Confronting Hardness Using a Hybrid Approach

Virginia Vassilevska
Carnegie Mellon University

SODA 2006

Joint work with Ryan Williams and Maverick Woo

Introduction

Conventional algorithms guarantee good

performance under a prescribed measure:

Introduction

Conventional algorithms guarantee good

performance under a prescribed measure:

Running Time

2-a

Introduction

Conventional algorithms guarantee good

performance under a prescribed measure:

Running Time

Space

2-b

Introduction

Conventional algorithms guarantee good

performance under a prescribed measure:

Running Time Simultaneous Time and Space

Space

2-C

Introduction

Conventional algorithms guarantee good

performance under a prescribed measure:

Running Time Simultaneous Time and Space

Space Approximation Ratio and Time

2-d

A Hybrid Approach

A Hybrid Approach
Consider a set H = 0
{hi,...,hg} of heuristics,
good w.rt. different com-

plexity measures, partition-

ing the instance space.

3-a

A Hybrid Approach
Consider a set H = 0
{hi,...,hg} of heuristics,
good w.rt. different com-

plexity measures, partition-
ing the instance space.

E.Q.

3-b

A Hybrid Approach
Consider a set H = 0
{hi,...,hg} of heuristics,
good w.rt. different com-

plexity measures, partition-
ing the instance space.

E.Q.

h1 approximates the optimal solution within a factor of a and runs in
polynomial time, on all dark gray instances.

3-c

A Hybrid Approach
Consider a set H = 0
{hi,...,hg} of heuristics,
good w.rt. different com-

plexity measures, partition-

ing the instance space.

E.Q.

h1 approximates the optimal solution within a factor of a and runs in
polynomial time, on all dark gray instances.

ho solves the problem exactly but runs in subexponential time (20(”))
on all yellow instances.

3-d

A Hybrid Algorithm is...

A Hybrid Algorithm is...

Aset H = {hy,..., hi} of heuristics, good w.r.t.

different complexity measures.

4-a

A Hybrid Algorithm is...

Aset H = {hy,..., hi} of heuristics, good w.r.t.

different complexity measures.

A selector S which on each instance selects a heuristic

In polynomial time.

4-b

Hybrid Algorithms cont.

Hybrid Algorithms cont.

‘Defying” Hardness: Some NP-hard problems are known or

conjectured to be hard for several complexity measures m,; .

5-a

Hybrid Algorithms cont.

‘Defying” Hardness: Some NP-hard problems are known or

conjectured to be hard for several complexity measures m,; .

E.g. Max Independent Set can’'t be approximated within a factor of
n'~¢ unless P = NP (Hastad, 1999), and can’t be solved in 2°™) time

unless SNP is in 2°(") time (Impagliazzo, Paturi, Zane, 1998).

5-b

Hybrid Algorithms cont.

‘Defying” Hardness: Some NP-hard problems are known or

conjectured to be hard for several complexity measures m,; .

E.g. Max Independent Set can’'t be approximated within a factor of
n'~¢ unless P = NP (Hastad, 1999), and can’t be solved in 2°™) time

unless SNP is in 2°(") time (Impagliazzo, Paturi, Zane, 1998).
There exist hybrid algorithms for NP-Hard problems which for each

h; (on the instances on which .S chooses to run h;) do strictly better

than the corresponding known hardness guarantees m,;.

5-c

MAX-CUT

Problem: Given a graph (, find a cut which maximizes the number of

edges crossing it.

MAX-CUT

Problem: Given a graph (, find a cut which maximizes the number of

edges crossing it.

Solvable exactly in O(2™/52) by Kneis et al, 2005, or in O(2%"/3) by
Williams, 2004.

6-a

MAX-CUT

Problem: Given a graph (, find a cut which maximizes the number of

edges crossing it.

Solvable exactly in O(2™/52) by Kneis et al, 2005, or in O(2%"/3) by
Williams, 2004.

Approximable within 0.8785 . .. using SDP by Goemans and Williamson,
1995 and within 0.5 by Sahni and Gonzales, 1976 without SDP.

6-b

MAX-CUT

Problem: Given a graph (, find a cut which maximizes the number of

edges crossing it.

Solvable exactly in O(2™/52) by Kneis et al, 2005, or in O(2%"/3) by
Williams, 2004.

Approximable within 0.8785 . .. using SDP by Goemans and Williamson,
1995 and within 0.5 by Sahni and Gonzales, 1976 without SDP.

No better than (1/2 + §)-approximation is known which runs in less than

guadratic time.

6-Cc

Hybrid Algorithm for Max-Cut

There’s a simple hybrid algorithm which for any € > 0, after a linear time

test produces

e either a maximum cut in O(2°™) time, or

®a (% + i)-approximation In linear time.

A Simple Fast Hybrid Algorithm for Max-Cut

A Simple Fast Hybrid Algorithm for Max-Cut

Find a maximal matching, /M .

8-a

A Simple Fast Hybrid Algorithm for Max-Cut

Find a maximal matching, /M .
If | M| < e®,

try all 2™ cuts of the vertices in /. Add the vertices from the

independent set V' — M so that the cut is maximized.

