexity measures, partitioning the instance space.

E.g.

Consider a set $H = \{h_1, \ldots, h_k\}$ of heuristics, good w.r.t. different complexity measures, partitioning the instance space.

E.g.

 h_1 approximates the optimal solution within a factor of α and runs in polynomial time, on all dark gray instances.

Consider a set $H = \{h_1, \ldots, h_k\}$ of heuristics, good w.r.t. different complexity measures, partitioning the instance space.

E.g.

 h_1 approximates the optimal solution within a factor of α and runs in polynomial time, on all dark gray instances.

 h_2 solves the problem exactly but runs in subexponential time ($2^{o(n)}$) on all yellow instances.

A Hybrid Algorithm is...

A Hybrid Algorithm is...

A set $H = \{h_1, \dots, h_k\}$ of *heuristics*, good w.r.t. different complexity measures.

A Hybrid Algorithm is...

A set $H = \{h_1, \dots, h_k\}$ of *heuristics*, good w.r.t. different complexity measures.

A selector S which on each instance selects a heuristic in polynomial time.

"Defying" Hardness: Some NP-hard problems are known or conjectured to be $\it hard$ for several complexity measures m_i .

"Defying" Hardness: Some NP-hard problems are known or conjectured to be *hard* for several complexity measures m_i .

E.g. Max Independent Set can't be approximated within a factor of $n^{1-\varepsilon}$ unless P = NP (Håstad, 1999), and can't be solved in $2^{o(n)}$ time unless SNP is in $2^{o(n)}$ time (Impagliazzo, Paturi, Zane, 1998).

"Defying" Hardness: Some NP-hard problems are known or conjectured to be *hard* for several complexity measures m_i .

E.g. Max Independent Set can't be approximated within a factor of $n^{1-\varepsilon}$ unless P = NP (Håstad, 1999), and can't be solved in $2^{o(n)}$ time unless SNP is in $2^{o(n)}$ time (Impagliazzo, Paturi, Zane, 1998).

There exist hybrid algorithms for NP-Hard problems which for each h_i (on the instances on which S chooses to run h_i) do strictly better than the corresponding known hardness guarantees m_i .

MAX-CUT

Problem: Given a graph G, find a cut which maximizes the number of edges crossing it.

Max-Cut

Problem: Given a graph G, find a cut which maximizes the number of edges crossing it.

Solvable exactly in $O(2^{m/5.2})$ by Kneis et al, 2005, or in $O(2^{\omega n/3})$ by Williams, 2004.

MAX-CUT

Problem: Given a graph G, find a cut which maximizes the number of edges crossing it.

Solvable exactly in $O(2^{m/5.2})$ by Kneis et al, 2005, or in $O(2^{\omega n/3})$ by Williams, 2004.

Approximable within $0.8785\ldots$ using SDP by Goemans and Williamson, 1995 and within 0.5 by Sahni and Gonzales, 1976 without SDP.

MAX-CUT

Problem: Given a graph G, find a cut which maximizes the number of edges crossing it.

Solvable exactly in $O(2^{m/5.2})$ by Kneis et al, 2005, or in $O(2^{\omega n/3})$ by Williams, 2004.

Approximable within 0.8785... using SDP by Goemans and Williamson, 1995 and within 0.5 by Sahni and Gonzales, 1976 without SDP.

No better than $(1/2 + \delta)$ -approximation is known which runs in less than quadratic time.

Hybrid Algorithm for Max-Cut

There's a simple *hybrid* algorithm which for any $\epsilon>0$, after a linear time test produces

- \bullet either a maximum cut in $\tilde{O}(2^{\epsilon m})$ time, or
- a $(\frac{1}{2} + \frac{\epsilon}{4})$ -approximation in linear time.

Find a maximal matching, M.

Find a maximal matching, M.

If
$$|M|,$$

try all $2^{\varepsilon m}$ cuts of the vertices in M. Add the vertices from the independent set V-M so that the cut is maximized.

Find a maximal matching, M.

If
$$|M| < \varepsilon \frac{m}{2}$$
,

try all $2^{\varepsilon m}$ cuts of the vertices in M. Add the vertices from the independent set V-M so that the cut is maximized.

If
$$|M| \geq \varepsilon \frac{m}{2}$$
,

for each edge in M, with probability 1/2 choose which of its endpoints to put in A. Put the other endpoint in B;

Find a maximal matching, M.

If
$$|M| < \varepsilon \frac{m}{2}$$
,

try all $2^{\varepsilon m}$ cuts of the vertices in M. Add the vertices from the independent set V-M so that the cut is maximized.

