
Confronting Hardness Using a Hybrid Approach

Virginia Vassilevska
Carnegie Mellon University

SODA 2006

Joint work with Ryan Williams and Maverick Woo

Introduction

Conventional algorithms guarantee good

performance under a prescribed measure:

2

Introduction

Conventional algorithms guarantee good

performance under a prescribed measure:

Running Time

2-a

Introduction

Conventional algorithms guarantee good

performance under a prescribed measure:

Running Time

Space

2-b

Introduction

Conventional algorithms guarantee good

performance under a prescribed measure:

Running Time Simultaneous Time and Space

Space

2-c

Introduction

Conventional algorithms guarantee good

performance under a prescribed measure:

Running Time Simultaneous Time and Space

Space Approximation Ratio and Time ...

2-d

A Hybrid Approach

3

A Hybrid Approach

Consider a set H =

{h1, . . . , hk} of heuristics,

good w.r.t. different com-

plexity measures, partition-

ing the instance space.

h2

h1

h3
h4

h5

h6

3-a

A Hybrid Approach

Consider a set H =

{h1, . . . , hk} of heuristics,

good w.r.t. different com-

plexity measures, partition-

ing the instance space.

E.g.

h2

h1

h3
h4

h5

h6

3-b

A Hybrid Approach

Consider a set H =

{h1, . . . , hk} of heuristics,

good w.r.t. different com-

plexity measures, partition-

ing the instance space.

E.g.

h2

h1

h3
h4

h5

h6

h1 approximates the optimal solution within a factor of α and runs in

polynomial time, on all dark gray instances.

3-c

A Hybrid Approach

Consider a set H =

{h1, . . . , hk} of heuristics,

good w.r.t. different com-

plexity measures, partition-

ing the instance space.

E.g.

h2

h1

h3
h4

h5

h6

h1 approximates the optimal solution within a factor of α and runs in

polynomial time, on all dark gray instances.

h2 solves the problem exactly but runs in subexponential time (2o(n))

on all yellow instances.

3-d

A Hybrid Algorithm is...

4

A Hybrid Algorithm is...

A set H = {h1, . . . , hk} of heuristics, good w.r.t.

different complexity measures.

4-a

A Hybrid Algorithm is...

A set H = {h1, . . . , hk} of heuristics, good w.r.t.

different complexity measures.

A selector S which on each instance selects a heuristic

in polynomial time.

4-b

Hybrid Algorithms cont.

5

Hybrid Algorithms cont.

“Defying” Hardness: Some NP-hard problems are known or

conjectured to be hard for several complexity measures mi .

5-a

Hybrid Algorithms cont.

“Defying” Hardness: Some NP-hard problems are known or

conjectured to be hard for several complexity measures mi .

E.g. Max Independent Set can’t be approximated within a factor of

n1−ε unless P = NP (Håstad, 1999), and can’t be solved in 2o(n) time

unless SNP is in 2o(n) time (Impagliazzo, Paturi, Zane, 1998).

5-b

Hybrid Algorithms cont.

“Defying” Hardness: Some NP-hard problems are known or

conjectured to be hard for several complexity measures mi .

E.g. Max Independent Set can’t be approximated within a factor of

n1−ε unless P = NP (Håstad, 1999), and can’t be solved in 2o(n) time

unless SNP is in 2o(n) time (Impagliazzo, Paturi, Zane, 1998).

There exist hybrid algorithms for NP-Hard problems which for each

hi (on the instances on which S chooses to run hi) do strictly better

than the corresponding known hardness guarantees mi.

5-c

MAX-CUT

Problem: Given a graph G, find a cut which maximizes the number of

edges crossing it.

6

MAX-CUT

Problem: Given a graph G, find a cut which maximizes the number of

edges crossing it.

Solvable exactly in O(2m/5.2) by Kneis et al, 2005, or in O(2ωn/3) by

Williams, 2004.

6-a

MAX-CUT

Problem: Given a graph G, find a cut which maximizes the number of

edges crossing it.