8-b

A Simple Fast Hybrid Algorithm for Max-Cut

Find a maximal matching, /M .
If | M| < e®,

try all 2°™" cuts of the vertices in /. Add the vertices from the

independent set V' — M so that the cut is maximized.
If | M| > 2,

for each edge in M, with probability 1/2 choose which of its endpoints
to put in A. Put the other endpoint in B;

8-c

A Simple Fast Hybrid Algorithm for Max-Cut

Find a maximal matching, /M .
If | M| < e®,

try all 2°™" cuts of the vertices in /. Add the vertices from the

independent set V' — M so that the cut is maximized.
If | M| > 2,

for each edge in M, with probability 1/2 choose which of its endpoints
to put in A. Put the other endpoint in B;

for each vertex v not in M/, with probability 1/2 choose whether to

place itin A or B.

8-d

Max Cut cont.

Max Cut cont.
If | M| < e®,

we get an exact solution in O(2) time.

9-a

Max Cut cont.
If | M| < e®,
we get an exact solution in O(2) time.

If | M| > eZ,
the expected size of the cut is at least

(5) + 5(m =) =

2 2 i

1 5)
> 4m.

+ £)-approximation.

We get a linear time (

N |
NG Q)

9-b

The Longest Path Problem

10

The Longest Path Problem

Karger, Motwani and Ramkumar, 1993: LONGEST PATH is hard to
logn

approximate within 2 Oliegtoe) unless NPC ﬂ5>ODTII\/IE(20())

10-a

The Longest Path Problem

Karger, Motwani and Ramkumar, 1993: LONGEST PATH is hard to
logn

approximate within 2 Oliegtoe) unless NPC ﬂ5>ODTIME(20())

Bellman and Karp, 1962: Best known exact algorithm by dynamic
programming in O(2");

Alon, Yuster, Zwick, 1994: Can be extended to QO(L), where L is length of
longest path.

10-b

The Longest Path Problem

Karger, Motwani and Ramkumar, 1993: LONGEST PATH is hard to
logn

approximate within 2 (108;108;7%) unless NPC ﬂ5>ODT|ME(20(”))

Bellman and Karp, 1962: Best known exact algorithm by dynamic
programming in O(2");

Alon, Yuster, Zwick, 1994: Can be extended to QO(L), where L is length of
longest path.

There’s a simple hybrid algorithm which for any /(n)

e either finds a path of length 7, or

e solves the LONGEST PATH exactly in 20108810 time.

10-c

The Longest Path Problem

Karger, Motwani and Ramkumar, 1993: LONGEST PATH is hard to
logn

approximate within 2 Oliegtoe) unless NPC ﬂ5>0DTIME(20())

Bellman and Karp, 1962: Best known exact algorithm by dynamic
programming in O(2");

Alon, Yuster, Zwick, 1994: Can be extended to QO(L), where L is length of
longest path.

There’s a simple hybrid algorithm which for any /(n)

e either finds a path of length 7, or

e solves the LONGEST PATH exactly in 20108810 time.

Note for £ = n/polylog(n) we get subexponential exact running time

and a polylog approximation.

10-d

A Path-or-Decomposition Lemma

11

A Path-or-Decomposition Lemma

Given any graph G and any £ > 0 there is a poly time algorithm
Path-Decomp which either finds a path of length at least £ or a path
decomposition of (G of width at most .

11-a

A Path-or-Decomposition Lemma

Given any graph G and any £ > 0 there is a poly time algorithm
Path-Decomp which either finds a path of length at least £ or a path
decomposition of (G of width at most .

1. Do DFS from a node v.

11-b

A Path-or-Decomposition Lemma

Given any graph G and any £ > 0 there is a poly time algorithm
Path-Decomp which either finds a path of length at least £ or a path
decomposition of (G of width at most .

1. Do DFS from a node v.

2. If a path P from v has length at least
¢, stop and output P.

11-c

A Path-or-Decomposition Lemma

Given any graph G and any £ > 0 there is a poly time algorithm
Path-Decomp which either finds a path of length at least £ or a path
decomposition of (G of width at most .

1. Do DFS from a node v.

2. If a path P from v has length at least
¢, stop and output P.

3. Else, we have a DFS tree I’ of low

depth. We can form a path decompo-
sition (2, {IV,,. }) of width at most ¢:
For every leaf u let 11/, contain « and

its ancestors in /.

11-d

A Path-or-Decomposition Lemma

Given any graph G and any £ > 0 there is a poly time algorithm
Path-Decomp which either finds a path of length at least £ or a path
decomposition of (G of width at most .

1. Do DFS from a node v.

2. If a path P from v has length at least
¢, stop and output P.

3. Else, we have a DFS tree I’ of low

depth. We can form a path decompo-
sition (2, {IV,,. }) of width at most ¢:

| Po= {(u,uz),..., (ug-1,ur)}
For every leaf u let 11/, contain « and

where Uy, U2, ..., U, are the leaf

its ancestors in /. . .
nodes in an inorder traversal of 7.

