Explicit Inapproximability Bounds for the Shortest
Superstring Problem

Virginia Vassilevska

Carnegie Mellon University, Pittsburgh, USA

The Shortest Superstring Problem (SSP)

Given an alphabet 22, and a set of strings S = {31, Ce sn} over 2.,

find a shortest string s over > which contains every s; as a substring.

The Shortest Superstring Problem (SSP)

Given an alphabet 22, and a set of strings S = {51, Ce sn} over 2.,

find a shortest string s over > which contains every s; as a substring.

A substring of s is a string of consecutive characters in s.

2-a

The Shortest Superstring Problem (SSP)

Given an alphabet 22, and a set of strings S = {51, Ce sn} over 2.,

find a shortest string s over > which contains every s; as a substring.

A substring of s is a string of consecutive characters in s.

AB and BCD are substrings of ABCDE.

2-b

The Shortest Superstring Problem (SSP)

Given an alphabet 22, and a set of strings S = {51, Ce sn} over 2.,

find a shortest string s over > which contains every s; as a substring.

A substring of s is a string of consecutive characters in s.

AB and BCD are substrings of ABCDE. BE is not.

2-C

The Shortest Superstring Problem (SSP)

Given an alphabet 22, and a set of strings S = {51, Ce sn} over 2.,

find a shortest string s over > which contains every s; as a substring.

A substring of s is a string of consecutive characters in s.

AB and BCD are substrings of ABCDE. BE is not.

The shortest superstring of { OVER, VERY, DOVE} is
DOVERY.

2-d

The Shortest Superstring Problem (SSP)

The Shortest Superstring Problem (SSP)

An overlap of string s with string s Is a suffix of s; which is

the same as the prefix of s of the same length.

3-a

The Shortest Superstring Problem (SSP)

An overlap of string s with string s Is a suffix of s; which is

the same as the prefix of s of the same length.

To overlap s with so maximally means to find the maximum

overlap ov of s; with s9, and to attach to the front of s the

prefix of s; before ov.

E.g. {abc, bed} — abced.

3-b

The Shortest Superstring Problem cont.

The Shortest Superstring Problem cont.

Two ways to measure the quality of a superstring s:

4-a

The Shortest Superstring Problem cont.

Two ways to measure the quality of a superstring s:

e Length - the number of symbols |s| in the string

4-b

The Shortest Superstring Problem cont.

Two ways to measure the quality of a superstring s:

e Length - the number of symbols |s| in the string

e Compression - > . |s;]] — ||

4-c

The Shortest Superstring Problem cont.

Two ways to measure the quality of a superstring s:

e Length - the number of symbols |s| in the string
e Compression - > . |s;]] — ||

As a superstring of { OVER, VERY, DOVE}, DOVERY

yields a compression of 0.

4-d

The Shortest Superstring Problem cont.

The Shortest Superstring Problem cont.

SSPis

5-a

The Shortest Superstring Problem cont.

SSPis

e NP-Hard (Maier and Storer),

5-b

The Shortest Superstring Problem cont.

SSPis

e NP-Hard (Maier and Storer),

e MAX-SNP-Hard (Blum et al.),

5-c

The Shortest Superstring Problem cont.

SSP s

e NP-Hard (Maier and Storer),
e MAX-SNP-Hard (Blum et al.),

e 2.5 —approximable in terms of the length measure (Sweedyk),

5-d

The Shortest Superstring Problem cont.

SSP s

e NP-Hard (Maier and Storer),
e MAX-SNP-Hard (Blum et al.),
e 2.5 —approximable in terms of the length measure (Sweedyk),

° % — approximable in terms of the compression measure (Kaplan et al.),

5-e

The Shortest Superstring Problem cont.

SSP s

e NP-Hard (Maier and Storer),

e MAX-SNP-Hard (Blum et al.),

e 2.5 —approximable in terms of the length measure (Sweedyk),

° % — approximable in terms of the compression measure (Kaplan et al.),

e for a binary alphabet, unless P = NP, not approximable within
1.000057 (length) and 1.000089 (compression) (Ott).