Solvable exactly in O(2m/5.2) by Kneis et al, 2005, or in O(2ωn/3) by

Williams, 2004.

Approximable within 0.8785 . . . using SDP by Goemans and Williamson,

1995 and within 0.5 by Sahni and Gonzales, 1976 without SDP.

6-b

MAX-CUT

Problem: Given a graph G, find a cut which maximizes the number of

edges crossing it.

Solvable exactly in O(2m/5.2) by Kneis et al, 2005, or in O(2ωn/3) by

Williams, 2004.

Approximable within 0.8785 . . . using SDP by Goemans and Williamson,

1995 and within 0.5 by Sahni and Gonzales, 1976 without SDP.

No better than (1/2 + δ)-approximation is known which runs in less than

quadratic time.

6-c

Hybrid Algorithm for Max-Cut

There’s a simple hybrid algorithm which for any ǫ > 0, after a linear time

test produces

• either a maximum cut in Õ(2ǫm) time, or

• a (1
2

+ ǫ
4
)-approximation in linear time.

7

A Simple Fast Hybrid Algorithm for Max-Cut

8

A Simple Fast Hybrid Algorithm for Max-Cut

Find a maximal matching, M .

8-a

A Simple Fast Hybrid Algorithm for Max-Cut

Find a maximal matching, M .

If |M | < εm
2

,

try all 2εm cuts of the vertices in M . Add the vertices from the

independent set V − M so that the cut is maximized.

8-b

A Simple Fast Hybrid Algorithm for Max-Cut

Find a maximal matching, M .

If |M | < εm
2

,

try all 2εm cuts of the vertices in M . Add the vertices from the

independent set V − M so that the cut is maximized.

If |M | ≥ εm
2

,

for each edge in M , with probability 1/2 choose which of its endpoints

to put in A. Put the other endpoint in B;

8-c

A Simple Fast Hybrid Algorithm for Max-Cut

Find a maximal matching, M .

If |M | < εm
2

,

try all 2εm cuts of the vertices in M . Add the vertices from the

independent set V − M so that the cut is maximized.

If |M | ≥ εm
2

,

for each edge in M , with probability 1/2 choose which of its endpoints

to put in A. Put the other endpoint in B;

for each vertex v not in M , with probability 1/2 choose whether to

place it in A or B.

8-d

Max Cut cont.

9

Max Cut cont.

If |M | < εm
2

,

we get an exact solution in Õ(2εm) time.

9-a

Max Cut cont.

If |M | < εm
2

,

we get an exact solution in Õ(2εm) time.

If |M | ≥ εm
2

,

the expected size of the cut is at least

(ε
m

2
) +

1

2
(m − ε

m

2
) = (

1

2
+

ε

4
)m.

We get a linear time (1
2

+ ε
4
)-approximation.

9-b

The Longest Path Problem

10

The Longest Path Problem

Karger, Motwani and Ramkumar, 1993: LONGEST PATH is hard to

approximate within 2O(log n

log log n
), unless NP⊆

⋂

δ>0DTIME(2O(nδ)).

10-a

The Longest Path Problem

Karger, Motwani and Ramkumar, 1993: LONGEST PATH is hard to

approximate within 2O(log n

log log n
), unless NP⊆

⋂

δ>0DTIME(2O(nδ)).

Bellman and Karp, 1962: Best known exact algorithm by dynamic

programming in Õ(2n);

Alon, Yuster, Zwick, 1994: Can be extended to 2O(L), where L is length of

longest path.

10-b

The Longest Path Problem

Karger, Motwani and Ramkumar, 1993: LONGEST PATH is hard to

approximate within 2O(log n

log log n
), unless NP⊆

⋂

δ>0DTIME(2O(nδ)).

Bellman and Karp, 1962: Best known exact algorithm by dynamic

programming in Õ(2n);

Alon, Yuster, Zwick, 1994: Can be extended to 2O(L), where L is length of

longest path.

There’s a simple hybrid algorithm which for any ℓ(n)

• either finds a path of length ℓ, or

• solves the LONGEST PATH exactly in 2O(ℓ log ℓ)nO(1) time.