11-e

Hybrid Algorithm for Longest Path

12

Hybrid Algorithm for Longest Path

1. Run Path-Decomp algorithm on (& and /.

12-a

Hybrid Algorithm for Longest Path

1. Run Path-Decomp algorithm on (& and /.

2. If a path of length / is found, return it.

12-b

Hybrid Algorithm for Longest Path

1. Run Path-Decomp algorithm on (& and /.
2. If a path of length / is found, return it.

3. Otherwise the algorithm returns a path decomposition / of width at

most /.

Run an algorithm for LONGEST PATH on graphs of bounded treewidth
(based on dynamic programming) by Bodlaender, 1993 to get the
longest path in 20¢1086) 5 O(1),

12-c

Minimum Bandwidth

13

Minimum Bandwidth

Problem: Given a graph (=, give a permutation 7 on the vertices of (G so
that the maximum edge stretch max(; jyep(q) |7(2) — 7(J)] is

minimized.

13-a

Minimum Bandwidth

Problem: Given a graph (=, give a permutation 7 on the vertices of (G so
that the maximum edge stretch max(; jyep(q) |7(2) — 7(J)] is

minimized.
Notoriously hard. Best approximation: O(log3 n) by Krauthgamer et al.,

2003, O(\/%log n) by Blum et al., 1998 where B is the optimum
bandwidth.

13-b

Minimum Bandwidth

Problem: Given a graph (=, give a permutation 7 on the vertices of (G so
that the maximum edge stretch max(; jyep(q) |7(2) — 7(J)] is

minimized.
Notoriously hard. Best approximation: O(log3 n) by Krauthgamer et al.,
2003, O(\/%log n) by Blum et al., 1998 where B is the optimum

bandwidth.

Best Exact Algorithm: O(10™) by Feige and Killian, 2000.

13-c

Bandwidth Hybrid

For any unbounded constructible (72), MINIMUM BANDWIDTH admits a
hybrid algorithm which produces either

e alinear arrangement achieving the minimum bandwidth in 4" +°(")

time, or

e an O(v(n)log*(n) log log n)-approximation in polynomial time.

14

What affects Bandwidth?

15

What affects Bandwidth?

One factor: a low diameter subgraph.

Simple Fact. If (G contains a subgraph H of diameter d, then the
bandwidth of G is at least (| H| — 1)/d.

(Take the endpoints of any linear arrangement of H. They have a length d
path between them...)

15-a

What affects Bandwidth?

One factor: a low diameter subgraph.

Simple Fact. If (G contains a subgraph H of diameter d, then the
bandwidth of G is at least (| H| — 1)/d.

(Take the endpoints of any linear arrangement of H. They have a length d
path between them...)

15-b

Bandwidth Hybrid

16

Bandwidth Hybrid

Idea: Attempt to find a “large” subgraph H with low diameter.

If you fail, output a “small” separator.
In the first case, can approximate bandwidth well.

In the second case, can find a separator tree and get a good

exact algorithm for bandwidth.

16-a

Bandwidth Hybrid

Idea: Attempt to find a “large” subgraph H with low diameter.

If you fail, output a “small” separator.
In the first case, can approximate bandwidth well.

In the second case, can find a separator tree and get a good

exact algorithm for bandwidth.

Intuitively, the absence of a large subgraph with low diameter
means that the graph does not expand by much, so it has a

smallish node bisection.

16-b

Conclusion

17

Conclusion

We introduced hybrid algorithms.

17-a

Conclusion

We introduced hybrid algorithms.

We gave simple hybrid algorithms for
MAX-CUT, LONGEST PATH, MINIMUM BANDWIDTH.

17-b

Conclusion

We introduced hybrid algorithms.

We gave simple hybrid algorithms for
MAX-CUT, LONGEST PATH, MINIMUM BANDWIDTH.

We also have hybrids for
COUNTING 2-CNF SOLUTIONS, MAX-Ek-LIN-p.

17-c

Conclusion
We introduced hybrid algorithms.

We gave simple hybrid algorithms for

MAX-CUT, LONGEST PATH, MINIMUM BANDWIDTH.

We also have hybrids for
COUNTING 2-CNF SOLUTIONS, MAX-Ek-LIN-p.

Overarching ldea:

Beat the inadequacies of worst-case analysis on a fixed complexity
measure, by choosing which measure to beat on each instance.

17-d

Conclusion
We introduced hybrid algorithms.

We gave simple hybrid algorithms for

MAX-CUT, LONGEST PATH, MINIMUM BANDWIDTH.

We also have hybrids for
COUNTING 2-CNF SOLUTIONS, MAX-Ek-LIN-p.

Overarching ldea:

Beat the inadequacies of worst-case analysis on a fixed complexity
measure, by choosing which measure to beat on each instance.

Two interesting problems arise in designing a hybrid algorithm for some 11
e How to split the cases of 11?
e How to select the right heuristic?

17-e

Thank You!

18