5-f

Our Main Result

Unless P = NP, forany € > 0, SSP on equal length binary

strings cannot be approximated in poly time within a factor of

e 1.00082 — &, with respect to the length measure,

e 1.00093 — &, with respect to the compression measure.

Alphabet

Alphabet

Does it matter whether the alphabet is large or small?

7-a

Does it matter whether the alphabet is large or small?

Clearly, if > = {0} the problem is very easy to solve.

7-b

Does it matter whether the alphabet is large or small?
Clearly, if > = {0} the problem is very easy to solve.

Are smaller alphabet instances easier to solve, at least in

terms of approximation?

7-Cc

Does it matter whether the alphabet is large or small?
Clearly, if > = {0} the problem is very easy to solve.

Are smaller alphabet instances easier to solve, at least in

terms of approximation?

We show that if you can approximate alphabet
Instances within a factor « in polytime then SSP is

(v-approximable.

7-d

Binary Alphabet

Binary Alphabet

Suppose one can approximate binary alphabet instances in

polytime within a factor c.

8-a

Binary Alphabet

Suppose one can approximate binary alphabet instances in

polytime within a factor c.

Given an instance S = {51, Ce sn} of SSP on any alphabet
Y., go through the strings in S and in linear time collect the
finite subalphabet X' C 3 of letters participating in the given

strings.

8-b

Binary Alphabet

Binary Alphabet

Let X' = {oq,...,0m}.

Transform o; — 0°(01)™ 11",

9-a

Binary Alphabet

Let X' = {oq,...,0m}.
Transform o; — 0°(01)™ 11",

For example, for m = 3,
> — {00101011,00010111,00001111}.

9-b

Binary Alphabet

Let X' = {o1,...,0mn}.
Transform o; — 0°(01)™ 11",

For example, for m = 3,
> — {00101011,00010111,00001111}.

Properties of this transformation:

9-c

Binary Alphabet

Let X' = {oq,...,0m}.
Transform o; — 0°(01)™ 11",

For example, for m = 3,
> — {00101011,00010111,00001111}.

Properties of this transformation:

e for i ## j, o; does not overlap with o,

9-d

Binary Alphabet

Let X' = {o1,...,0mn}.
Transform o; — 0°(01)™ 11",

For example, for m = 3,
> — {00101011,00010111,00001111}.

Properties of this transformation:
e for i ## j, o; does not overlap with o,

e 7, overlaps with itself only by its whole length,

9-e

Binary Alphabet

Let X' = {o1,...,0mn}.
Transform o; — 0°(01)™ 11",

For example, for m = 3,
> — {00101011,00010111,00001111}.

Properties of this transformation:
e for i ## j, o; does not overlap with o,
e 7, overlaps with itself only by its whole length,

e for every i, |o;| = 2(m + 1).

o-f

Binary Alphabet cont.

10

Binary Alphabet cont.

The transformed o; behave like single letters and the
superstrings of the new instance correspond exactly to those

of the old one, and their length is exactly 2(m + 1) times

larger.

10-a

The transformed o; behave like single letters and the
superstrings of the new instance correspond exactly to those
of the old one, and their length is exactly 2(m + 1) times
larger.

Hence an « approximation of the binary alphabet instance
can immediately be converted to an & approximation for the

old instance.

10-b

Binary Alphabet cont.

The transformed o; behave like single letters and the
superstrings of the new instance correspond exactly to those
of the old one, and their length is exactly 2(m + 1) times
larger.

Hence an « approximation of the binary alphabet instance
can immediately be converted to an & approximation for the

old instance.

Binary alphabet SSP is just as hard to approximate as general
SSP.

10-c

Lower Bounds

11

Lower Bounds

Karpinski: Forany 0 < € < % it is NP-hard to decide whether
an instance of VVertex Cover with 1407 nodes and maximum

degree at most 5 has its optimum above (73 — 6)77, or below
(72 + e)n.