If
$$|M| \ge \varepsilon \frac{m}{2}$$
,

for each edge in M, with probability 1/2 choose which of its endpoints to put in A. Put the other endpoint in B;

for each vertex v not in M, with probability 1/2 choose whether to place it in A or B.

Max Cut cont.

Max Cut cont.

If
$$|M|,$$

we get an exact solution in $\tilde{O}(2^{\varepsilon m})$ time.

Max Cut cont.

If
$$|M| ,$$

we get an exact solution in $\tilde{O}(2^{\varepsilon m})$ time.

If
$$|M| \ge \varepsilon \frac{m}{2}$$
,

the expected size of the cut is at least

$$(\varepsilon \frac{m}{2}) + \frac{1}{2}(m - \varepsilon \frac{m}{2}) = (\frac{1}{2} + \frac{\varepsilon}{4})m.$$

We get a *linear time* $(\frac{1}{2} + \frac{\varepsilon}{4})$ -approximation.

Karger, Motwani and Ramkumar, 1993: Longest Path is hard to approximate within $2^{O(\frac{\log n}{\log \log n})}$, unless $\text{NP} \subseteq \bigcap_{\delta>0} \text{DTIME}(2^{O(n^{\delta})})$.

Karger, Motwani and Ramkumar, 1993: Longest Path is hard to approximate within $2^{O(\frac{\log n}{\log \log n})}$, unless $NP \subseteq \bigcap_{\delta > 0} DTIME(2^{O(n^{\delta})})$.

Bellman and Karp, 1962: Best known exact algorithm by dynamic programming in $\tilde{O}(2^n)$;

Alon, Yuster, Zwick, 1994: Can be extended to $2^{O(L)}$, where L is length of longest path.

Karger, Motwani and Ramkumar, 1993: Longest Path is hard to approximate within $2^{O(\frac{\log n}{\log \log n})}$, unless $NP \subseteq \bigcap_{\delta > 0} DTIME(2^{O(n^{\delta})})$.

Bellman and Karp, 1962: Best known exact algorithm by dynamic programming in $\tilde{O}(2^n)$;

Alon, Yuster, Zwick, 1994: Can be extended to $2^{O(L)}$, where L is length of longest path.

There's a simple *hybrid* algorithm which for any $\ell(n)$

- either finds a path of length ℓ, or
- solves the LONGEST PATH exactly in $2^{O(\ell \log \ell)} n^{O(1)}$ time.

Karger, Motwani and Ramkumar, 1993: Longest Path is hard to approximate within $2^{O(\frac{\log n}{\log \log n})}$, unless $NP \subseteq \bigcap_{\delta > 0} DTIME(2^{O(n^{\delta})})$.

Bellman and Karp, 1962: Best known exact algorithm by dynamic programming in $\tilde{O}(2^n)$;

Alon, Yuster, Zwick, 1994: Can be extended to $2^{O(L)}$, where L is length of longest path.

There's a simple *hybrid* algorithm which for any $\ell(n)$

- either finds a path of length ℓ, or
- solves the LONGEST PATH exactly in $2^{O(\ell \log \ell)} n^{O(1)}$ time.

Note for $\ell=n/polylog(n)$ we get subexponential exact running time and a polylog approximation.

Given any graph G and any $\ell>0$ there is a poly time algorithm Path-Decomp which either finds a path of length at least ℓ or a path decomposition of G of width at most ℓ .

Given any graph G and any $\ell>0$ there is a poly time algorithm Path-Decomp which either finds a path of length at least ℓ or a path decomposition of G of width at most ℓ .

1. Do DFS from a node v.

Given any graph G and any $\ell>0$ there is a poly time algorithm Path-Decomp which either finds a path of length at least ℓ or a path decomposition of G of width at most ℓ .

- 1. Do DFS from a node v.
- 2. If a path P from v has length at least ℓ , stop and output P.

Given any graph G and any $\ell > 0$ there is a poly time algorithm Path-Decomp which either finds a path of length at least ℓ or a path decomposition of G of width at most ℓ .

- 1. Do DFS from a node v.
- 2. If a path P from v has length at least ℓ , stop and output P.
- 3. Else, we have a DFS tree T of low depth. We can form a path decomposition $(P, \{W_{u_i}\})$ of width at most ℓ : For every leaf u let W_u contain u and its ancestors in T.

Given any graph G and any $\ell > 0$ there is a poly time algorithm Path-Decomp which either finds a path of length at least ℓ or a path decomposition of G of width at most ℓ .

- 1. Do DFS from a node v.
- 2. If a path P from v has length at least ℓ , stop and output P.
- 3. Else, we have a DFS tree T of low depth. We can form a path decomposition $(P, \{W_{u_i}\})$ of width at most ℓ : For every leaf u let W_u contain u and its ancestors in T.

$$P = \{(u_1, u_2), \dots, (u_{k-1}, u_k)\}$$

where u_1, u_2, \dots, u_k are the leaf
nodes in an inorder traversal of T .