10-c

The Longest Path Problem

Karger, Motwani and Ramkumar, 1993: LONGEST PATH is hard to

approximate within 2O(log n

log log n
), unless NP⊆

⋂

δ>0DTIME(2O(nδ)).

Bellman and Karp, 1962: Best known exact algorithm by dynamic

programming in Õ(2n);

Alon, Yuster, Zwick, 1994: Can be extended to 2O(L), where L is length of

longest path.

There’s a simple hybrid algorithm which for any ℓ(n)

• either finds a path of length ℓ, or

• solves the LONGEST PATH exactly in 2O(ℓ log ℓ)nO(1) time.

Note for ℓ = n/polylog(n) we get subexponential exact running time

and a polylog approximation.
10-d

A Path-or-Decomposition Lemma

11

A Path-or-Decomposition Lemma

Given any graph G and any ℓ > 0 there is a poly time algorithm

Path-Decomp which either finds a path of length at least ℓ or a path

decomposition of G of width at most ℓ.

11-a

A Path-or-Decomposition Lemma

Given any graph G and any ℓ > 0 there is a poly time algorithm

Path-Decomp which either finds a path of length at least ℓ or a path

decomposition of G of width at most ℓ.

1. Do DFS from a node v.

11-b

A Path-or-Decomposition Lemma

Given any graph G and any ℓ > 0 there is a poly time algorithm

Path-Decomp which either finds a path of length at least ℓ or a path

decomposition of G of width at most ℓ.

1. Do DFS from a node v.

2. If a path P from v has length at least

ℓ, stop and output P .

11-c

A Path-or-Decomposition Lemma

Given any graph G and any ℓ > 0 there is a poly time algorithm

Path-Decomp which either finds a path of length at least ℓ or a path

decomposition of G of width at most ℓ.

1. Do DFS from a node v.

2. If a path P from v has length at least

ℓ, stop and output P .

3. Else, we have a DFS tree T of low

depth. We can form a path decompo-

sition (P , {Wui
}) of width at most ℓ:

For every leaf u let Wu contain u and

its ancestors in T .

...

u1 u2 u3
uk

v

Wu1

Wu2

Wuk

11-d

A Path-or-Decomposition Lemma

Given any graph G and any ℓ > 0 there is a poly time algorithm

Path-Decomp which either finds a path of length at least ℓ or a path

decomposition of G of width at most ℓ.

1. Do DFS from a node v.

2. If a path P from v has length at least

ℓ, stop and output P .

3. Else, we have a DFS tree T of low

depth. We can form a path decompo-

sition (P , {Wui
}) of width at most ℓ:

For every leaf u let Wu contain u and

its ancestors in T .

...

u1 u2 u3
uk

v

Wu1

Wu2

Wuk

P = {(u1, u2), . . . , (uk−1, uk)}

where u1, u2, . . . , uk are the leaf

nodes in an inorder traversal of T .

11-e

Hybrid Algorithm for Longest Path

12

Hybrid Algorithm for Longest Path

1. Run Path-Decomp algorithm on G and ℓ.

12-a

Hybrid Algorithm for Longest Path

1. Run Path-Decomp algorithm on G and ℓ.

2. If a path of length ℓ is found, return it.

12-b

Hybrid Algorithm for Longest Path

1. Run Path-Decomp algorithm on G and ℓ.

2. If a path of length ℓ is found, return it.

3. Otherwise the algorithm returns a path decomposition P of width at

most ℓ.

Run an algorithm for LONGEST PATH on graphs of bounded treewidth

(based on dynamic programming) by Bodlaender, 1993 to get the

longest path in 2O(ℓ log ℓ)nO(1).

12-c

Minimum Bandwidth

13

Minimum Bandwidth

Problem: Given a graph G, give a permutation π on the vertices of G so

that the maximum edge stretch max(i,j)∈E(G) |π(i) − π(j)| is

minimized.