11-a

Lower Bounds

Karpinski: Forany 0 < € < % it is NP-hard to decide whether
an instance of VVertex Cover with 1407 nodes and maximum

degree at most 5 has its optimum above (73 — 6)n or below
(72 + e)n.
The graph instances in the reduction used have at most 286n

edges.

11-b

Lower Bounds

Karpinski: Forany 0 < € < % it is NP-hard to decide whether
an instance of VVertex Cover with 1407 nodes and maximum

degree at most 5 has its optimum above (73 — 6)n or below
(72 + e)n.

The graph instances in the reduction used have at most 286n

edges.

We'll efficiently reduce from Vertex Cover on these graphs to

SSP.

11-c

The Reduction

Given an instance of Vertex Cover |G = (V, E/), K] reduce

to an SSP instance as follows:
1.2 =V

2. S consists of abab and baba for all (a,b) € E

12

How The Reduction Works

13

How The Reduction Works

Suppose G has a vertex cover C' of size k and | E/| = m.

13-a

How The Reduction Works

Suppose G has a vertex cover C' of size k and | E/| = m.

Assign each edge to one of its end points which is in C'.

13-b

How The Reduction Works

Suppose G has a vertex cover C' of size k and | E/| = m.
Assign each edge to one of its end points which is in C'.

If e = (a, b) was assigned to a, then overlap abab (to the

left) with baba to obtain ababa. [Otherwise obtain babab.]

13-c

How The Reduction Works

Suppose G has a vertex cover C' of size k and | E/| = m.
Assign each edge to one of its end points which is in C'.

If e = (a, b) was assigned to a, then overlap abab (to the

left) with baba to obtain ababa. [Otherwise obtain babab.]

Let ¢ € (. The strings corresponding to edges assigned to ¢
can all be overlapped by a letter to get something like

cacacbcbedede . . . c

13-d

How The Reduction Works

Suppose G has a vertex cover C' of size k and | E/| = m.
Assign each edge to one of its end points which is in C'.

If e = (a, b) was assigned to a, then overlap abab (to the

left) with baba to obtain ababa. [Otherwise obtain babab.]

Let ¢ € (. The strings corresponding to edges assigned to ¢
can all be overlapped by a letter to get something like

cacacbcbedede . . . c

This gives a superstring of length 4m + k.

13-e

How The Reduction Works

14

How The Reduction Works

Suppose the SSP instance we constructed has a superstring

s of length at most 4m + k.

14-a

How The Reduction Works

Suppose the SSP instance we constructed has a superstring

s of length at most 4m + k.

If some abab and baba were not overlapped with each other,

wlog assume abab occurs before baba in s.

14-b

How The Reduction Works

Suppose the SSP instance we constructed has a superstring

s of length at most 4m + k.

If some abab and baba were not overlapped with each other,

wlog assume abab occurs before baba in s.

In the worst case we have . .. ababa'ba’ . ..a"ba"baba

14-c

How The Reduction Works

Suppose the SSP instance we constructed has a superstring

s of length at most 4m + k.

If some abab and baba were not overlapped with each other,

wlog assume abab occurs before baba in s.
In the worst case we have . .. ababa’ba’ . ..a"ba"baba

We can gain one symbol overlap by moving ba’ba’ . . . a""ba’b

to the end of s and overlapping abab with baba!

14-d

How The Reduction Works

15

How The Reduction Works

Hence wlog assume that in s for every edge (a, b) either

abab is maximally overlapped with baba or vice versa.

15-a

How The Reduction Works

Hence wlog assume that in s for every edge (a, b) either

abab is maximally overlapped with baba or vice versa.

To obtain a vertex cover C' of (7, for each edge (a, b) if abab

comes before baba in s, put a in C'. Otherwise put b in C.

15-b

How The Reduction Works

Hence wlog assume that in s for every edge (a, b) either

abab is maximally overlapped with baba or vice versa.

To obtain a vertex cover C' of (7, for each edge (a, b) if abab

comes before baba in s, put a in C'. Otherwise put b in C.

The strings of the form ababa overlap by at most one symbol

and this symbol is in C' by construction.