1. Run Path-Decomp algorithm on G and ℓ .

- 1. Run Path-Decomp algorithm on G and ℓ .
- 2. If a path of length ℓ is found, return it.

- 1. Run Path-Decomp algorithm on G and ℓ .
- 2. If a path of length ℓ is found, return it.
- 3. Otherwise the algorithm returns a path decomposition P of width at most ℓ .

Run an algorithm for Longest Path on graphs of bounded treewidth (based on dynamic programming) by Bodlaender, 1993 to get the longest path in $2^{O(\ell \log \ell)} n^{O(1)}$.

Problem: Given a graph G, give a permutation π on the vertices of G so that the maximum edge $\operatorname{stretch} \max_{(i,j) \in E(G)} |\pi(i) - \pi(j)|$ is minimized.

Problem: Given a graph G, give a permutation π on the vertices of G so that the maximum edge $\operatorname{stretch} \max_{(i,j)\in E(G)}|\pi(i)-\pi(j)|$ is minimized.

Notoriously hard. Best approximation: $O(\log^3 n)$ by Krauthgamer et al., 2003, $O(\sqrt{\frac{n}{B}}\log n)$ by Blum et al., 1998 where B is the optimum bandwidth.

Problem: Given a graph G, give a permutation π on the vertices of G so that the maximum edge $\operatorname{stretch} \max_{(i,j)\in E(G)}|\pi(i)-\pi(j)|$ is minimized.

Notoriously hard. Best approximation: $O(\log^3 n)$ by Krauthgamer et al., 2003, $O(\sqrt{\frac{n}{B}}\log n)$ by Blum et al., 1998 where B is the optimum bandwidth.

Best Exact Algorithm: $\tilde{O}(10^n)$ by Feige and Killian, 2000.

For any unbounded constructible $\gamma(n)$, MINIMUM BANDWIDTH admits a hybrid algorithm which produces either

- ullet a linear arrangement achieving the minimum bandwidth in $4^{n+o(n)}$ time, or
- an $O(\gamma(n) \log^2(n) \log \log n)$ -approximation in polynomial time.

What affects Bandwidth?

What affects Bandwidth?

One factor: a low diameter subgraph.

Simple Fact. If G contains a subgraph H of diameter d, then the bandwidth of G is at least (|H|-1)/d.

(Take the endpoints of any linear arrangement of H . They have a length d path between them...)

What affects Bandwidth?

One factor: a low diameter subgraph.

Simple Fact. If G contains a subgraph H of diameter d, then the bandwidth of G is at least (|H|-1)/d.

(Take the endpoints of any linear arrangement of H. They have a length d path between them...)

Idea: Attempt to find a "large" subgraph H with low diameter. If you fail, output a "small" separator.

In the first case, can approximate bandwidth well.

In the second case, can find a separator tree and get a good exact algorithm for bandwidth.

Idea: Attempt to find a "large" subgraph H with low diameter. If you fail, output a "small" separator.

In the first case, can approximate bandwidth well.

In the second case, can find a separator tree and get a good exact algorithm for bandwidth.

Intuitively, the absence of a large subgraph with low diameter means that the graph does not expand by much, so it has a smallish node bisection.

We introduced hybrid algorithms.

We introduced hybrid algorithms.

We gave simple hybrid algorithms for

MAX-CUT, LONGEST PATH, MINIMUM BANDWIDTH.

We introduced *hybrid algorithms*.

We gave simple hybrid algorithms for

MAX-CUT, LONGEST PATH, MINIMUM BANDWIDTH.

We also have hybrids for

Counting 2-CNF Solutions, Max-Ek-Lin-p.

We introduced *hybrid algorithms*.

We gave simple hybrid algorithms for

MAX-CUT, LONGEST PATH, MINIMUM BANDWIDTH.

We also have hybrids for

Counting 2-CNF Solutions, Max-Ek-Lin-p.

Overarching Idea:

Beat the inadequacies of worst-case analysis on a fixed complexity measure, by *choosing* which measure to beat on each instance.

We introduced *hybrid algorithms*.

We gave simple hybrid algorithms for

MAX-CUT, LONGEST PATH, MINIMUM BANDWIDTH.

We also have hybrids for

Counting 2-CNF Solutions, Max-Ek-Lin-p.

Overarching Idea:

Beat the inadequacies of worst-case analysis on a fixed complexity measure, by *choosing* which measure to beat on each instance.

Two interesting problems arise in designing a hybrid algorithm for some Π

- ullet How to split the cases of Π ?
- How to select the right heuristic?

Thank You!