13-a

Minimum Bandwidth

Problem: Given a graph G, give a permutation π on the vertices of G so

that the maximum edge stretch max(i,j)∈E(G) |π(i) − π(j)| is

minimized.

Notoriously hard. Best approximation: O(log3 n) by Krauthgamer et al.,

2003, O(
√

n
B

log n) by Blum et al., 1998 where B is the optimum

bandwidth.

13-b

Minimum Bandwidth

Problem: Given a graph G, give a permutation π on the vertices of G so

that the maximum edge stretch max(i,j)∈E(G) |π(i) − π(j)| is

minimized.

Notoriously hard. Best approximation: O(log3 n) by Krauthgamer et al.,

2003, O(
√

n
B

log n) by Blum et al., 1998 where B is the optimum

bandwidth.

Best Exact Algorithm: Õ(10n) by Feige and Killian, 2000.

13-c

Bandwidth Hybrid

For any unbounded constructible γ(n), MINIMUM BANDWIDTH admits a

hybrid algorithm which produces either

• a linear arrangement achieving the minimum bandwidth in 4n+o(n)

time, or

• an O(γ(n) log2(n) log log n)-approximation in polynomial time.

14

What affects Bandwidth?

15

What affects Bandwidth?

One factor: a low diameter subgraph.

Simple Fact. If G contains a subgraph H of diameter d, then the

bandwidth of G is at least (|H| − 1)/d.

(Take the endpoints of any linear arrangement of H . They have a length d

path between them...)

15-a

What affects Bandwidth?

One factor: a low diameter subgraph.

Simple Fact. If G contains a subgraph H of diameter d, then the

bandwidth of G is at least (|H| − 1)/d.

(Take the endpoints of any linear arrangement of H . They have a length d

path between them...)

a a

b

b

c

c

d

d

e

e

15-b

Bandwidth Hybrid

16

Bandwidth Hybrid

Idea: Attempt to find a “large” subgraph H with low diameter.

If you fail, output a “small” separator.

In the first case, can approximate bandwidth well.

In the second case, can find a separator tree and get a good

exact algorithm for bandwidth.

16-a

Bandwidth Hybrid

Idea: Attempt to find a “large” subgraph H with low diameter.

If you fail, output a “small” separator.

In the first case, can approximate bandwidth well.

In the second case, can find a separator tree and get a good

exact algorithm for bandwidth.

Intuitively, the absence of a large subgraph with low diameter

means that the graph does not expand by much, so it has a

smallish node bisection.

16-b

Conclusion

17

Conclusion

We introduced hybrid algorithms.

17-a

Conclusion

We introduced hybrid algorithms.

We gave simple hybrid algorithms for

MAX-CUT, LONGEST PATH, MINIMUM BANDWIDTH.

17-b

Conclusion

We introduced hybrid algorithms.

We gave simple hybrid algorithms for

MAX-CUT, LONGEST PATH, MINIMUM BANDWIDTH.

We also have hybrids for

COUNTING 2-CNF SOLUTIONS, MAX-Ek-LIN-p.

17-c

Conclusion

We introduced hybrid algorithms.

We gave simple hybrid algorithms for

MAX-CUT, LONGEST PATH, MINIMUM BANDWIDTH.

We also have hybrids for

COUNTING 2-CNF SOLUTIONS, MAX-Ek-LIN-p.

Overarching Idea:

Beat the inadequacies of worst-case analysis on a fixed complexity

measure, by choosing which measure to beat on each instance.

17-d

Conclusion

We introduced hybrid algorithms.

We gave simple hybrid algorithms for

MAX-CUT, LONGEST PATH, MINIMUM BANDWIDTH.

We also have hybrids for

COUNTING 2-CNF SOLUTIONS, MAX-Ek-LIN-p.

Overarching Idea:

Beat the inadequacies of worst-case analysis on a fixed complexity

measure, by choosing which measure to beat on each instance.

Two interesting problems arise in designing a hybrid algorithm for some Π

• How to split the cases of Π?

• How to select the right heuristic?

17-e

Thank You!

18