15-c

How The Reduction Works

Hence wlog assume that in s for every edge (a, b) either

abab is maximally overlapped with baba or vice versa.

To obtain a vertex cover C' of (7, for each edge (a, b) if abab

comes before baba in s, put a in C'. Otherwise put b in C.

The strings of the form ababa overlap by at most one symbol

and this symbol is in C' by construction.

The shortest possible string that can be obtained by

overlapping them is of length 41m + |C'|. Hence |C| < k.

15-d

Putting it all together

16

Putting it all together

(- has a vertex cover of size k iff the string set has a

superstring of length 4m + k.

16-a

Putting it all together

(- has a vertex cover of size k iff the string set has a

superstring of length 4m + k.

Forany 0 < € < % It iIs NP-hard to decide whether an
instance of Vertex Cover with 1401 nodes and at most 286n

edges has its optimum above (73 — £)n or below (72 + €)n.

16-b

Putting it all together

(- has a vertex cover of size k iff the string set has a

superstring of length 4m + k.

Forany 0 < € < % It iIs NP-hard to decide whether an
instance of Vertex Cover with 1401 nodes and at most 286n

edges has its optimum above (73 — £)n or below (72 + €)n.

Hence for SSP on 2m < 572n strings of length 4 it is
NP-hard to distinguish whether there is a superstring of length
below 41m + (72 + £)n or above 4m + (73 — e)n.

16-c

Lower Bound for the Length Measure

17

Lower Bound for the Length Measure

If SSP can be approximated within «, then

dm+ (73 —e)n
o >
~Adm+ (T2+¢)n

17-a

Lower Bound for the Length Measure

If SSP can be approximated within «, then

dm+ (73 —e)n
o >
~dm+ (724 ¢e)n

Taking limits on both sides we get

. dm+ (73 —¢e)n 4m+ 73n 1
()f ;Ei 111]]_ p— p—]_ —+-
e—=04dm + (72+¢e)n 4dm+ 72n 47 + 72

17-b

Lower Bound for the Length Measure

If SSP can be approximated within «, then

dm+ (73 —e)n
o >
~dm+ (724 ¢e)n

Taking limits on both sides we get

. dm+ (73 —¢e)n 4m+ 73n 1
e—=04dm + (72+¢e)n 4dm+ 72n 47 + 72

But4% < 2806 x 4 = 1144 and so o > 1.00082

17-c

Lower Bound for the Compression Measure

18

Lower Bound for the Compression Measure

The compression in our reduction is 4m — k.

18-a

Lower Bound for the Compression Measure

The compression in our reduction is 4m — k.

So for the compression measure it is NP-hard to decide whether the

optimum compression is above 41m — (72 + €)n or below
dm — (73 — e)n.

18-b

Lower Bound for the Compression Measure

The compression in our reduction is 4m — k.

So for the compression measure it is NP-hard to decide whether the

optimum compression is above 41m — (72 + €)n or below
dm — (73 — e)n.

If the compression can be approximated by a factor (3, then

dm — (72 +¢)n
T g

18-c

Lower Bound for the Compression Measure

The compression in our reduction is 4m — k.

So for the compression measure it is NP-hard to decide whether the

optimum compression is above 41m — (72 + €)n or below
dm — (73 — e)n.

If the compression can be approximated by a factor (3, then

dm — (72 +¢)n
T g

Taking limits on both sides,

. Am — (T2 +¢e)n
>] —
5—65%4m—(73—5)n T3

> 1.00093

18-d

Summary

Unless P = NP, forany € > 0, SSP on equal length strings

cannot be approximated in poly time within a factor of

e 1.00082 — &, with respect to the length measure,

e 1.00093 — &, with respect to the compression measure.

19

Open Questions

e Is SSP on equal length strings easier than the general SSP

In terms of approximation?
® Is SSP more tightly related to Vertex Cover?

e Can we obtain better hardness results if we relax our

assumptions from P #= NP to something like
NP g npalylog(n)?

e Can one obtain similar results for Shortest Common

Superseqguence?

20

Thank You!

21

